Carnegie Mellon University
Browse

Prediction of orientational phase transition in boron carbide

Download (407.31 kB)
journal contribution
posted on 2012-02-20, 00:00 authored by Michael WidomMichael Widom, William Paul Huhn

The assessed binary phase diagram of boron–carbon exhibits a single intrinsically disordered alloy phase designated “B4C” with rhombohedral symmetry occupying a broad composition range that falls just short of the nominal carbon content of 20%. As this composition range is nearly temperature independent, the phase diagram suggests a violation of the third law of thermodynamics, which typically requires compounds to achieve a definite stoichiometry at low temperatures. By means of first principles total energy calculations we predict the existence of two stoichiometric phases at T = 0 K: one of composition B4C with monoclinic symmetry; the other of composition B13C2 with rhombohedral symmetry. Using statistical mechanics to extend to finite temperatures, we demonstrate that the monoclinic phase reverts to the observed disordered nonstoichiometric rhombohedral phase above T = 600 K, along with a slight reduction on carbon content.

History

Publisher Statement

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.solidstatesciences.2012.05.010

Date

2012-02-20

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC