Carnegie Mellon University
Browse

Variational Inference for Adaptor Grammars

Download (227.36 kB)
journal contribution
posted on 2010-06-01, 00:00 authored by Shay B. Cohen, David Blei, Noah A. Smith

Adaptor grammars extend probabilistic context-free grammars to define prior distributions over trees with “rich get richer” dynamics. Inference for adaptor grammars seeks to find parse trees for raw text. This paper describes a variational inference algorithm for adaptor grammars, providing an alternative to Markov chain Monte Carlo methods. To derive this method, we develop a stick-breaking representation of adaptor grammars, a representation that enables us to define adaptor grammars with recursion. We report experimental results on a word segmentation task, showing that variational inference performs comparably to MCMC. Further, we show a significant speed-up when parallelizing the algorithm. Finally, we report promising results for a new application for adaptor grammars, dependency grammar induction.

History

Publisher Statement

Copyright 2010 ACL

Date

2010-06-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC