Carnegie Mellon University
Browse

Using a Model to Compute the Optimal Schedule of Practice

journal contribution
posted on 2008-06-01, 00:00 authored by Philip Pavlik, John R. Anderson
By balancing the spacing effect against the effects of recency and frequency, this paper explains how practice may be scheduled to maximize learning and retention. In an experiment, an optimized condition using an algorithm determined with this method was compared with other conditions. The optimized condition showed significant benefits with large effect sizes for both improved recall and recall latency. The optimization method achieved these benefits by using a modeling approach to develop a quantitative algorithm, which dynamically maximizes learning by determining for each item when the balance between increasing temporal spacing (that causes better long-term recall) and decreasing temporal spacing (that reduces the failure related time cost of each practice) means that the item is at the spacing interval where long-term gain per unit of practice time is maximal. As practice repetitions accumulate for each item, items become stable in memory and this optimal interval increases.

History

Date

2008-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC