Carnegie Mellon University
Browse

Probabilistic models of cognition: exploring representations and inductive biases.

journal contribution
posted on 2010-08-01, 00:00 authored by Thomas L. Griffiths, Nick Chater, Charles KempCharles Kemp, Amy Perfors, Joshua B. Tenenbaum

Cognitive science aims to reverse-engineer the mind, and many of the engineering challenges the mind faces involve induction. The probabilistic approach to modeling cognition begins by identifying ideal solutions to these inductive problems. Mental processes are then modeled using algorithms for approximating these solutions, and neural processes are viewed as mechanisms for implementing these algorithms, with the result being a top-down analysis of cognition starting with the function of cognitive processes. Typical connectionist models, by contrast, follow a bottom-up approach, beginning with a characterization of neural mechanisms and exploring what macro-level functional phenomena might emerge. We argue that the top-down approach yields greater flexibility for exploring the representations and inductive biases that underlie human cognition.

History

Date

2010-08-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC