posted on 2012-11-01, 00:00authored byAlexandre Donze, Gilles Clermont, Axel Legay, Christopher J. Langmead
The dynamics of biological processes are often modeled as systems of nonlinear ordinary differential equations (ODE). An important feature of nonlinear ODEs is that seemingly minor changes in initial conditions or parameters can lead to radically different behaviors. This is problematic because in general it is never possible to know/measure the precise state of any biological system due to measurement errors. The parameter synthesis problem is to identify sets of parameters (including initial conditions) for which a given system of nonlinear ODEs does not reach a given set of undesirable states. We present an efficient algorithm for solving this problem that combines sensitivity analysis with an efficient search over initial conditions. It scales to high-dimensional models and is exact if the given model is affine. We demonstrate our method on a model of the acute inflammatory response to bacterial infection, and identify initial conditions consistent with 3 biologically relevant outcomes.
History
Publisher Statement
This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.comgeo.2012.11.007