Symbolic Simulation with Approximate Values *

Chris Wilson! and David L. Dill' and Randal E. Bryant?

! Computer Systems Laboratory, Stanford University, Stanford, CA 94035
chriswi@stanford.edu, dill@cs.stanford.edu
2 Computer Science Dept., Carnegie Mellon University, Pittsburgh, PA 15213
Randy.Bryant@cs.cmu.edu

Abstract. Symbolic methods such as model checking using binary deci-
sion diagrams (BDDs) have had limited success in verifying large designs
because BDD sizes regularly exceed memory capacity. Symbolic simula-
tion is a method that controls BDD size by allowing the user to specify
the number of symbolic variables in a test. However, BDDs still may blow
up when using symbolic simulation in large designs with a large num-
ber of symbolic variables. This paper describes techniques for limiting
the size of the internal representation of values in symbolic simulation no
matter how many symbolic variables are present. The basic idea is to use
approximate values on internal nodes; an approximate value is one that
consists of combinations of the values 0, 1, and X. If an internal node
is known not to affect the functionality being tested, then the simulator
can output a value of X for this node, reducing the amount of time and
memory required to represent the value of this node. Our algorithm uses
categorization of the symbolic input variables to determine which node
values can be more approximate and which can be more exact.

1 Introduction

Verification methods can be categorized into two basic types: full and partial.
Full methods attempt to verify all functionality in one shot while partial meth-
ods attempt to verify functionality in pieces. Formal verification attempts to
verify functionality fully using symbolic methods. Model checking is a formal
verification method that works well on small designs, but does not scale to
larger designs because the amount of memory required often exceeds capacity
on larger designs. Simulation based methods such as directed and random test-
ing scale easily to large designs but require significant test development effort to
cover all functionality.

One approach to improving verification is to use symbolic simulation. In our
application, symbolic simulation is a partial verification method that extends
directed tests by using symbolic values on inputs. This allows exploring more
functionality than is possible with a single directed or random test. We call

* This work is supported by the MARCO/DARPA Gigascale Silicon Research Center
(GSRC). We also thank HAL Computer Systems for the use of their designs and
resources.

symbolic simulation used in this way symbolic system simulation to distinguish
it from other forms of symbolic simulation.

This paper addresses the problem of using symbolic system simulation on
designs that include both data and control logic. In particular, we are concen-
trating on the verification of system-level designs. A system-level design is one
that integrates a number of units that include both datapath and control logic.
The goal of system-level testing is primarily to verify the interaction between
units rather than exhaustively verify the functionality of each unit.

One of the characteristics of doing partial verification of large system-level
designs is that many system inputs are don’t care inputs during a test. A don’t
care node is a node in the circuit whose output value should not affect the
outcome of the test; a don’t care input is a don’t care node that is a primary
input to the circuit. A care node is the opposite of a don’t care node.

Conventional symbolic simulation using BDDs does not handle don’t care
inputs well. For example, suppose a circuit has a multiplier that is not being used
for a particular test. The user would like to put symbolic don’t care variables on
the multiplier inputs. However, BDDs are known to blow up for multipliers and
it is likely that the BDDs for the multiplier will cause memory overflow. But,
since the the multiplier is unused for this test, memory overflow causes the test
to abort unnecessarily.

Our solution to this problem is to use approzximate values on internal nodes
that limit the amount of memory blow-up. An approximate value is one that can
have the value 0, 1, and X as a function of the symbolic variables in the test.
Using approximate values allows the test to complete no matter what kind of
don’t care logic is present in the design. If the simulator knows that a particular
node in the circuit is a don’t care node, it can output an X value for this node.
For care nodes, it can compute the exact value represented by a BDD for the
node since it knows this value will affect the output.

The basic issue in implementing this is: How does the simulator distinguish
between care and don’t care nodes? Our method works by categorizing symbolic
input values as care or don’t care values and then creating more exact or more
approximate values on nodes based on this categorization. The result of this is
that the amount of approximation needed at each node can be determined by
looking at the input values to that node only.

An additional problem in symbolic system simulation is that BDDs may
overflow memory for functionality that the user wants to verify. For example,
suppose we were trying to verify a multiplier as part of a larger circuit. In
system simulation, usually what is being verified is that the multiplier is correctly
hooked up and communicates properly with the rest of the chip. In this case,
producing some result is more important than exhaustively verifying the entire
multiplier. Exhaustive verification of the multiplier can be done in a stand-alone
unit environment using methods more suitable for that.

Our simulator handles BDD overflow using techniques borrowed from sat-
isfiability (SAT) checking. In particular, our algorithm is closely related to the
Davis-Putnam algorithm [6]. The algorithm uses recursive case splitting to re-

duce the size of BDDs while maintaining completeness of the verification. Case
splitting consists of picking some symbolic input variable and alternately set-
ting it to the constant 0 and re-simulating the circuit and then setting it to the
constant 1 and re-simulating.

Case splitting reduces BDD size by converting variables to constants, but
increases simulation time due to re-simulation. Recursive case splitting allows
the simulator to always produce some result no matter how many care variables
are being used since it will turn as many variables as necessary into constants
to reduce the BDD size to fit in memory. At the same time, there is no loss of
coverage because the simulator enumerates all combinations of values of vari-
ables that were split. Practically speaking, completeness is not guaranteed since
the number of combinations that needs to be enumerated is exponential in the
number of variables split. However, in the event that the user terminates the
simulation before all combinations are covered, each combination that has been
simulated provides some amount of coverage. This often is sufficient to verify
that, for example, the multiplier above is correctly communicating with the rest
of the circuit.

2 Related Work

The symbolic simulation methodology most closely related to ours is Symbolic
Trajectory Evaluation (STE) [15]. STE encodes sets of ternary vectors as pairs
of BDDs which are then propagated through the simulator. The only chance for
approximation in this method is in the selection of the ternary vectors, which is
done by the user. Our methodology allows the simulator to choose the amount
of approximation at each internal node. STE works more efficiently in verifying
small datapath units than our method since there is no advantage to approxi-
mating values if there are no don’t care inputs. However, our method still works
well on these cases, whereas symbolic simulation without approximation does
not work well on large system-level designs with many don’t cares.

A system that is very similar to STE is the commercial symbolic simulator
from Innologic. Innologic’s simulator is BDD based, but has the ability to handle
BDD overflow. Their overflow handling algorithm is not known to us, however.

Some attempts have been made at minimizing BDD overflow in symbolic
simulation. Parametric forms [10,11] are a method of encoding the input space
of a symbolic test to reduce the size of BDDs in the simulator. This requires
the user to determine how to do this and the simulator has no choice in how
to evaluate each node. Another method described by Bertacco et. al. [1] uses
dependencies between nodes to reduce the size of BDDs at nodes. This requires
non-local knowledge of the circuit to compute values at each node and so it is
not clear how scalable this method is.

Our use of SAT methods most closely resembles non-clausal satisfiability
checking algorithms. Our method directly incorporates the SAT decision pro-
cedure into the simulator. Other verification methods that use SAT methods
typically work by generating a clausal formula that is fed to an off-the-shelf SAT

checker. An example of this is Bounded Model Checking (BMC) [2]. The problem
with using clausal SAT methods is that they require the circuit to be unrolled
for however many cycles are being simulated, requiring memory proportional to
the product of design size and the number of cycles being unrolled. Our method
does not require unrolling the circuit and so allows larger circuits to be simulated
over more cycles.

Approximation is widely used in model checking. There are basically two
types used. In one method, an exact model is used, but the state space is ap-
proximated to keep BDD sizes down [4, 8]. Another way is to abstract the model
itself [9,13,7]. The latter method is often used to extract tests for simulation to
increase state coverage. These methods all have the problem that they do not
scale to large designs easily, they require a lot of work and expertise, and the
abstraction often hides many bugs.

Another model checking method uses liberal abstraction to handle BDD over-
flow. One method [14] tries to find the closest subset to the original function.
Liberal abstraction is useful in model checking since it simply reduces the state
space searched. However, in symbolic simulation, liberal abstraction results in
the wrong answer being produced and it is not clear how to compensate for this.
Also, for don’t care logic, which comprises most of the values in a simulation
run, outputting any other approximation than X is a waste of time, so these
methods are probably inefficient compared to our method.

3 Background

3.1 Simulation and Symbolic Tests

The input to the simulation process consists of a circuit and a test which specifies
some functionality that needs to be verified and how to test it. A circuit consists
of a network of nodes. This paper assumes nodes are either two input AND
gates, two input OR gates, NOT gates, or primary inputs and outputs.

A symbolic test performs the following basic actions: creates symbolic vari-
ables, sets values from the symbolic domain on inputs, simulates the circuit, and
checks outputs against expected values. Although a single test may check many
outputs, all of these results are combined to give a final fail output. A value of 1
at the fail output indicates the existence of a bug and the test fails. A 0 at the
fail output indicates the test passed and there are no bugs in the functionality
being tested.

3.2 Ternary Valued Simulation

Let T = {0,1, X} be the ternary domain of values that can appear on nodes in
the circuit. The value X denotes the fact that the actual value could be 0, 1, or
some combination of 0 and 1, but that the simulator does not know or does not
care about the actual value.

We form the upper semi-lattice (7,C) defined as 1 C X,0 C X, and a C a for
all a € T. The functions AND, OR, and NOT are defined over this semi-lattice.

In order for the simulator to be sound, these functions must be monotonic, that
is the relationship:

zCy= f(z) C f(y) (1)

must hold. Table 1 shows a monotonic implementation of the AND function over
the ternary domain.

A0 1 X

00 0 0 0

1] 0 1 X

X 0 X X
Table 1. Table for AND

Ternary simulation is performed by evaluating each node in the circuit using
the ternary extension of the Boolean operation defined for each node over the
input values at that node.

3.3 Symbolic Simulation

Let V be the set of all the symbolic variables in a test. A literal is a variable or its
complement. An assignment to V is a function ¢: V — {0, 1} that maps variables
to Boolean values. Let @ be the set of all possible assignments. The value of a
node in the circuit is a function f:® — {0,1, X} that maps each assignment
in @ to a ternary value. This function is called the wvalue function of the node,
which is not to be confused with the operation function (AND, OR, NOT) for
that node. Each node in the circuit has its own value and consequently, its own
value function.

We pre-define some value functions that will be useful later. For each variable
a € V, let G be the value function defined such that a(¢) = ¢(a). Let 0, 1, and
X be those value functions that return the values 0, 1, and X respectively for
all assignments.

Symbolic simulation consists of computing an output value function for each
node given value functions for the input nodes. The computation is done point-
wise:

(f (op) 9)(9) = f(9) (op) g() (2)

where f and g are the input values and (op) is the defined Boolean operation
for this node. A test case failure is indicated when the value function for the fail
output is 1 for at least one assignment. A test case passes if the fail output is 0
for all assignments.

4 Symbolic Simulation with Approximate Values

4.1 Approximation

A value function f’is an approzimation of f, written as f C f', if and only if
Vo.f(¢) C f'(¢). Given two approximations, f' and f” of f, f" is said to be
more approximate than f’ if f' C f". Different approximations of a given value
function are not necessarily comparable.

An ezact value is defined as a value function which ranges over the set {0,1}.
The exact value of a node is the value function computed for that node using the
Boolean operation defined for that node given that both input value functions
are exact. An approximate value of a node is any value function which is an
approximation of the exact value.

An approximate value for a node can be generated by simply applying the
symbolic extension of the Boolean operation to the two approximate input values
to produce an approximate output value. The correctness of this method is
captured in the following formula:

FEFANgEG = (f (op) 9) T (f (op) g') (3)

where (op) is the Boolean operation defined for the node, f’' and ¢’ are the
input value functions, and f and g are the exact values for the input nodes.
The validity of this formula is an immediate consequence of the monotonicity of
AND, OR, and NOT.

Normally, input values to the simulator consist of exact values only. Values are
approximated at internal nodes by the simulator according to an approximation
rule. An approzimation rule states when a value of X must be returned for some
Boolean operation instead of an exact value for some set of assignments. The
approximation rule limits the set of value representations allowed in order to
limit the size of the internal representation of a value. Time and memory can
be traded off simply by varying the approximation rule used by the simulator.
This can also be done dynamically to allow the simulator to adjust the level of
approximation to get the optimal trade-off between memory and time.

4.2 Improving the Approximation

Approximations are conservative, which means that the final simulation result
can be approximate if some internal values are approximate. This is indicated
when the value function for the fail output ranges over the set {0, X }. Improving
the approximation consists of making values on internal nodes more exact. There
are two basic ways of doing this. First, the approximation rule can be relaxed,
allowing more exact values to be produced at the expense of using more memory.
Second, symbolic input variables can be set to constants while using the same
approximation rule internally. Since functions of fewer variables generally have
smaller representations, there should be fewer approximations produced.

Our goal is to have representations that do not exceed memory capacity.
Therefore, our simulator improves approximations by using a combination of

relaxed approximation rules and turning variables into constants. Our method for
turning variables into constants is based on the Davis-Putnam (DP) algorithm
[6] for proving the satisfiability of propositional formulas. The algorithm uses
case splitting which selects one of the symbolic input variables and re-runs the
simulation twice, once with the selected variable set to 0 and the other with it
set to 1. DP recursively case splits until an exact output is generated.

Setting variables to constants is a necessary, but not sufficient condition for
improving the approximation at each internal node. The minimum sufficient
condition for guaranteeing that an exact value will be produced is that when
all variables are set to constant values, a constant value will be output. This is
guaranteed if operations on the Boolean domain produce Boolean values, which
is normally the case.

The Davis-Putnam method creates a search tree. A leaf node in this tree
is one in which either the fail output is 1 for some assignment or is the value
function 0. If the fail output is 1 for some assignment, a bug is found and the test
is said to be satisfiable. If the fail output value is 0, the algorithm backtracks to
a previous decision and tries the other value for the variable that was split. If all
branches in the case splitting tree are exhausted, then the circuit is proven to
be bug-free for the property being tested and the test is said to be unsatisfiable.

The efficiency of this algorithm is determined by heuristics that select sym-
bolic variables to case split. The goal is to split only variables that affect the
outcome of the test. The variable selection heuristic works by propagating a
“preferred” split variable through the circuit from the primary inputs to the fi-
nal output as the circuit is simulated. The data structure for each node consists
of the current value of the node and that node’s associated split variable. When
the node value is updated, the node’s associated split variable is also updated.
The split variable that is associated with the final fail output is the variable that
is selected to be split.

The following algorithm guarantees that the value of a node depends on the
split variable that is chosen.

1. If the value on the node is a literal, the associated variable is the literal
variable.

2. If one of the inputs is a non-controlling value (e.g., 1 is non-controlling for
AND) then select the other input’s associated variable.

3. Otherwise, select the associated variable of the input that has the lowest
index. Normally, the user will assign lower indices to variables that are ex-
pected to be split to minimize the amount of case splitting.

4.3 Quasi-Symbolic Simulation

Quasi-symbolic simulation [17] is a particular implementation of symbolic sim-
ulation with approximate internal values. Quasi-symbolic simulation restricts
value functions to the set Q = {0,1, X, a, —a, b, —b, ...} where a,b, ... € V. This
domain is called the quasi-symbolic domain because it cannot represent all pos-
sible symbolic functions.

Quasi-symbolic value functions can be computed straightforwardly by out-
putting the value function X whenever the exact output value cannot be repre-
sented using the quasi-symbolic domain. For example, the computation ¢ AND b
produces the value X at the output. If the simulator case splits on a, then the
value b is produced when a = 1 and 0 when a = 0. Since both of these values
are exact, the approximation has been improved by case splitting.

The approximation rule for quasi-symbolic simulation can be encapsulated
as follows:

Approximation rule 1 (Quasi-symbolic Rule) If the value being produced
is a function of two or more variables, output the value X, else output the correct
value from the domain Q.

Note that this rule allows all values in Q to be represented by a single word
in memory. Consequently, there is no possibility of memory blow up using this
approximation rule.

Quasi-symbolic evaluation coupled with recursive case splitting to resolve
conservativeness is surprisingly effective at performing symbolic system simula-
tion. The small size of the quasi-symbolic domain causes don’t care node values
to be turned quickly into X values. Since case splitting occurs only over symbolic
variables on care inputs, there is no penalty for having many don’t care symbolic
variables in a test.

4.4 Quasi-Symbolic Simulation with Unit Propagation

Quasi-symbolic simulation can be optimized using a procedure called unit prop-
agation. Unit propagation is an implication procedure that is used in the Davis-
Putnam method to reduce the size of the search tree. The unit propagation
algorithm we use is Propositional Constraint Propagation (PCP) [5]. In this al-
gorithm, two sets of literals are associated with the value at each node. These
sets, called C-sets and D-sets, list literals that are conjoined and disjoined re-
spectively with the node value. For example, if the value at a node can be
approximated as X AdAb where a and b are literals, then the value of this node
is represented as X with the C-set {a,b}. D-sets are constructed similarly with
disjoined literals.

C-sets and D-sets for the result of a Boolean operation are computed using set
intersection and union operations over the C-sets and D-sets of the input values
to a node based on the Boolean operation defined for the node. For example, for
the AND operator, the C-set of the output is equal to the union of the input
C-sets. The D-set of the output is equal to the intersection of the input D-sets.
Logical NOT is computed by swapping the C-set and D-sets and complementing
each literal in the swapped set.

A C-set that contains a variable and its complement is called basic inconsis-
tent. In this case the value can be replaced by the constant value 0; similarly a
basic inconsistent D-set is replaced by 1.

The case splitting algorithm is modified to allow unit propagation by first
examining the C-sets and D-sets of the output, and then based on these, elim-
inating branches in the tree. If the output value has a non-empty D-set, the
test is immediately known to be satisfiable. If the output value has a non-empty
C-set, then all literals in the C-set are set to the value 1. This eliminates having
to explore the complemented case for each of the C-set literals, reducing the
ultimate size of the tree. Literals from C-sets that are set to 1 are said to be
unit propagated. After unit propagation is done, the circuit is re-simulated and
checked for unit propagation again. Case splitting occurs only if the output value
is X and both the output C-set and D-sets are empty.

C/D-set based approximations allow value functions of more than one vari-
able. However, approximations with more than one variable are strictly limited to
those that can be represented as sets of conjoined or disjoined literals. The next
section discusses how to relax these restrictions to allow a richer set of approxi-
mations while still controlling the amount of memory used by value functions.

5 Approximation using Variable Categorization

To allow more general approximations, BDDs with extensions to allow approx-
imate values are used in the simulator. The simulator manipulates these BDDs
based on a categorization of the symbolic variables. Using BDDs to represent
values eliminates the need for case splitting to resolve conservativeness. However,
our algorithm still uses case splitting for two reasons. First, case splitting is used
as part of the variable categorization algorithm and second, if BDD overflow
occurs, the algorithm reverts to case splitting to resolve conservativeness.

5.1 Variable Categories

If quasi-symbolic values only are used to approximate node values, then symbolic
variables can be categorized into three types from the simulator’s point of view.

— Care variables are those that the simulator case splits on and so the result
must depend on these variables.

— Leaf node variables are variables the output depends on but that are not
case split. There can be no more than one of these at each leaf node of the
search tree since quasi-symbolic evaluation can only compute functions of a
single variable exactly without case splitting.

— Don’t care variables are symbolic variables that the output does not depend
on for this test.

These categorizes correspond roughly to the user’s view of symbolic variables.
In general, the user wants the simulator to split only on control variables and does
not want it to split on don’t cares. Data variables fall in between; if only simple
equivalence checks are required, these can be handled by leaf node variables, but
if more complex data manipulations is required, data variables may need to be
case split.

The variable categorizations above can be used to guide the selection of
the appropriate level of approximation at a given node. Our algorithm works
by adaptively changing the categorization of variables as the simulation runs.
Multiple simulation runs are required to categorize enough variables such that
an exact result is produced.

At any point in time, the simulator has a current variable categorization. A
variable is called marked if the simulator has categorized it as a care variable
and unmarked if it has not. Marked variables are always care variables while
unmarked variables may be care, don’t care, or leaf node variables.

5.2 Approximation using BDDs

Value functions are represented using ternary BDDs (TBDDs) which we define
as multi-terminal BDDs that have at least three possible terminal nodes: 0, 1,
and X. Marked variables can appear without restriction in TBDDs since the
goal is to make functions of marked variables as exact as possible. Unmarked
variables can only appear in TBDDs in a restricted way.

To enforce these restrictions, TBDDs are computed using a modified version
of the Apply algorithm [3]. The modified Apply algorithm creates the subgraphs
for the if and else branches for a given node and then checks to see if the node
exists in a cache called the unique table. If the node exists in the unique table, the
node is returned. If a new node needs to be created, the approximation rules are
checked first. If no approximation is required, the node is created and returned.
Otherwise, the node is approximated by returning the value X.

Since we want the simulator to compute C/D-sets for node values, the ap-
proximation rule used on BDD nodes with unmarked variables is that the node
must be approximated unless it is part of a C-set or D-set. This is implemented
using a TBDD in which the TBDD variables are marked care variables only
and TBDD terminal nodes are either the ternary constants or are pointers to
C/D-sets over unmarked variables.

We call this representation a CD-MTBDD. Since the number of terminal
nodes can be no larger than O(2") for n CD-MTBDD variables and each C/D-set
contains only a single instance of a given variable, the worst case size of a CD-
MTBDD is exponential in the number of marked care variables only. C/D-sets
normally stay small and thus, value functions on don’t care nodes represented
by CD-MTBDDs generally stay very small using this policy. At the same time,
case splitting is reduced to a minimum since functions consisting only of care
variables and leaf node variables will appear at the output as exact values.

5.3 Policies for Adaptive Variable Categorization

Initially, variables in the simulator are either all marked or all unmarked. Dur-
ing a simulation run, the simulator reclassifies variables by marking them or
unmarking them as appropriate. Our policy is based on the observation that
large system-level tests have many more don’t care variables than care vari-
ables. Thus, our policy is to start with all variables unmarked. The split variable

that is associated with the final fail output after a simulation run is known to
be a care variable. The simulator can mark this variable as a care variable.

Our algorithm does not immediately mark a variable as a care variable when
it is discovered. Instead, variables are case split until a leaf node is discovered. If
the run is satisfiable, the test stops, but if backtracking is necessary, the variable
that is backtracked is marked as a care variable. The reasoning behind this is
that, in our experiments we have seen that if the test is satisfiable, the first leaf
node is generally satisfiable. Thus, this heuristic gets to the first leaf node as fast
as possible using quasi-symbolic simulation only and if that is not satisfiable, it
assumes the test is unsatisfiable and starts marking care variables to allow BDDs
to be created to reduce case splitting.

5.4 BDD Overflow Handling

BDD overflow occurs when both input BDDs exist, but there is not enough
memory to create the necessary output node. Overflow is handled within the
framework of approximation. If the maximum node limit has been exceeded and
there is no room to create a new node, our algorithm simply returns the value
X instead of creating a new node. Thus, overflow handling can be characterized
as simply another approximation rule.

The variable selection heuristic must be modified to allow for overflow. Nor-
mally, when the simulator has a choice of variables as the preferred split variable
for some node, marked care variables are given lower priority than unmarked
variables to allow a new care variable to be discovered after each run. If overflow
occurs, a marked care variable must be chosen to be split and this variable must
be given priority over unmarked variables when selecting a preferred split vari-
able. Our algorithm selects the variable for the CD-MTBDD node that caused
the overflow as the preferred split variable. If multiple nodes overflow, the over-
flow variable with the lowest index is selected.

6 Experiments

We have implemented a prototype Verilog based symbolic system simulator that
supports adaptive variable categorization, case splitting to handle BDD overflow,
and uses CD-MTBDDs internally. The CD-MTBDD implementation was built
on top of the CMU BDD package [12]. This section reports on the results of
running some typical test cases on a large representative system-level circuit.

The test design we use for these experiments is an industrial bus to network
bridge for a distributed shared memory multiprocessor [16]. The properties we
are verifying use only the bus portion of the design which consists of approxi-
mately 140K gates and approximately 2,402 state bits. There are two different
sets of tests. In the first test, we are looking for a particular hard to find bug,
and in the second test, we are trying to exercise all possible data transfers from
bus to network. These tests focus on the bus to network data transfer portion
of the design because this is the most complicated part of the chip. This area of
the chip had the most bugs during system simulation.

6.1 Experiment 1

For the first experiment, an initial test was written and then debugged using
our simulator. For each run, we recorded the results of the test, modified the
test and re-ran it until the bug was discovered. Some tests were satisfiable, some
were unsatisfiable, and some had timeouts due to test case bugs. Satisfiable tests
indicated test case bugs or the hardware bug being discovered, and unsatisfiable
tests indicated that we were searching in the wrong area for the bug. A device
timeout was typically caused by an error driving a request such that the device
never responded.

The initial testing was done using quasi-symbolic simulation with C/D-sets
[17]. We have re-run these tests to show that the CD-MTBDD-based method im-
proves performance without sacrificing any of the advantages of quasi-symbolic
simulation on all three types of tests. There were 47 variants of the the test run.
Table 2 shows the results of running each of these tests in summary form based
on whether the test was satisfiable due to a test case error (TESTERR) satisfi-
able due to a device timeout (TIMEOUT) unsatisfiable because the wrong area
was being searched (UNSAT) or satisfiable due to the bug being found (BUG.)
The first two columns indicate case type and how many test cases there were
for each case. The columns labeled “quasi-symbolic” report the average number
of evaluations (times the simulator was run to complete all case splitting) and
time for each test using quasi-symbolic values only. Note, that these were run
on a version of the simulator optimized for quasi-symbolic values only. The last
two columns give these same values using CD-MTBDD-based approximations.

quasi-symbolic||CD-MTBDD-based

test |tests|| evals] time] evals] time
TESTERR| 17| 3.8 30.8|| 3.0 46.6
TIME| 20| 1.7 50.1 1.9 94.8
UNSAT 9|| 52.3 445.9|| 7.8 131.9
BUG 1 78 863.0 17 363.6

Table 2. Results of Directed Test Experiment

The results show that the amount of case splitting is virtually identical for
satisfiable tests between the two methods. This is because all the satisfiable
tests stopped at the first leaf node and, thus, no BDDs were created due to
our variable marking policy that does not mark variables until a leaf node is
hit. The minor difference in the average amount of case splitting between the
two methods is due to changing the order of control variables to always come
before data variables in the BDD-based tests. This ordering of control variables
before data variables was not a requirement in the original algorithm that used
quasi-symbolic values only. The difference in execution times between the two
methods for the satisfiable cases is due to inefficiencies in the off-the-shelf BDD
package we were using.

The unsatisfiable cases show that CD-MTBDDs reduce the amount of case
splitting by a factor of 6.7 on average with a maximum of 13.9 and a minimum of
one for one case that only required a single evaluation even with quasi-symbolic
values. The maximum number of marked care variables over all the unsatisfi-
able tests was five. There was no BDD overflow for any of these cases and the
largest BDD created was 17 nodes despite the fact that the number of don’t
care variables ranged from 590 to 1697 amongst all the unsatisfiable tests. This
low size is due to the variable categorization policy and the unmarked variable
BDD restrictions that convert values quickly to quasi-symbolic values in don’t
care nodes.

6.2 Experiment 2

In this experiment, a general data transfer test was written in which symbolic
control variables select all possible combinations of events that affect data trans-
fer. This test was expected to be unsatisfiable since there were no known bugs
in the area being tested. This experiment started with all symbolic control vari-
ables set to a constant value in the test. We then performed a number of runs
in which each run increased by one the number of control variables that were
made symbolic. The graph in figure 1 plots execution time versus the number
of control variables that were made symbolic in each test for both the quasi-
symbolic only case and BDD-based approximation case with the quasi-symbolic
cases being run on the optimized quasi-symbolic simulator.

le+06

100000
10000
1000
100

t
i
m
e

(sec.)

10 | | | | | | |
0 2 4 6 8 10 12 14
no. symbolic vars.

—
=]

Fig. 1. Execution Time of Quasi-Symbolic and CD-MTBDD Based Approximations

This figure shows that execution time increases exponentially using quasi-
symbolic values only. Using CD-MTBDDs, the growth is still exponential, but
at a much lower rate. Quasi-symbolic tests were aborted due to excessive case
splitting when more than 11 symbolic care variables were present. At this point,
the execution time was roughly doubling for each additional control variable
that was made symbolic as is indicated by the dashed line in the plot. To under-

stand the difference between quasi-symbolic and CD-MTBDD-based simulation
further, we need to look at how various other parameters scale.

Table 3 lists the values of various parameters for each run. The first column
lists the number of variables that were case split using quasi-symbolic only sim-
ulation and this is equal to the number of control variables made symbolic in a
given run. This also turns out to be the number of variables that were marked as
care variables during simulation with CD-MTBDDs. The second column gives
the number of simulator runs required to complete the test using quasi-symbolic
values only; the number of evaluations roughly doubles for each added symbolic
variable. The next column gives the number of case splits required when using
CD-MTBDDs. The relationship here is that the number of case splits is roughly
double the number of marked care variables. This is due to our policy of not
marking a variable as a care variable until a leaf node is hit and then marking
variables one by one during backtracking. Thus, for each variable marked, there
are two evaluations, one going down the tree and one going back up. The cases
for which the number of CD-MTBDD splits is less than double the number of
marked variables are due to unit propagation. Consequently, the amount of case
splitting has been reduced by an exponential factor using CD-MTBDDs without
a substantial increase in the time per evaluation.

The next two columns give BDD package statistics. The first of these columns
indicates the largest BDD that was created in each test and the last is the total
number of BDD nodes created. The largest BDD in each case is remarkably
small considering that these tests created over 300 BDD variables including
control, data, and don’t care variables. These small sizes are due to the unmarked
variable restrictions. It is hard to gauge this effect exactly since we cannot easily
determine which nodes are don’t cares and which are not. The total number of
BDD nodes created grows exponentially, but these are mostly BDDs of size ten
nodes or less.

7 Conclusion

Symbolic system simulation has the potential to be better than directed and
random testing in verifying large system-level designs with mixed control and
data logic. Straightforward BDD-based symbolic simulation is not optimized
for system-level testing in which there are many don’t care inputs. This paper
presented an algorithm that uses approximations on internal nodes and heuristics
based on variable categorization that allow the simulator to automatically select
the appropriate level of abstraction at each node. The key to making this work is
having restrictions on the BDDs that represent values on nodes. If one of these
restrictions is violated, it indicates that the node is either a don’t care node or
if it is a care node, that further case splitting must occur. In either case, the
amount of case splitting is not affected by making this node more approximate.

We also presented a method for handling BDD overflow that uses the built-in
case splitting mechanism to control BDD size at the expense of increased simu-
lation run time. Our experiments show that CD-MTBDD-based approximations

quasi-symbolic BDD

control vars case splits|case splits\mazx BDD size|tot. BDD nodes
1 3 3 1 2352
2 6 4 3 4435
3 8 6 3 4478
4 12 8 3 4739
5 20 10 3 5422
6 32 10 3 6309
7 62 12 7 13001
8 124 14 14 38775
9 246 16 22 110729
10 450 16 45 259236
11 993 17 82 570216
12 - 18 123 867923
13 - 20 123 897016
14 - 22 123 936028
15 - 24 123 1000766
16 - 26 151 1121177

Table 3. Results of Experiment 2

improve performance compared to using quasi-symbolic approximations without
increasing the probability of memory overflow significantly. We have not demon-
strated that the set of abstraction policies we chose is optimal and in the future,
we hope to explore different policy tradeoffs.

References

1. V. Bertacco, M. Damiani, and S. Quer. Cycle-based symbolic simulation of gate-
level synchronous circuits. In Proc. of 36th Design Automation Conf., pages 391—
396, 1999.

2. A. Biere, A. Cimatti, E. M. Clarke, M.Fujita, and Y. Zhu. Symbolic model checking
using sat procedures instead of bdds. In Proc. of 36th Design Automation Conf.,
pages 317-320, 1999.

3. R. E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Computing Surveys, 24(3):293-318, September 1992.

4. H. Cho, G. Hachtel, E. Macii, B. Pleisser, and F. Somenzi. Algorithms for ap-
proximate fsm traversal based on state space decomposition. IEEE Trans. on
Comp.-Aided Design of Integrated Circuits and Systems, 15(12):1465-1478, De-
cember 1996.

5. M. Dalal. Efficient propositional constraint propagation. In Proc. of the Tenth
National Conf. on Artificial Intelligence (AAAI-92), pages 409-414, 1992.

6. M. Davis, G. Logemann, and D. Loveland. Machine program for theorem-proving.
Communications of the ACM, 5(7):394-397, 1962.

7. M. Ganai, A. Aziz, and A. Kuehlman. Augmenting simulation with symbolic
algorithms. In Proc. of 86th Design Automation Conf., pages 385-390, 1999.

10.

11.

12.
13.

14.

15.

16.

17.

S. Govindaraju, D. L. Dill, A. J. Hu, and M. A. Horowitz. Approximate reacha-
bility with bdds using overlapping projections. In Proceedings of the 35th Design
Automation Conference, June 1998. San Francisco, CA.

R. Ho and M. Horowitz. Validation coverage analysis for complex digital designs. In
1996 IEEE International Conference on Computer-Aided Design, pages 146-151,
1996.

P. Jain and G. Gopalakrishnan. Efficient symbolic simulation based verification us-
ing the paramteric form of boolean expressions. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 13(8):1005-1015, 1994.

R. Jones, M. Aagard, and C.-J. Seger. Formal verification using parametric rep-
resentations of boolean constraints. In Proc. of 36th Design Automation Conf.,
pages 402—407, 1999.

D. E. Long. Cmu bdd package, 1993.

D. Moundanos, J. A. Abraham, and Y. V. Hoskote. Abstraction techniques for
validation coverage analysis and test generation. IEEE Transactions on Computers,
47(1):2-14, January 1998.

K. Ravi, K. McMillan, T. Shiple, and F. Somenzi. Approximation and decomposi-
tion of binary decision diagrams. In Proc. of 35th Design Automation Conf., pages
445-450, 1998.

C.-J. Seger and R. E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. Formal Methods in System Design, 6(2):147-189,
1995.

W.-D. Weber et al. The mercury interconnect architecture: A cost-effective infras-
tructure for high-performance servers. In Proc. of the 24th Annual Intl. Symp. on
Computer Architecture (ISCA97), 1997.

C. Wilson and D. L. Dill. Reliable verification using symbolic simulation with
scalar values. In Proceedings of the 37th Design Automation Conference, June
2000. Los Angeles, CA.

