Carnegie Mellon University
Browse

Sensing Polygon Poses by Inscription

Download (126.59 kB)
journal contribution
posted on 1994-01-01, 00:00 authored by Yan-Bin Jia, Michael Erdmann
Industrial assembly involves sensing the pose (orientation and position) of a part. Efficient and reliable sensing strategies can be developed for an assembly task if the shape of the part is known in advance. In this paper we investigate the problem of determining the pose of a convex n-gon from a set of m supporting cones, i.e., cones with both sides supporting the polygon. An algorithm with running time O(nm) which almost always reduces to O(n + m log n) is presented to solve for all possible poses of the polygon. As a consequence, the polygon inscription problem of finding all possible poses for a convex n-gon inscribed in another convex m-gon, can be solved within the same asymptotic time bound. We prove that the number of possible poses cannot exceed 6n, given m >= 2 supporting cones with distinct vertices. Experiments demonstrate that two supporting cones are sufficient to determine the real pose of the n-gon in most cases. Our results imply that sensing in practice can be carried out by obtaining viewing angles of a planar part at multiple exterior sites in the plane. As a conclusion, we generalize this and other sensing methods into a scheme named sensing by inscription.

History

Publisher Statement

"©1994 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."

Date

1994-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC