Carnegie Mellon University
Browse

Training Object Detection Models with Weakly Labeled Data

Download (548.38 kB)
journal contribution
posted on 2002-01-01, 00:00 authored by Charles Rosenberg, Martial Hebert
Appearance based object detection systems utilizing statistical models to capture real world variations in appearance have been shown to exhibit good detection performance. The parameters of these statistical models are typically learned automatically from labeled training images. This process can be difficult in that a large number of labeled training examples may be needed to accurately model appearance variation. In this work we describe a method whereby a training set consisting of a small number of fully labeled training examples augmented with a set of weakly labeled examples can be used to train a detector which exhibits performance better than that which can be obtained with a reduced set of fully labeled training examples alone.

History

Date

2002-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC