Carnegie Mellon University
Browse

Pose Machines: Articulated Pose Estimation via Inference Machines

Download (16.66 MB)
journal contribution
posted on 2014-09-01, 00:00 authored by Varun Ramakrishna, Daniel Munoz, Martial Hebert, J. Andrew Bagnell, Yaser Sheikh

State-of-the-art approaches for articulated human pose estimation are rooted in parts-based graphical models. These models are often restricted to tree-structured representations and simple parametric potentials in order to enable tractable inference. However, these simple dependencies fail to capture all the interactions between body parts. While models with more complex interactions can be defined, learning the parameters of these models remains challenging with intractable or approximate inference. In this paper, instead of performing inference on a learned graphical model, we build upon the inference machine framework and present a method for articulated human pose estimation. Our approach incorporates rich spatial interactions among multiple parts and information across parts of different scales. Additionally, the modular framework of our approach enables both ease of implementation without specialized optimization solvers, and efficient inference. We analyze our approach on two challenging datasets with large pose variation and outperform the state-of-the-art on these benchmarks.

History

Publisher Statement

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-10605-2_3

Date

2014-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC