Carnegie Mellon University
Browse

SpAM: Sparse Additive Models

Download (288.26 kB)
journal contribution
posted on 2005-12-01, 00:00 authored by Pradeep Ravikumar, Han Liu, John Lafferty, Larry Wasserman
We present a new class of models for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive a method for fitting the models that is effective even when the number of covariates is larger than the sample size. A statistical analysis of the properties of SpAM is given together with empirical results on synthetic and real data, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data.

History

Date

2005-12-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC