Carnegie Mellon University
Browse
- No file added yet -

Optimizing Seed Selection for Fuzzing

Download (374.06 kB)
journal contribution
posted on 2014-08-01, 00:00 authored by Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan M Foote, David Warren, Gustavo Grieco, David BrumleyDavid Brumley

Randomly mutating well-formed program inputs or simply fuzzing, is a highly effective and widely used strategy to find bugs in software. Other than showing fuzzers find bugs, there has been little systematic effort in understanding the science of how to fuzz properly. In this paper, we focus on how to mathematically formulate and reason about one critical aspect in fuzzing: how best to pick seed files to maximize the total number of bugs found during a fuzz campaign. We design and evaluate six different algorithms using over 650 CPU days on Amazon Elastic Compute Cloud (EC2) to provide ground truth data. Overall, we find 240 bugs in 8 applications and show that the choice of algorithm can greatly increase the number of bugs found. We also show that current seed selection strategies as found in Peach may fare no better than picking seeds at random. We make our data set and code publicly available.

History

Publisher Statement

Copyright 2014 USENIX

Date

2014-08-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC