Reactivity and Vulnerability to Stress-Associated Risk for Upper Respiratory Illness
OBJECTIVE: We tested the hypothesis that the greater a person’s laboratory stress-elicited elevation in cortisol, the greater the life stress-related risk for upper respiratory infection (URI). We also tested the prediction that the greater the laboratory stress-elicited rise in natural killer cell (NK) cytotoxicity, the smaller the life stress-related URI risk. Finally, we explored whether sympathetic nervous system (SNS) and enumerative immune reactivities to laboratory stress moderate the relation between life stress and URI. METHODS: At baseline, 115 healthy subjects were administered a negative stressful life events checklist and were tested to assess their SNS (blood pressure, heart rate, and catecholamines), HPA (cortisol), and immune (NK cell cytotoxicity and lymphocyte subsets) reactivities to laboratory speech tasks administered 2 weeks apart. Responses were averaged across the two laboratory assessments to create reactivity scores. After these assessments were completed, participants were followed weekly for 12 consecutive weeks. At each follow-up they completed a measure of perceived stress experienced over the last week. They were also instructed to contact the study coordinator if they had a cold or flu at any time during follow-up. A health care worker verified reported illnesses. RESULTS: In a traditional prospective analysis, high cortisol reactors with high levels of life events had a greater incidence of verified URI than did high reactors with low levels of life events and low reactors irrespective of their life event scores. Using hierarchical linear modeling, CD8+ number, Natural Killer (NK) cell number, and NK cell cytotoxicity, each interacted with weekly perceived stress levels in predicting concurrent occurrences of self-reported URIs. For these outcomes, low immune reactors were more likely to experience an URI during high stress than low stress weeks. High immune reactors did not exhibit differences in weekly URIs as a function of weekly stress level. The SNS reactivity markers did not moderate the association of stress and URI incidence in either analysis. CONCLUSIONS: Acute HPA and immune responses to laboratory stressors are markers of how vulnerable people are to the increased risk for URI associated with stressors in the natural environment.