The long-term life cycle private and external costs of high coal usage in the US
Using four times as much coal in 2050 for electricity production need not degrade air quality or increase greenhouse gas emissions. Current SOx and NOx emissions from the power sector could be reduced from 12 to less than 1 and from 5 to 2 million tons annually, respectively, using advanced technology. While direct CO2 emissions from new power plants could be reduced by over 87%, life cycle emissions could increase by over 25% due to the additional coal that is required to be mined and transported to compensate for the energy penalty of the carbon capture and storage technology. Strict environmental controls push capital costs of pulverized coal (PC) and integrated coal gasification combined cycle (IGCC) plants to $1500–1700/kW and $1600–2000/kW, respectively. Adding carbon capture and storage (CCS) increases costs to $2400–2700/kW and $2100–3000/kW (2005 dollars), respectively. Adding CCS reduces the 40–43% efficiency of the ultra-supercritical PC plant to 31–34%; adding CCS reduces the 32–38% efficiency of the GE IGCC plant to 27–33%. For IGCC, PC, and natural gas combined cycle (NGCC) plants, the carbon dioxide tax would have to be $53, $74, and $61, respectively, to make electricity from a plant with CCS cheaper. Capturing and storing 90% of the CO2 emissions increases life cycle costs from 5.4 to 11.6 cents/kWh. This analysis shows that 90% CCS removal efficiency, although being a large improvement over current electricity generation emissions, results in life cycle emissions that are large enough that additional effort is required to achieve significant economy-wide reductions in the US for this large increase in electricity generation using either coal or natural gas.