Carnegie Mellon University
Browse

Vegetation Detection for Driving in Complex Environments

Download (1.62 MB)
journal contribution
posted on 2007-01-01, 00:00 authored by David M. Bradley, Ranjith Unnikrishnan, James Bagnell
A key challenge for autonomous navigation in cluttered outdoor environments is the reliable discrimination between obstacles that must be avoided at all costs, and lesser obstacles which the robot can drive over if necessary. Chlorophyll-rich vegetation in particular is often not an obstacle to a capable off-road vehicle, and it has long been recognized in the satellite imaging community that a simple comparison of the red and near-infrared (NIR) reflectance of a material provides a reliable technique for measuring chlorophyll content in natural scenes. This paper evaluates the effectiveness of using this chlorophyll-detection technique to improve autonomous navigation in natural, off-road environments. We demonstrate through extensive experiments that this feature has properties complementary to the color and shape descriptors traditionally used for point cloud analysis, and show significant improvement in classification performance for tasks relevant to outdoor navigation. Results are shown from field testing onboard a robot operating in off-road terrain.

History

Publisher Statement

"©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."

Date

2007-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC