Carnegie Mellon University
file.pdf (1.03 MB)

Predictive Subspace Learning for Multi-view Data: a Large Margin Approach

Download (1.03 MB)
journal contribution
posted on 2010-12-01, 00:00 authored by Ning Chen, Jun Zhu, Eric P. Xing

Learning from multi-view data is important in many applications, such as image classification and annotation. In this paper, we present a large-margin learning framework to discover a predictive latent subspace representation shared by multiple views. Our approach is based on an undirected latent space Markov network that fulfills a weak conditional independence assumption that multi-view observations and response variables are independent given a set of latent variables. We provide efficient inference and parameter estimation methods for the latent subspace model. Finally, we demonstrate the advantages of large-margin learning on real video and web image data for discovering predictive latent representations and improving the performance on image classification, annotation and retrieval.




Usage metrics