Carnegie Mellon University
Browse
- No file added yet -

Stochastic Steiner Trees without a Root

Download (146.18 kB)
journal contribution
posted on 2015-06-01, 00:00 authored by Anupam Gupta, Martin Pal
This paper considers the Steiner tree problem in the model of two-stage stochastic optimization with recourse. This model, the focus of much recent research [11, 16, 8, 18], tries to capture the fact that many infrastructure planning problems have to be solved in the presence of uncertainty, and that we have make decisions knowing merely market forecasts (and not the precise set of demands); by the time the actual demands arrive, the costs may be higher due to inflation. In the context of the Stochastic Steiner Tree problem on a graph G = (V,E), the model can be paraphrased thus: on Monday, we are given a probability distribution π on subsets of vertices, and can build some subset EM of edges. On Tuesday, a set of terminals D materializes (drawn from the same distribution π). We now have to buy edges ET so that the set EM ∪ ET forms a Steiner tree on D. The goal is to minimize the expected cost of the solution. We give the first constant-factor approximation algorithm for this problem. To the best of our knowledge, this is the first O(1)-approximation for the stochastic version of a non sub-additive problem. In fact, algorithms for the unrooted stochastic Steiner tree problem we consider are powerful enough to solve the Multicommodity Rent-or-Buy problem, itself a topic of recent interest [3, 7, 15].

History

Publisher Statement

© ACM, 2015. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published at http://doi.acm.org/10.1145/10.1145/2764468.2764490

Date

2015-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC