Carnegie Mellon University
Browse

Universal phonon mean free path spectra in crystalline semiconductors at high temperature.

Download (888.82 kB)
journal contribution
posted on 2013-01-01, 00:00 authored by Justin P. Freedman, Jacob H. Leach, Edward A. Preble, Zlatko Sitar, Robert DavisRobert Davis, Jonathan MalenJonathan Malen

Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K. We find that phonons with MFPs greater than 230 ± 120 nm, 1000 ± 200 nm, 2500 ± 800 nm, and 4200 ± 850 nm contribute 50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By non-dimensionalizing the data based on Umklapp scattering rates of phonons, we identified a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature.

History

Date

2013-01-01

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC