Carnegie Mellon University
Browse

Topic Adaptation for Language Modeling using Unnormalized Exponential Models

Download (59.89 kB)
journal contribution
posted on 2003-01-01, 00:00 authored by Stanley F Chen, Kristie Seymore, Roni Rosenfeld

In this paper, we present novel techniques for performing topic adaptation on an n-gram language model. Given training text labeled with topic information, we automatically identify the most relevant topics for new text. We adapt our language model toward these topics using an exponential model, by adjusting probabilities in our model to agree with those found in the topical subset of the training data. For efficiency, we do not normalize the model; that is, we do not require that the "probabilities" in the language model sum to 1. With these techniques, we were able to achieve a modest reduction in speech recognition word-error rate in the Broadcast News domain.

History

Publisher Statement

All Rights Reserved

Date

2003-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC