Carnegie Mellon University
Browse
- No file added yet -

Practical Privacy: The SuLQ Framework

Download (414 kB)
journal contribution
posted on 1966-01-01, 00:00 authored by Avrim Blum, Cynthia Dwork, Frank McSherry, Kobbi Nissim
We consider a statistical database in which a trusted administrator introduces noise to the query responses with the goal of maintaining privacy of individual database entries. In such a database, a query consists of a pair (S, f) where S is a set of rows in the database and f is a function mapping database rows to {0, 1}. The true answer is ΣiεS f(di), and a noisy version is released as the response to the query. Results of Dinur, Dwork, and Nissim show that a strong form of privacy can be maintained using a surprisingly small amount of noise -- much less than the sampling error -- provided the total number of queries is sublinear in the number of database rows. We call this query and (slightly) noisy reply the SuLQ (Sub-Linear Queries) primitive. The assumption of sublinearity becomes reasonable as databases grow increasingly large.We extend this work in two ways. First, we modify the privacy analysis to real-valued functions f and arbitrary row types, as a consequence greatly improving the bounds on noise required for privacy. Second, we examine the computational power of the SuLQ primitive. We show that it is very powerful indeed, in that slightly noisy versions of the following computations can be carried out with very few invocations of the primitive: principal component analysis, k means clustering, the Perceptron Algorithm, the ID3 algorithm, and (apparently!) all algorithms that operate in the in the statistical query learning model

History

Publisher Statement

All Rights Reserved

Date

1966-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC