File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch.

journal contribution
posted on 17.09.2013, 00:00 by Rachel Vistein, Manojkumar Puthenveedu

The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling.

History

Date

17/09/2013

Exports