Carnegie Mellon University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Carnegie Mellon University and we can't guarantee its availability, quality, security or accept any liability.

Shiga toxin-binding site for host cell receptor GPP130 reveals unexpected divergence in toxin-trafficking mechanisms.

journal contribution
posted on 2013-08-01, 00:00 authored by Somshuvra Mukhopadhyay, Brendan RedlerBrendan Redler, Adam LinstedtAdam Linstedt

Shiga toxicosis is caused by retrograde trafficking of one of three types of Shiga toxin (STx), STx, STx1, or STx2. Trafficking depends on the toxin B subunits, which for STx and STx1 are identical and bind GPP130, a manganese (Mn)-sensitive intracellular trafficking receptor. Elevated Mn down-regulates GPP130, rendering STx/STx1 harmless. Its effectiveness against STx2, however, which is a serious concern in the developed world, is not known. Here we show that Mn-induced GPP130 down-regulation fails to block STx2 trafficking. To shed light on this result, we tested the purified B subunit of STx2 for binding to GPP130 and found that it failed to interact. We then mapped residues at the interface of the GPP130-STx/STx1 complex. In GPP130, binding mapped to a seven-residue stretch in its lumenal stem domain next to the transmembrane domain. This stretch was required for STx/STx1 transport. In STx/STx1, binding mapped to a histidine-asparagine pair on a surface-exposed loop of the toxin B subunit. Significantly, these residues are not conserved in STx2, explaining the lack of effectiveness of Mn against STx2. Together our results imply that STx2 uses an evolutionarily distinct trafficking mechanism and that Mn as a potential therapy should be focused on STx/STx1 outbreaks, which account for the vast majority of cases worldwide.

History

Date

2013-08-01