Carnegie Mellon University
Browse
- No file added yet -

Teaching the Normative Theory of Causal Reasoning

Download (263.75 kB)
journal contribution
posted on 2007-01-01, 00:00 authored by Richard Scheines, Matt Easterday, David Danks
There is now substantial agreement about the representational component of a normative theory of causal reasoning: Causal Bayes Nets. There is less agreement about a normative theory of causal discovery from data, either computationally or cognitively, and almost no work investigating how teaching the Causal Bayes Nets representational apparatus might help individuals faced with a causal learning task. Psychologists working to describe how naïve participants represent and learn causal structure from data have focused primarily on learning from single trials under a variety of conditions. In contrast, one component of the normative theory focuses on learning from a sample drawn from a population under some experimental or observational study regime. Through a virtual Causality Lab that embodies the normative theory of causal reasoning and which allows us to record student behavior, we have begun to systematically explore how best to teach the normative theory. In this paper we explain the overall project and report on pilot studies which suggest that students can quickly be taught to (appear to) be quite rational.

History

Publisher Statement

All Rights Reserved

Date

2007-01-01

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC