Carnegie Mellon University
Browse

Statistical Methods for Eliciting Probability Distributions

Download (341.34 kB)
journal contribution
posted on 2003-08-01, 00:00 authored by Paul H. Garthwaite, Joseph B. Kadane, Anthony O'Hagan

Elicitation is a key task for subjectivist Bayesians. While skeptics hold that it cannot (or perhaps should not) be done, in practice it brings statisticians closer to their clients and subject-matter-expert colleagues. This paper reviews the state-of-the-art, reflecting the experience of statisticians informed by the fruits of a long line of psychological research into how people represent uncertain information cognitively, and how they respond to questions about that information. In a discussion of the elicitation process, the first issue to address is what it means for an elicitation to be successful, i.e. what criteria should be employed? Our answer is that a successful elicitation faithfully represents the opinion of the person being elicited. It is not necessarily ``true'' in some objectivistic sense, and cannot be judged that way. We see elicitation as simply part of the process of statistical modeling. Indeed in a hierarchical model it is ambiguous at which point the likelihood ends and the prior begins. Thus the same kinds of judgment that inform statistical modeling in general also inform elicitation of prior distributions. The psychological literature suggests that people are prone to certain heuristics and biases in how they respond to situations involving uncertainty. As a result, some of the ways of asking questions about uncertain quantities are preferable to others, and appear to be more reliable. However data are lacking on exactly how well the various methods work, because it is unclear, other than by asking using an elicitation method, just what the person believes. Consequently one is reduced to indirect means of assessing elicitation methods. The tool-chest of methods is growing. Historically the first methods involved choosing hyperparameters using conjugate prior families, at a time when these were the only families for which posterior distributions could be computed. Modern computational methods such as Markov Chain Monte Carlo have freed elicitation from this constraint. As a result there are now both parametric and non-parametric methods available for low-dimensional problems. High dimensional problems are probably best thought of as lacking another hierarchical level, which has the effect of reducing the as-yet-unelicited parameter space. Special considerations apply to the elicitation of group opinions. Informal methods, such as Delphi, encourage the participants to discuss the issue in the hope of reaching consensus. Formal methods, such as weighted averages or logarithmic opinion pools, each have mathematical characteristics that are uncomfortable. Finally, there is the question of what a group opinion even means, since it is not necessarily the opinion of any participant.

History

Publisher Statement

All Rights Reserved

Date

2003-08-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC