Carnegie Mellon University
Browse
- No file added yet -

Æminium: A Permission-Based Concurrent-by-Default Programming Language Approach

Download (1.08 MB)
journal contribution
posted on 1973-01-01, 00:00 authored by Sven Stork, Karl Naden, Joshua Sunshine, Manuel Mohr, Alcides Fonseca, Paulo Marques, Jonathan Aldrich

Writing concurrent applications is extremely challenging, not only in terms of producing bug-free and maintainable software, but also for enabling developer productivity. In this article we present the Æminium concurrent-by-default programming language. Using Æminium programmers express data dependencies rather than control flow between instructions. Dependencies are expressed using permissions, which are used by the type system to automatically parallelize the application. The Æminium approach provides a modular and composable mechanism for writing concurrent applications, preventing data races in a provable way. This allows programmers to shift their attention from low-level, error-prone reasoning about thread interleaving and synchronization to focus on the core functionality of their applications. We study the semantics of Æminium through μÆminium, a sound core calculus that leverages permission flow to enable concurrent-by-default execution. After discussing our prototype implementation we present several case studies of our system. Our case studies show up to 6.5X speedup on an eight-core machine when leveraging data group permissions to manage access to shared state, and more than 70% higher throughput in a Web server application.

History

Publisher Statement

All Rights Reserved

Date

1973-01-01

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC