Carnegie Mellon University
Browse
- No file added yet -

Toward Non-Intuition-Based Machine Ethics

Download (198.39 kB)
journal contribution
posted on 2001-04-01, 00:00 authored by Tae Wan KimTae Wan Kim, John HookerJohn Hooker

We propose a deontological approach to machine ethics that avoids some weaknesses of an intuition-based system, such as that of Anderson and Anderson. In particular, it has no need to deal with conflicting intuitions, and it yields a more satisfactory account of when autonomy should be respected. We begin with a “dual standpoint” theory of action that regards actions as grounded in reasons and therefore as having a conditional form that is suited to machine instructions. We then derive ethical principles based on formal properties that the reasons must exhibit to be coherent, and formulate the principles using quantified modal logic. We conclude that deontology not only provides a more satisfactory basis for machine ethics but endows the machine with an ability to explain its actions, thus contributing to transparency in AI.

History

Date

2001-04-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC