Carnegie Mellon University
Browse

Small Hop-diameter Sparse Spanners for Doubling Metrics

Download (196.46 kB)
journal contribution
posted on 1985-01-01, 00:00 authored by T.-H. Hubert Chan, Anupam Gupta
Given a metric M = (V, d), a graph G = (V, E) is a t-spanner for M if every pair of nodes in V has a "short" path (i.e., of length at most t times their actual distance) between them in the spanner. Furthermore, this spanner has a hop diameter bounded by D if every such short path also uses at most D edges. We consider the problem of constructing sparse (1 + ε)-spanners with small hop diameter for metrics of low doubling dimension.In this paper, we show that given any metric with constant doubling dimension k, and any 0 < ε < 1, one can find a (1 + ε)-spanner for the metric with nearly linear number of edges (i.e., only O(n log* n + nε-O(k)) edges) and a constant hop diameter, and also a (1 + ε)-spanner with linear number of edges (i.e., only nε-O(k) edges) which achieves a hop diameter that grows like the functional inverse of the Ackermann's function. Moreover, we prove that such tradeoffs between the number of edges and the hop diameter are asymptotically optimal.

History

Publisher Statement

All Rights Reserved

Date

1985-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC