Carnegie Mellon University
Browse

Poincare-Map-Based Reinforcement Learning for Biped Walking

Download (441.62 kB)
journal contribution
posted on 2005-01-01, 00:00 authored by Jun Morimoto, Jun Nakanishi, Gen Endo, Gordon Cheng, Christopher G. Atkeson, Garth Zeglin
We propose a model-based reinforcement learning algorithm for biped walking in which the robot learns to appropriately modulate an observed walking pattern. Viapoints are detected from the observed walking trajectories using the minimum jerk criterion. The learning algorithm modulates the via-points as control actions to improve walking trajectories. This decision is based on a learned model of the Poincar´e map of the periodic walking pattern. The model maps from a state in the single support phase and the control actions to a state in the next single support phase. We applied this approach to both a simulated robot model and an actual biped robot. We show that successful walking policies are acquired.

History

Publisher Statement

"©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2005-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC