file.pdf (1.53 MB)
Download file

Unsupervised Modeling of Object Categories Using Link Analysis Techniques

Download (1.53 MB)
journal contribution
posted on 01.01.2008, 00:00 by Gunhee Kim, Christos Faloutsos, Martial Hebert
We propose an approach for learning visual models of object categories in an unsupervised manner in which we first build a large-scale complex network which captures the interactions of all unit visual features across the entire training set and we infer information, such as which fea- tures are in which categories, directly from the graph by using link analysis techniques. The link analysis techniques are based on well-established graphmining techniques used in diverse applications such as WWW, bioinformatics, and social networks. The techniques operate directly on the pat- terns of connections between features in the graph rather than on statistical properties, e.g., from clustering in feature space. We argue that the resulting techniques are simpler, and we show that they perform similarly or better compared to state of the art techniques on common data sets. We also show results on more challenging data sets than those that have been used in prior work on unsupervised modeling.

History

Publisher Statement

"©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."

Date

01/01/2008

Usage metrics

Keywords

Exports