posted on 2011-10-01, 00:00authored byElchanan Mossel, Ryan O'Donnell
It is known that for all monotone functions f : {0, 1}n → {0, 1}, if x ∈ {0, 1}n is chosen uniformly at random and y is obtained from x by flipping each of the bits of x independently with probability ϵ = n−α, then P[f(x) ≠ f(y)] < cn−α+1/2, for some c > 0.
We also study the problem of achieving the best dependence on δ in the case that the noise rate ϵ is at least a small constant; the results we obtain are tight to within logarithmic factors.
History
Publisher Statement
This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.ipl.2011.10.006