The SEI recently hosted a question-and-answer webcast on genrative AI that featured experts from across the SEI answering questions posed by the audience and discussing both the technological advancements and the practical considerations necessary for effective and reliable application of generative AI and large language models (LLMs), such as ChatGPT and Claude. This blog post includes our responses, which have been reordered and edited to enhance the clarity of the original webcast. It is the second of a two-part series - the first installment focused on applications in software engineering - and explores the broader impacts of generative AI, addressing concerns about the evolving landscape of software engineering and the need for informed and responsible AI use. In particular, we discuss how to navigate the risks and ethical implications of AI-generated code, as well as the impact of generative AI on education, public perception, and future technological advances.
Publisher Statement
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.
This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA 01731-2100.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.Copyright Statement
Copyright 2023 Carnegie Mellon University.