Carnegie Mellon University
Browse

Stable and accurate pressure approximation for unsteady incompressible viscous flow

Download (1.18 MB)
journal contribution
posted on 2010-01-01, 00:00 authored by Jian-Guo Liu, Jie Liu, Robert PegoRobert Pego

How to properly specify boundary conditions for pressure is a longstanding problem for the incompressible Navier–Stokes equations with no-slip boundary conditions. An analytical resolution of this issue stems from a recently developed formula for the pressure in terms of the commutator of the Laplacian and Leray projection operators. Here we make use of this formula to (a) improve the accuracy of computing pressure in two kinds of existing time-discrete projection methods implicit in viscosity only, and (b) devise new higher-order accurate time-discrete projection methods that extend a slip-correction idea behind the well-known finite-difference scheme of Kim and Moin. We test these schemes for stability and accuracy using various combinations of C0 finite elements. For all three kinds of time discretization, one can obtain third-order accuracy for both pressure and velocity without a time-step stability restriction of diffusive type. Furthermore, two kinds of projection methods are found stable using piecewise-linear elements for both velocity and pressure.

History

Publisher Statement

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.jcp.2010.01.010

Date

2010-01-01