bme-1116.pdf (194.71 kB)
Download file

Right ventricular outflow tract reconstruction with bicuspid valved polytetrafluoroethylene conduit.

Download (194.71 kB)
journal contribution
posted on 01.04.2011, 00:00 by Masahiro Yoshida, Peter D. Wearden, Onur Dur, Kerem Pekkan, Victor O. Morell

BACKGROUND: In general, all conduits available for right ventricular outflow tract (RVOT) reconstruction eventually become stenotic or insufficient. Owing to the lack of an ideal conduit and with the hope of reducing the incidence of reoperations, we have developed and utilized a bicuspid valved polytetrafluoroethylene (PTFE) conduit for the reconstruction of the RVOT. The purpose of this study was to review our early experience with this conduit.

METHODS: From October 2008 to September 2009, we have implanted bicuspid valved PTFE conduits in 18 patients with a median age of 1.7 years (range 6 days to 16 years). Their diagnoses include tetralogy of Fallot with pulmonary atresia in 8, truncus arteriosus in 6, congenital aortic stenosis in 2, transposition of great arteries in 1, and interrupted aortic arch with a ventricular septal defect in 1. In 16 patients, a complete biventricular repair was performed. In another 2 cases, the conduit was used for palliative RVOT reconstruction. The conduit sizes varied from 10 mm to 24 mm in diameter. Three-dimensional flow fields obtained from computational fluid dynamics studies were utilized in the conduit design process.

RESULTS: There was no surgical mortality or reinterventions associated with the PTFE conduit placement in our series. At the time of discharge, none of the patients had any echocardiographic findings consistent with significant conduit stenosis or insufficiency. During the follow-up period of 6.2 ± 3.9 months, all patients were alive and only 3 had more than mild pulmonary insufficiency.

CONCLUSIONS: Our bicuspid valved PTFE conduit has an acceptable early performance, with a low incidence of valve insufficiency and no conduit stenosis. Certainly, longer follow-up is necessary to fully assess its long-term benefits.


Publisher Statement

This is the author’s version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was is available at