Carnegie Mellon University
Browse
file.pdf (1.68 MB)

Thermal plasmonic interconnects in graphene

Download (1.68 MB)
journal contribution
posted on 2014-11-01, 00:00 authored by Baoan Liu, Yongmin Liu, Sheng Shen

As one emerging plasmonic material, graphene can support surface plasmons at infrared and terahertz frequencies with unprecedented properties due to the strong interactions between graphene and low-frequency photons. Since graphene surface plasmons exist in the infrared and terahertz regime, they can be thermally pumped (excited) by the infrared evanescent waves emitted from an object. Here we show that thermal graphene plasmons can be efficiently excited and have monochromatic and tunable spectra, thus paving a way to harness thermal energy for graphene plasmonic devices. We further demonstrate that “thermal information communication” via graphene surface plasmons can be potentially realized by effectively harnessing thermal energy from various heat sources, e.g., the waste heat dissipated from nanoelectronic devices. These findings open up an avenue of thermal plasmonics based on graphene for different applications ranging from infrared emission control, to information processing and communication, to energy harvesting

History

Publisher Statement

©2014 American Physical Society

Date

2014-11-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC