Carnegie Mellon University
Browse

Weight Optimization for Consensus Algorithms with Correlated Switching Topology

Download (352.02 kB)
journal contribution
posted on 2009-09-01, 00:00 authored by Dusan Jakovetic, Joao Xavier, José M. F. Moura

We design the weights in consensus algorithms for spatially correlated random topologies. These arise with 1) networks with spatially correlated random link failures and 2) networks with randomized averaging protocols. We show that the weight optimization problem is convex for both symmetric and asymmetric random graphs. With symmetric random networks, we choose the consensus mean-square error (MSE) convergence rate as the optimization criterion and explicitly express this rate as a function of the link formation probabilities, the link formation spatial correlations, and the consensus weights. We prove that the MSE convergence rate is a convex, nonsmooth function of the weights, enabling global optimization of the weights for arbitrary link formation probabilities and link correlation structures. We extend our results to the case of asymmetric random links. We adopt as optimization criterion the mean-square deviation (MSdev) of the nodes' states from the current average state. We prove that MSdev is a convex function of the weights. Simulations show that significant performance gain is achieved with our weight design method when compared with other methods available in the literature.

History

Publisher Statement

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Date

2009-09-01