Carnegie Mellon University
Browse
file.pdf (198.59 kB)

Predicting Protein Folding Kinetics via Temporal Logic Model Checking: Extended Abstract

Download (198.59 kB)
journal contribution
posted on 2012-09-01, 00:00 authored by Christopher J. Langmead, Sumit Kumar Jha
We present a novel approach for predicting protein folding kinetics using techniques from the field of model checking. This represents the first time model checking has been applied to a problem in the field of structural biology. The protein’s energy landscape is encoded symbolically using Binary Decision Diagrams and related data structures. Questions regarding the kinetics of folding are encoded as formulas in the temporal logic CTL. Model checking algorithms are then used to make quantitative predictions about the kinetics of folding. We show that our approach scales to state spaces as large as 1023 when using exact algorithms for model checking. This is at least 14 orders of magnitude larger than the number of configurations considered by comparable techniques. Furthermore, our approach scales to state spaces at least as large as 1032 unique configurations when using approximation algorithms for model checking. We tested our method on 19 test proteins. The quantitative predictions regarding folding rates for these test proteins are in good agreement with experimentally measured values, achieving a correlation coefficient of 0.87.

History

Publisher Statement

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Date

2012-09-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC