Carnegie Mellon University
Browse

On 3D Shape Similarity

Download (1.07 MB)
journal contribution
posted on 1996-01-01, 00:00 authored by Heung-Yeung Shum, Martial Hebert, Katsushi Ikeuchi
This paper addresses the problem of 3D shape similarity between closed surfaces. A curved or polyhedral 3D object of genus zero is represented by a mesh that has nearly uniform distribution with known connectivity among mesh nodes. A shape similarity metric is defined based on the L2 distance between the local curvature distributions over the mesh representations of the two objects. For both convex and concave objects, the shape metric can be computed in time O(n 2), where n is the number of tessellations of the sphere or the number of meshes which approximate the surface. Experiments show that our method produces good shape similarity measurements

History

Publisher Statement

"©1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

1996-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC