Carnegie Mellon University
Browse

Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

Download (430.74 kB)
journal contribution
posted on 2010-12-01, 00:00 authored by Biplab Dey, Michael E. McCracken, David G. Ireland, Curtis MeyerCurtis Meyer

The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known Chew-Goldberger-Low-Nambu formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

History

Publisher Statement

©2011 American Physical Society

Date

2010-12-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC