Carnegie Mellon University
Browse

Online Detection of Unusual Events in Videos via Dynamic Sparse Coding

Download (1.79 MB)
journal contribution
posted on 2011-06-01, 00:00 authored by Bin Zhou, Li Fei-Fei, Eric P. Xing

Real-time unusual event detection in video stream has been a difficult challenge due to the lack of sufficient training information, volatility of the definitions for both normality and abnormality, time constraints, and statistical limitation of the fitness of any parametric models. We propose a fully unsupervised dynamic sparse coding approach for detecting unusual events in videos based on online sparse re-constructibility of query signals from an atomically learned event dictionary, which forms a sparse coding bases. Based on an intuition that usual events in a video are more likely to be reconstructible from an event dictionary, whereas unusual events are not, our algorithm employs a principled convex optimization formulation that allows both a sparse reconstruction code, and an online dictionary to be jointly inferred and updated. Our algorithm is completely un-supervised, making no prior assumptions of what unusual events may look like and the settings of the cameras. The fact that the bases dictionary is updated in an online fashion as the algorithm observes more data, avoids any issues with concept drift. Experimental results on hours of real world surveillance video and several Youtube videos show that the proposed algorithm could reliably locate the unusual events in the video sequence, outperforming the current state-of-the-art methods.

History

Publisher Statement

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Date

2011-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC