Carnegie Mellon University
Browse
- No file added yet -

Unsupervised Learning for Graph Matching

Download (3.71 MB)
journal contribution
posted on 2009-01-01, 00:00 authored by Marius Leordeanu, Martial Hebert
Graph matching is an important problem in computer vision. It is used in 2D and 3D object matching and recognition. Despite its importance, there is little literature on learning the parameters that control the graph matching problem, even though learning is important for improving the matching rate, as shown by this and other work. In this paper we show for the first time how to perform parameter learning in an unsupervised fashion, that is when no correct correspondences between graphs are given during training. We show empirically that unsupervised learning is comparable in efficiency and quality with the supervised one, while avoiding the tedious manual labeling of ground truth correspondences. We also verify experimentally that this learning method can improve the performance of several state-of-the art graph matching algorithms.

History

Publisher Statement

"©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

2009-01-01

Usage metrics

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC