Carnegie Mellon University
Browse
- No file added yet -

Segmentation of Salient Regions in Outdoor Scenes Using Imagery and 3-D Data

Download (3.02 MB)
journal contribution
posted on 2008-01-01, 00:00 authored by Gunhee Kim, Daniel F. Huber, Martial Hebert
This paper describes a segmentation method for extracting salient regions in outdoor scenes using both 3-D laser scans and imagery information. Our approach is a bottom- up attentive process without any high-level priors, models, or learning. As a mid-level vision task, it is not only robust against noise and outliers but it also provides valuable information for other high-level tasks in the form of optimal segments and their ranked saliency. In this paper, we propose a new saliency definition for 3-D point clouds and we incorporate it with saliency features from color information.

History

Publisher Statement

"©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2008-01-01

Usage metrics

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC