Carnegie Mellon University
Browse
- No file added yet -

Spatial density estimation based segmentation of super-resolution localization microscopy images

Download (2.08 MB)
journal contribution
posted on 2014-10-01, 00:00 authored by Kuan-Chieh Jackie Chen, Ge YangGe Yang, Jelena KovacevicJelena Kovacevic

Super-resolution localization microscopy (SRLM) is a new imaging modality that is capable of resolving cellular structures at nanometer resolution, providing unprecedented insight into biological processes. Each SRLM image is reconstructed from a time series of images of randomly activated fluorophores that are localized at nanometer resolution and represented by clusters of particles of varying spatial densities. SRLM images differ significantly from conventional fluorescence microscopy images because of fundamental differences in image formation. Currently, however, quantitative image analysis techniques developed or optimized specifically for SRLM images are lacking, which significantly limit accurate and reliable image analysis. This is especially the case for image segmentation, an essential operation for image analysis and understanding. In this study, we propose a simple SRLM image segmentation technique based on estimating and smoothing spatial densities of fluorophores using adaptive anisotropic kernels. Experimental results showed that the proposed method provided robust and accurate segmentation of SRLM images and significantly outperformed conventional segmentation approaches such as active contour methods in segmentation accuracy.

History

Publisher Statement

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Date

2014-10-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC