Carnegie Mellon University
Browse

Power Iteration Clustering

Download (241.61 kB)
journal contribution
posted on 2010-06-01, 00:00 authored by Frank Lin, William W. Cohen

We present a simple and scalable graph clustering method called power iteration clustering (PIC). PIC finds a very low-dimensional embedding of a dataset using truncated power iteration on a normalized pair-wise similarity matrix of the data. This embedding turns out to be an effective cluster indicator, consistently outperforming widely used spectral methods such as NCut on real datasets. PIC is very fast on large datasets, running over 1,000 times faster than an NCut implementation based on the state-of-the-art IRAM eigenvector computation technique

History

Publisher Statement

Copyright 2010 by the author(s)

Date

2010-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC