Carnegie Mellon University
Browse
- No file added yet -

Using convex nonlinear relaxations in the global optimization of nonconvex generalized disjunctive programs

Download (3.85 MB)
journal contribution
posted on 2012-05-28, 00:00 authored by Juan P. Ruiz, Ignacio E. Grossmann

In this paper we present a framework to generate tight convex relaxations for nonconvex generalized disjunctive programs. The proposed methodology builds on our recent work on bilinear and concave generalized disjunctive programs for which tight linear relaxations can be generated, and extends its application to nonlinear relaxations. This is particularly important for those cases in which the convex envelopes of the nonconvex functions arising in the formulations are nonlinear (e.g. linear fractional terms). This extension is now possible by using the latest developments in disjunctive convex programming. We test the performance of the method in three typical process systems engineering problems, namely, the optimization of process networks, reactor networks and heat exchanger networks.

History

Publisher Statement

This is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version is available at http://dx.doi.org/10.1016/j.compchemeng.2012.09.017

Date

2012-05-28

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC