Carnegie Mellon University
Browse

Spatial change: continuity, reversibility, and emergent shapes

Download (2.34 MB)
journal contribution
posted on 1997-01-01, 00:00 authored by Ramesh Krishnamurti, Rudi Stouffs
Spatial composition can be viewed as computations involving spatial changes each expressed as s - f(a) + f(b), where s is a shape, and f(a) is a representation of the emergent part (shape) that is altered by replacing it with the shape f(b). We examine this formula in three distinct but related ways. We begin by exploring the conditions under which a sequence of spatial changes is continuous. We next consider the conditions under which such changes are reversible. We conclude with the recognition of emergent shapes, that is, the determination of transformations f that make f(a) a part of s. We enumerate the cases for shape recognition within algebras ty, 0 < i ^y < 3, and within Cartesian products of these algebras.

History

Date

1997-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC