
An Information Theoretic Approach for Privacy Preservation
in Distance-based Machine Learning

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical & Computer Engineering

Abelino Enrique Jiménez Gajardo

B.S., Mathematical Engineering, Universidad de Chile
M.S., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

June 2019

c© Abelino Enrique Jiménez Gajardo, 2019
All rights reserved.

iii

Acknowledgements

To my family, Nicole and Agustín, for their love and infinite support in this adventure that takes us away

from our work, home and friends.

To my parents Evangelina and Abelino, my sister Eliana, my in-laws Ezzio, Valentina, Pablo and Isabella,

and our grandmom María, for their love and support from afar.

To my Pittsburgh family, Pía, Militza, Erika, Christian, Cristobal and Gabriel, for having been the

incredible friends that they were, and ending up becoming another part of our family.

To my lifelong friends, Karina Díaz and Gonzalo Vidueria, who despite the distance, were always with

their support during all these years.

To my advisor, professor Bhiksha Raj, for giving me the opportunity of working with him and his infinite

patience and comprehension. Thanks for the tremendous freedom I had during the development of this work.

To the committee members, professors Manuel Blum, Aswin Sankaranarayanan and Bryan Parno, for

being willing to participate in the revision of this work, providing a valuable feedback and give me comments

that have always helped improve it.

To the Robust-MLSP research group, professors Rita Singh and Richard Stern, and my mates Benjamin

Elizalde, Anurag Kumar, Anders Oland, Nia Peters, Nikolas Wolfe, Joana Correia, Raymond Xia, Tyler

Vuong, Yang Gao, Yandong Wen, Wenbo Liu, Wenbo Zhao and Mahmoud Alismail. I learned a lot from

each of you. I am fortunate to have you as colleagues and friends.

To Carnegie Mellon University, for being an incredible place to learn and grow.

To CONICYT, through the program Becas Chile, that funded this research.

iv

Abstract

As cloud-based services become increasingly popular as platforms for storage and computation, privacy issues

relating to their use have become increasingly important. Much of the data stored on cloud platforms are

private, belonging to individuals or institutions who often desire to utilize the facilities provided by these

platforms, but, at the same time, do not desire to expose their data to the platform itself.

Encrypting the data prior to storage on the cloud helps to protect private information. However, this

causes problems if we need to perform computations on them, for instance, to train some machine learning

algorithm. This requires the server to observe the content, so decryption is necessary. This gives rise to

privacy concerns in different cloud computing settings. Several solutions based on cryptographic techniques

have been proposed to address the issue. However, they have high computational cost and high bandwidth

requirements, and in practice are difficult to scale.

In this work, we propose an alternative approach. In this work we introduce a privacy mechanism based

on limited leakage transformations which have two key properties:

1. Individual transformed vectors are uninformative about their preimage; and

2. The comparison of transformed data points can provide information about the similarity of their

preimages, but only if they are sufficiently close; the comparison provides no information about them

otherwise.

We use tools from information theory to state theoretical properties and describe how to use this kind of

scheme in practical scenarios.

We study the implications of using our proposed method in distance-based machine learning, which is

the family of algorithms that depend directly on distance computations, with the objective of developing

privacy mechanisms that enable the use of such methods without revealing private data. We discuss how to

perform both training and inference phases under a private setting. Our goal is to show that fast and private

computations on the cloud are feasible and useful for this class of techniques. We present our progress in

this research and future directions to be addressed.

Contents

Contents v

List of Tables viii

List of Figures ix

I Introduction 1

1 Thesis Overview 2

1.1 Motivation . 2

1.2 Thesis Statement . 4

1.3 Summary of Contributions . 5

1.4 Thesis Organization . 5

2 Privacy Preserving Technologies 7

2.1 Cryptographic Solutions . 7

2.1.1 Homomorphic Encryption . 7

2.1.2 Secure Two-Party Computation . 11

2.2 Information Theoretic Privacy . 13

2.2.1 Differential Privacy . 13

II An Information Theoretical Approach to Limit Leakage in Comparisons 17

3 Privacy Leakage Measurements 18

3.1 Preliminaries . 18

3.2 Information Secrecy . 20

3.3 Comparison of Transformed Messages . 21

v

CONTENTS vi

4 Limited Leakage Transformations 23

4.1 General Assumptions . 23

4.2 Controlling information leakage in data comparison . 24

4.3 Designing a Limited Leakage Transformation . 29

4.3.1 The case k = 2 . 33

4.3.2 Leaking conditions . 34

4.4 Other Metrics . 35

4.4.1 Mahalanobis Distance . 35

4.4.2 Manhattan Distance . 36

4.4.3 Cosine Distance . 37

4.5 Comparison with other methods . 37

4.6 Contributions . 39

III Limited Computation. About the utility of the information leakage. 40

5 Limited Distance Estimation 41

5.1 General Observation . 41

5.2 Hamming Distance between Hashes . 42

5.3 Modular Distance between Hashes . 45

5.4 Related Work and Contributions . 48

6 Private Distance-based Machine Learning 50

6.1 Use by Substitution . 50

6.2 Hashing to Compute Kernels . 51

6.2.1 A hash function to estimate kernels . 52

6.2.2 Connection with Modular Hash . 55

6.2.3 Empirical Evaluation . 55

6.3 Related Work and Contributions . 58

IVApplications 60

7 Speech Signal Protection 61

7.1 Introduction . 61

7.2 Speaker Authentication Basics . 62

CONTENTS vii

7.3 Cancelable Biometrics . 63

7.4 Limited Leakage Transformation as TFT . 65

7.5 Empirical evaluation . 67

7.6 Conclusion . 68

8 Private Image Retrieval 69

8.1 Introduction . 69

8.2 Limited Leakage Transformation for Retrieval . 70

8.3 Conclusions . 71

9 Two-party Computation for Distance Inference 73

9.1 Introduction . 73

9.2 Somewhat Third Trusted Party . 74

9.3 Enhancing Privacy with Cryptography . 76

9.4 Conclusions . 77

V Conclusions 79

10 Thesis Conclusions 80

10.1 Summary of Results . 80

10.2 Discussion . 82

11 Future Work 84

11.1 Multiparty Formulation . 84

11.2 Transforming Non-vector objects . 84

11.3 Signal Reconstruction using Keys . 85

A Random Convolutional Features 86

A.1 Introduction . 86

A.2 Methods . 89

A.2.1 Random Convolutional Features . 89

A.2.2 Theoretical Results . 90

A.3 Experiments . 92

A.3.1 Datasets . 92

A.3.2 Results using Nonlinear SVM with Cross-correlation kernel 92

A.3.3 Results using Linear SVM with Random Features . 92

A.4 Conclusions . 93

B Proofs 94

B.1 Proof Theorem 4.2.1 . 94

B.2 Proof Theorem 4.3.1 . 97

B.3 Proof Theorem 4.3.2 . 98

B.4 Proof Theorem 4.3.3 . 105

B.5 Proof Theorem 4.3.4 . 106

B.6 Proof Theorem 4.3.5 . 108

B.7 Proof Theorem 5.2.1 . 110

B.8 Proof Theorem 5.2.2 . 112

B.9 Proof Theorem 5.3.1 . 113

B.10 Proof Theorem 5.3.2 . 115

Bibliography 117

List of Tables

2.1 Truth table for garbled AND gate . 11

4.1 Joint probability function that illustrates that pairwise independence does not imply joint inde-

pendence. 27

4.2 Comparison between standard cryptographic methods . 38

6.1 Accuracy performance (%) as γ varies for the Laplacian kernel (with input features), Series kernel

(with input features) and different hashing sizesM in bits (with linear SVM). The best results for

each type are in bold. Note how as the value ofM increases the performance is better approximated. 57

viii

6.2 The performance of the hashing scheme outperforms the reported Challenge score and the random

features. Moreover, performance is comparable to using the Laplacian Kernel, however with the

benefits of reducing the bit representation by 4 times. 58

7.1 Experimental Results. EER(%) for each scenario, considering different number of gaussians. We

took γ = 0.02 . 68

A.1 Results in Binary Classification Task. 93

List of Figures

1.1 Client-Cloud setting. When we talk about Machine Learning as a Service, we consider two

parties, a client and a service provider, who interact in order to obtain a desirable answer. . . . 2

2.1 Homomorphic Encryption applied in the Client-Server setting. 8

2.2 Homomorphic Encryption can be applied for private distance computation. 9

3.1 Common setting in encryption schemes. Two parties share a key that they use to communicate

securely. 20

4.1 We assume that a privacy mechanism transform data instances x using a source of randomness

R into an object QR(x) . 25

4.2 It is interesting to analyze the information leakage produced by comparing the transformed points

from one group of points against the transformed points from other group, and to study the effect

of the geometry in the leakage. In particular, we would like the study the effect on the leakage

depending on how spread the points are. 29

4.3 Example of realization of a Gaussian Modular Hash function from R2 to Z4
3. Each plot illustrates

the value a one component of Q3,A,U (x) for different values of x. 30

4.4 Probability that all elements in an ε-ball have the same hash value, as a function of ε for different

values of σ, considering N = 100 and M = 1. 32

ix

List of Figures x

4.5 Geometric condition to control information leakage. When we compare two transformed points

against a third transformed point, the information leakage is negligible if this third point is far

enough. 33

4.6 Geometric condition to control information leakage in complex comparisons. 34

5.1 We want to study the relationship between transformed points when the original vectors are close

enough. 42

5.2 Expected value of Normalized Hamming Distance between Gaussian Modular Hashes as function

of the Euclidean distance using different values of k. 44

5.3 Simulations of Normalized Hamming distance between Gaussian Modular Hashes as function of

the Euclidean distance between data points . 44

5.4 Topology of Zk to define the Modular Distance between its elements. 45

5.5 Left: Expected value of the Modular Distance between QR(x1) and QR(x2) as a function of

‖x1 − x2‖ using expression given by Theorem 5.3.1 and considering σ =
√

π
2 . Right: Simulated

data. Normalized modular distance between hashes as a function of ‖x1 − x2‖ for σ =
√

π
2 ,

N = 5000 and 500 samples. 48

6.1 The Kernel trick is based on the idea of mapping data points into a higher dimensional space in

order to find linear patterns. 51

6.2 The function h quantizes real values to -1 or 1 for each hash component. 53

6.3 (a) Theoretical Expression. Expectation of the inner product betweenHA,U (x1) andHA,U (x2)

as a function of ‖x1−x2‖1 using Theorem 6.2.1 considering γ = 1 and γ = 0.2. We took the first

5,000 terms of the series. (b) Simulations. Inner product between HA,U (x1) and HA,U (x2) as

a function of ‖x1 − x2‖1 with N = 5000, M = 2500 and γ = 1 and γ = 0.2. 54

6.4 The audio recordings are used to extract input features. Then, these features are used to train an

SVM in two different ways. One is to pass the features directly to a non-linear SVM, second is to

compute hashes and pass them to a linear SVM. Lastly, the trained SVM is used for classification. 56

7.1 Enrollment and verification processes in a biometric system. 63

8.1 Standard design of an Image Retrieval System. 70

8.2 Design of a proposed image retrieval system that promoted privacy. 71

9.1 Protocol for distance computation using a Somewhat Third Trusted Party 75

List of Figures xi

A.1 Approximation of Cross-correlation Kernel through inner product of Random Features. (Left)

Effect of the number of components in the random mapping on the approximation error for

Kernel estimation. (Right) Pairwise comparison between the cross-correlation and its estimation

through random features. Each dot is a corresponds to a pair (f1, f2). We consider M = 1024.

Both figures where generated using the Gun-Point data set from [103] 90

B.1 Illustration of functions gi,k and fL . 99

B.2 Illustration of function gk . 110

Part I

Introduction

1

Chapter 1

Thesis Overview

1.1 Motivation

Cloud-based services have become popular as platforms for large storage and expensive computation, mean-

ing on-demand supply of software and hardware at any negotiable level. These features are particularly

useful for Machine Learning as a Service, where we can distinguish two parties: a client, who has data with

which he wants to work, and a service provider, who has a model or a platform to work with the client’s data

and return a desirable outcome. This is summarized as figure 1.1 shows,

Figure 1.1: Client-Cloud setting. When we talk about Machine Learning as a Service, we consider two
parties, a client and a service provider, who interact in order to obtain a desirable answer.

Under this setting, we can consider two Machine Learning tasks,

1. Training models.

The growing success of Machine Learning is mainly due to having large volumes of data, more com-

putational resources and better and more sophisticated algorithms. Hence, in different situations, it

is much more convenient to store and process these large amounts of data on the cloud. For instance,

having access to multiple computers to parallelize some procedures can be relevant for training models

2

CHAPTER 1. THESIS OVERVIEW 3

in a reasonable amount of time.

2. Inference with trained models.

In many situations, machine learning applications such as face or speech recognition are deployed using

a client-server model, where the client has the input data (image, speech, financial data, genetic code,

etc.), and a remote server in the cloud has the corresponding machine learning model. There are several

reasons for considering this model. First, in general the use of a machine learning model may require

heavy computation and many parameters to control, making it more efficient to submit the client’s

data to a server than send a model to a client. The second reason is related to intellectual property

constraints; the appropriate model and its parameters to perform a specific task is a key resource for

the service provider. Thus, keeping the secrecy of the model is part of most business strategies.

However, despite the benefits that the cloud provides for addressing the challenges that appear in machine

learning tasks, privacy issues relating to their use have become increasingly important. In fact, much of the

data submitted and stored on cloud platforms are private, belonging to individuals or institutions who often

desire to utilize the facilities provided by these platforms, but, at the same time, do not desire to expose

their data to the platform itself.

For example, in situations that involve health data, the privacy issues that emerge are quite evident.

We can consider the case where a patient wants to know the probability of having a specific type of cancer.

For this, their doctors suggest using a machine learning model that uses the patient’s genetic information

as input. Although, this model can be very accurate in its estimation, it is clear that the patient is exposed

to various problems that affect their privacy in case the model is deployed in the cloud. In effect, not only

the genetic information of the patient will be exposed and potentially at risk, but also the outcome of the

model to predict cancer. In this case, it is desirable to protect both the input and the output of the model.

Similar problems appear in the financial sector. In this case the input data may be associated with

information regarding income, loans or debts of people or institutions. A model could take these data and

generate some useful outcome for some organization. For example, a bank could use this type of data to

predict the risk of a customer not paying a loan. If the bank makes use of the cloud to train a model to

predict this risk, then the bank could put in risk information that is very sensitive for its customers as well

as its business. Indeed, both the customers data and the trained model would be exposed to the cloud, being

potentially compromised.

In general, if we need to upload data to the cloud to train a machine learning model, besides exposing the

data, the final model will be totally exposed, being a risk if the platform is susceptible to be compromised.

Similarly, in case we need to use an external machine learning service, similar concerns appear. Even though

CHAPTER 1. THESIS OVERVIEW 4

the service provider has a privacy policy, the client’s data is usually stored in an external repository that

may be compromised. In addition, the service provider may disclose the data along with the outcome of the

model.

Therefore, it is very important to have a mechanism to protect the data from the risks we have discussed.

An obvious solution is to encrypt the data prior to the submission and storage on the cloud. However, this

causes problems in case we want to perform any computation on the data, and in particular, when we want

to make any comparison between data instances.

This is particularly important given the fact that many machine learning algorithms are based on the

comparison of examples of a data set, or the comparison between examples and an array of parameters.

More specifically, many machine learning algorithms make extensive use of distance calculations between

instances. We will call this type of algorithms simply distance-based machine learning algorithms, which

will be the focus of this work. In consequence, there is a need to “hide” data, while permitting to compute

distances between instances.

1.2 Thesis Statement

With the previous motivation, we proposed a privacy-preserving framework for distance-based machine

learning algorithms that allows to process data without revealing it. We focus on the two tasks described

above: training and inference. In the former, we assume that the client has data and wants to train a

machine learning model using a cloud platform. The privacy constraints require that the cloud provider

should not observe the data and not get any relevant information about the resulting model. In the second

setting, we assume that the client has the data and the server has a trained machine learning model to be

used. In this case, based on the privacy requirements, the server should not observe the data and the client

should not observe the model.

The main objective of this thesis is to show that:

Fast and private computations on the cloud

are feasible and useful for distance-based machine learning tasks.

To support this statement, we introduce tools from Information Theory to propose a framework for

privacy preservation, setting a tunable and user designed trade-off between privacy and utility. The presented

work attempts to contribute to the field of Privacy-preserving Machine Learning, with a specific focus on

distance-based methods, such as Clustering, Nearest Neighbors Classification, Support Vector Machines,

among many others.

CHAPTER 1. THESIS OVERVIEW 5

1.3 Summary of Contributions

To the best of our knowledge, this is the first work to make a connection between data comparison and

privacy requirements using an information theoretical approach.

The technical contributions of this thesis are the following:

1. The introduction of a mathematical framework to study the information leakage in sample comparisons;

a concept that is properly defined in this work.

2. The presentation of different theorems that allow understanding and controlling information leakage.

3. The relationship between transformations that satisfy our privacy requirements with distance-based

machine learning methods.

1.4 Thesis Organization

This work is organized as follows,

• In chapter 2, we make an overview about the current privacy preserving technologies, showing their

advantages and drawbacks.

• In chapter 3, we present different privacy leakage measurements that have been introduced, discussing

different points of view.

• In chapter 4, we introduce the main concepts of this thesis. We present the definition of Limited Leak-

age Transformation along with some theoretical results, discussing the scope of these as a mechanism

to enhance privacy in the cloud. Some of these ideas have been published as [1], [2].

• In chapter 5, we discuss how to estimate distances between points after transforming the data using

the mechanism shown in the previous chapter. We present theoretical results and we analyse practical

implications. Part of this work has been published as, [1], [3].

• In chapter 6, we analyse how to train distance-based machine learning models after applying the privacy

enhancing transformation we have presented. One of the most important results is one that relates the

transformed data to Kernel methods. In particular we show that with this kind of transformation we

can change a non-linear method to a linear one with minimal loss of performance. Part of this work

has been published as, [4], [5]

• In chapter 7, we start discussing potential applications that the introduced technique may have. In

this chapter we study the case of biometrics protections, with a focus on speech signatures, comparing

CHAPTER 1. THESIS OVERVIEW 6

our method with some current solutions and applications. Part of this work has been published as,

[2], [6].

• In chapter 8, we analyze the potential application of this technique in private image retrieval. In this

case, we need to retrieve images from providing an image query. We would like to obtain the most

similar image in a dataset. Since the image may contain sensitive information, it is necessary to hide

the content of the query and the images in the data set. We discuss how our method helps to solve

this problem and some current implementations that have used our method.

• In chapter 9, we present an application on two party computation. Here, there are two parties, each

has a real valued vector and they want to compute the distance between them without revealing their

corresponding vectors to each other. We present how our method may help to solve this problem

or reduce the complexity in case of dealing with high dimensional data. Part of this work has been

published as [3]

• In chapter 10, we present our conclusions and in chapter 11 we comment on lines for future work.

Chapter 2

Privacy Preserving Technologies

In this chapter we present some solutions that have been proposed to address the privacy concerns that arise

in the setting we presented in the previous chapter. In general, there are two kind of solutions; one group

based on cryptographic methods, where the security relies on the unfeasibility of solving some particular

problems, while the second group of solutions is based on information theoretic guarantees, where the analysis

of the security is unrestricted by the computational abilities that an adversary may have.

2.1 Cryptographic Solutions

In this section we give an overview of some tools based on cryptographic methods. In general, these methods

achieve a high level of security, but are difficult to scale.

2.1.1 Homomorphic Encryption

Homomorphic Encryption schemes are a special type of cryptosystems that allow for operations to be

performed on ciphertexts without requiring knowledge of the corresponding plaintexts. Hence, the structure

of the plaintext space is preserved in the ciphertext space for additions and/or multiplications of plaintext

data under encryption. Thus, Homomorphic Encryption enables operations on encrypted data without any

decryption.

More formally, if two data instances x and z are encrypted to E(x) and E(z) using a homomorphic

encryption scheme, we can obtain the encryption of the result of an operation ⊗ performed on x and z by

performing another, possibly the same, operation ⊕ directly on the encrypted versions of x and z,

E(x⊗ z) = E(x)⊕ E(z) (2.1)

7

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 8

Figure 2.1: Homomorphic Encryption applied in the Client-Server setting.

Using HE, a data owner can encrypt their data with the public key, send it to a service provider that

has a model and has no access to the secret key, and receive the required answer in encrypted form, which

only the client can decrypt with its secret key.

We can distinguish three types of Homomorphic Encryption schemes:

1. Partially Homomorphic Encryption (PHE)

2. Somewhat Homomorphic Encryption (SHE)

3. Fully Homomorphic Encryption (FHE)

FHE allows unlimited additions and multiplications at the cost of an increased computational load [46],

while SHE schemes have a fixed limit of multiplications to speed up their execution. PHE schemes support

either additions or multiplications, hence, they are only partially homomorphic.

The problem of SHE schemes is that the resulting ciphertext cannot be decrypted when the limit of mul-

tiplications is exceeded. Furthermore, there are SHE schemes that cannot correctly decrypt when different

operations are combined, i.e., only additions or multiplications are possible but combining both operations

in the encrypted domain cannot be handled.

Some examples of Homomorphic Encryption schemes include Paillier [47], ElGamal [48], and NTRU

[49] cryptosystems. In general, the drawback of these schemes is a relatively high computational overhead

and the relatively large ciphertexts and keys. An extensive overview of different Homomophic Encryption

Schemes can be found in [50].

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 9

Figure 2.2: Homomorphic Encryption can be applied for private distance computation.

Distance Computation using Homomorphic Encryption

Given that the focus of this work is on distance-based methods, it is worth understanding how this type

of technique is applied to calculate distances in the encrypted domain. To illustrate how this technique

works, we will consider any Partial Additive Homomorphic Encryption, as Paillier, denoting the encryption

function as E. These systems satisfy the following properties for any pair of integers x and z,

E(x) · E(z) = E(x+ z) (2.2)

(E(x))z = E(x · z) (2.3)

Hamming distance

We can suppose that x and z are vectors in {0, 1}N . Let’s assume that data owner has the vector x while

the service provider has the vector z. The data owner wants the value of the Hamming distance between

these vectors without exposing the vector x to the service provider. The Hamming distance between binary

vectors is just the number of positions at which the corresponding components are different.

On the other hand, the service provider is willing to expose the hamming distance, but not the entire

vector z. Note that if the Hamming distance is zero, then, the data owner will know that the service

provider’s vector is equal to its vector, so will have total knowledge about the service provider’s data. So,

assume that the service provider does not have any problem about this issue, this means, he or she is willing

to expose just the information that the Hamming distance provides.

We can use PHE to solve this problem. Indeed, we can assume that both the data owner and the service

provider have a public key of a partial homomorphic encryption scheme, but only the data owner has the

secret key.

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 10

Then, first the data owner encrypts each of the components of its vector, obtaining E(x1), E(x2), ..., E(xN),

and sends these values to the service provider.

To compute the Hamming distance with the encrypted data, the service provider performs the following

computation

N∏
i=1

E(xi) · E(zi) · E(xi)−2zi =
N∏
i=1

E(xi + zi − 2xizi) (2.4)

= E

(
N∑
i=1

xi + zi − 2xizi

)
(2.5)

This equality is obtained using the basic properties that appear in Partial Additive HE. But, since we are

dealing with binary data, it is easy to realize that the expression xi+zi−2xizi is 0 if xi = zi, and 1 otherwise.

Therefore, the expression computed by the service provider is in fact the encrypted version of the Hamming

distance. Note also that the service provider cannot obtain any information about the client’s data.

Thus, the service provider sends back the value obtained after computing 2.5 to the data owner, who can

decrypt this message using its secret key.

Note that this method does not work when both vectors are encrypted. However, using a fully homo-

morphic encryption scheme, this task can be easily solved.

Euclidean distance

A very similar approach can be considered for the Euclidean distance case. We can consider the same

setting as before, where the data owner has the vector x, while the service provider has the vector z, and

the data owner wants to know the squared Euclidean distance between these vectors under the same privacy

constraints.

In this case, the data owner has to encrypt the components of its vector along with the sum of the square

of each component. Hence, the service provider receives E(x1), E(x2), ..., E(xN) and E
(∑N

i=1 x
2
i

)
. Then,

the service provider, using its vector and the public key, can compute the following expression,

E

(
N∑
i=1

x2
i

)
· E

(
N∑
i=1

z2
i

)
·
N∏
i=1

E(xi)−2zi = E

(
N∑
i=1

x2
i + z2

i − 2xizi

)
(2.6)

= E
(
‖x− z‖2) (2.7)

Then, the service provider sends these values to the client and she or he can decrypt the message using its

secret key, obtaining the value of the squared Euclidean distance.

More example about how to apply HE to different distance computations can be found in [54]

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 11

∧̂ b = 0 b = 1

a = 0 Ek0
0

(
Ek1

0

(
k2

0)
)

Ek0
0

(
Ek1

1

(
k2

0)
)

a = 1 Ek0
1

(
Ek1

0

(
k2

0)
)

Ek0
1

(
Ek1

1

(
k2

1)
)

Table 2.1: Truth table for garbled AND gate

2.1.2 Secure Two-Party Computation

Secure Multiparty Computation is a sub-field of cryptography that concerns with settings in which n parties

are interested in jointly computing a function f using their input data while maintaining the privacy of their

inputs. When n = 2, we refer as Secure Two-Party Computation (STPC).

Privacy in these kinds of protocols is established by the constraint that no party should learn anything

apart from the output and the intermediate steps of the computation. Thus, in Secure Two-Party Compu-

tation we consider that each party has inputs x1 and x2 respectively, and they need to compute the output

f(x1, x2) = (y1 , y2). Under this setting, the privacy constraints require that each party provides the value

xi and obtains the outcome yi, as well as does not observe the input or output of any other party.

Here, the function f is usually represented as a circuit, this is, a directed acyclic graph where the edges

represent intermediate wires, and the nodes show input and output wires, and gates that compute a basic

function; consider, for example, Boolean functions where the gates consist in AND and XOR gates. For the

secure evaluation of f , parties rely on securely computing every gate in the function’s circuit.

The most well known example is given by the Yao’s garbled circuits protocol [55], which has been subject

to many optimisations and used in different applications. Garbled Circuits operate on binary inputs and

compute a function by evaluating its garbled Boolean circuit representation.

In this protocol we consider that one party will garble the circuit and the other will evaluate it. The

former is called the garbler whereas the latter is called the evaluator. First, for each wire w, the garbler

creates random labels kw0 and kw1 ∈ {0, 1}k, where k is the security parameter, for example, k = 128. Then,

for each gate g, the garbler generates a garbled gate ĝ such that, given ĝ and the labels corresponding to

the values of the input wires of g, the evaluator can compute the label corresponding to the correct value

of the output wire of g. This construction makes use of a symmetric encryption scheme. As example, we

can consider an AND gate. If Ek(x) denoted the encrypted version of x using the key k, table 2.1 shows the

truth table of the garbled AND gate.

In this example k0
0 and k0

1 denotes the labels corresponding to the wire related to a for the values 0 and

1 respectively. Similarly, k1
0 and k1

1 are the labels corresponding to the wire related to b for the values 0 and

1 respectively, and k1
0 and k1

1 are the labels corresponding to output wire for the values 0 and 1 respectively.

After garbling each gate in the circuit, the garbler randomly permutes the entries of each garbled gate

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 12

and sends the resulting garbled circuit to the evaluator. A final task is that, in order to enable the evaluation

of the garbled circuit, the garbler has to transfer the labels corresponding to the input bits of both parties

without revealing one party’s input to the other. Since the labels are chosen uniformly at random, just

sending the labels corresponding to the garbler’s inputs to the evaluator reveals nothing about the actual

input. However, sending the labels for the input of the evaluator is problematic, as the garbler must not

know which labels to send but also cannot send both labels for each bit because then the evaluator could

learn information about the garbler’s input by evaluating the circuit on other inputs than its own. The

solution to this problem is a cryptographic primitive called Oblivious Transfer (OT). Such an OT allows

a sending party with the input (x0 x1) to send the value xb to a receiving party with input bit b ∈ {0 , 1}

without learning anything about b and without revealing anything about x1−b to the receiver. In order to

send the evaluator its corresponding labels, both parties engage in an OT protocol for every input bit yj of

the evaluator’s input y, with the garbler acting as sender with input (kj0 , k
j
1) and the evaluator acting as

receiver with input yj .

We can summarize the Yao’s GC protocol in the following steps:

1. The garbler transforms f into a Boolean circuit consisting of XOR and AND gates. It generates labels

for all wires and garbled gates for every gate in the circuit.

2. The garbler sends the permuted garbled gates and the labels corresponding to its own input bits to

the evaluator. Then, both parties engage in OTs, where the evaluator obliviously receives the labels

corresponding to its input bits.

3. The evaluator evaluates each gate in the garbled circuit using the labels obtained in step 2.

4. To reveal the output, the garbler can reveal the plaintext bits corresponding to the circuit output

labels obtained in step 3.

Compared to Homomorphic Encryption, most of the Secure Two Party Computation protocols rely on

relatively cheap symmetric cryptographic operations, for example AES, but STPC requires interaction per

gate between the parties, while HE does this only for the inputs and outputs.

An overview of some frameworks that implement STPC protocols can be found in [75].

SMC in Machine Learning Systems

Many efforts have been done to preserve privacy in machine learning algorithms using Secure Multiparty

protocols, e.g. in clustering [72], nearest neighbor classification, support vector machine, neural networks[74]

and many other techniques [73].

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 13

However, most of these works focus on the inference task based on a client-server model and generally

have problems with the scaling up the computation. For example, in [72] the communication cost increases

linearly in the number of points involved and the dimensionality of the data.

2.2 Information Theoretic Privacy

As mentioned earlier, another class of privacy preserving methods, referred to as information theoretical

privacy mechanisms, are based on information theory tools. The main advantage of these techniques is that

they provide privacy against adversaries with unbounded computational power.

2.2.1 Differential Privacy

A data set D is a collection of elements. A randomised query mechanism M produces a response when

performed on a given data set. Two data sets D and D′ are said to be adjacent if they differ by at most one

element. There are two proposed definitions for adjacent data sets. The stronger one is based on deletion:

D′ contains one entry less than D. The weaker one is based on substitution: one entry of D′ differs in value

from that in D.

The query mechanism M is said to satisfy differential privacy [51] if the probability of M resulting in

a solution S when performed on a data set D is very close to the probability of M resulting in the same

solution S when executed on an adjacent data set D′. Formally, we say that a randomised function M

satisfies ε−differential privacy if for all adjacent data sets D and D′ and for any S ∈ range(M),

P [M(D) = S] ≤ exp(ε)P [M(D′) = S] (2.8)

The value of the ε parameter is referred to as leakage and determines the degree of privacy. A smaller ε

represents a stronger privacy. In practice, ε is set less than 1 (e.g., 0.1 or ln(2)).

As a consequence of this model, we may consider that if an individual chooses to contribute to the data

set, there is a little or no increase in privacy risk for the individual as compared to not choosing to contribute

to the data set. With the aim of designing mechanisms that satisfy differential privacy, two composition

theorems are used:

Theorem 2.2.1 (Sequential Composition). If a set of mechanisms {M1,M2, ...,Mn} is sequentially

performed on a data set, and eachMi provides εi-differential privacy, then the entire mechanism will provide

(
∑n
i=1 εi)-differential privacy.

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 14

Theorem 2.2.2 (Parallel Composition). If {D1, ...,Dn} is a partition of the data set and Mi is a εi-

differential privacy mechanism applied on Di, then the mechanism that applies the M1,M2, ...,Mn in the

corresponding sets D1, ...,Dn is a (max{ε1, ..., εn})-differential privacy mechanism.

These two theorems help to control the degradation of privacy when we need to compose several differ-

entially private mechanisms. One way to achieve differential privacy is through the exponential mechanism

[62] for releasing continues-valued functions. Given a function f to be evaluated over the data set D, we

need to add a perturbation to the value of f(D) to prevent leakage. To do this, the mechanism M adds

the appropriate perturbation η, such that f(D) + η satisfies differential privacy. The distribution of η is

determined by the sensitivity of f on the data set D. This is the maximum difference between f(D) and

f(D′) where D′ is an adjacent data set. Formally, the sensitivity S of f is given by:

S = max
D,D′

‖f(D)− f(D′)‖1 (2.9)

Hence, the sensitivity S of the function f indicates how much the function is likely to change after

changing one instance from the data set. It is possible to prove that if η is sampled from Laplace(S/ε), then

the mechanism f(D)+η satisfies ε-differential privacy [62]. Note that the perturbation η introduces an error

with respect to the true value f(D) which is inversely proportional to ε. This implies a trade-off between

privacy and utility. Differential privacy has become an important research field; for a general overview and

further details see [52].

Differential Privacy in Machine Learning

In machine learning systems, the query mechanism can be thought of as an algorithm learning the classifi-

cation rule which is evaluated over the training data set. The output of an algorithm satisfying differential

privacy is likely to be the same when the value of any single data set instance is modified, and therefore, no

additional information can be obtained about any individual training instances with certainty by observing

the output of the learning algorithm.

In addition, the ε-differential privacy model limits the information that an adversary can gain about a

particular private value by observing an entire function learned from a data set containing that value, even

if she or he knows every other value in the database. Naturally, if we want to apply this method to machine

learning problem we need to be aware of the trade-off between privacy and learnability.

Most of the training methods for a recognition system are based on optimisation problems. In practice,

there are two strategies for inserting differential privacy on the learning process of a recognition system. The

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 15

first type adds noise to the execution process of the corresponding optimisation algorithm. The second type

makes a perturbation directly to the objective function, typically adding a differentially private noise before

the learning procedure. Both strategies have been explored in different models, which we will now briefly

mention.

1. Large Margin Classifiers. In [63] is presented an algorithm for learning a discriminatively trained

multiclass Gaussian mixture model-based classifier that preserves differential privacy using a large

margin loss function. The solution involves adding a perturbation term to the objective function. The

authors show that differential privacy is satisfied and they establish a bound on the excess risk of the

classifier learned which is directly proportional to the number of classes and inversely proportional to

the privacy parameter reflecting a trade-off between privacy and utility.

2. Multi-Party Classifiers with Differential Privacy. In many cases it is common to have the problem

of learning a classifier from a multi-party collection of private data. The goal is to learn a classifier

from the union of all the data. In [64], the imposed conditions are that: (a) None of the parties are

willing to share the data with one another or with any third party (e.g., a curator). (b) The computed

classifier cannot be reverse engineered to learn about any individual data instance possessed by any

contributing party

3. Differentially Private Deep Learning. Deep learning has been one of the most successful techniques

in machine learning and signal processing. The basic idea is to apply a multiple-layer structure to

extract complex features from high-dimensional data and use them to build models. Each layer has

a set of parameters that must be learned from training samples, minimizing a a loss function, which

depends on these parameters. In practice, stochastic gradient descent (SGD) methods are used to

achieve this objective. As previously mentioned, the knowledge of the model or its use on particular

samples can leak information about the training data, which results in privacy risks. To deal with this

issue, deep learning models can be adapted to reach differential privacy. In [65] a differentially private

SGD algorithm is designed by introducing a sparse vector technique. Similarly, in [66] a differentially

private SGD algorithm is designed relying on a Gaussian Mechanism [52]. On the other hand, in [67]

a perturbation on the objective function of a deep auto-encoder is considered to achieve differential

privacy.

Note that differential privacy solves a different privacy problem from those that Homomorphic Encryp-

tion and Secure Multiparty Computation solve. While Homomorphic Encryption and Secure Two-Party

Computation solve the problem of private inference, these techniques do not deal with the problem of po-

CHAPTER 2. PRIVACY PRESERVING TECHNOLOGIES 16

tential leakage of information using the system responses. In fact, an attacker may try to use the responses

of the system to infer model parameters and eventually learn information about training samples. In this

context, differential privacy can be added to prevent those types of attack.

In addition, differential privacy provides the relative guarantee that the release of information will be

just as likely whether or not the data about an individual is present in the database. As a consequence, if

an individual chooses to contribute to the database there is little or no increase in the privacy risk of the

individual as opposed to not contribute to the database.

Local Differential Privacy

The general idea of differential privacy works under the notion of privacy in databases. Thus, all these

constructions make sense at the moment of releasing a global statistic or a model from the data set.

However, there are some situations where data belonging to particular individuals must be released to

untrusted parties. To address this problem, people have proposed the notion of local differential privacy.

Definition 2.2.1 Let ε be a positive real number and A be a randomized algorithm that takes a user’s private

data as input. The algorithm A is said to provide ε-local differential privacy if, for all pairs of user’s

possible private data x and x′ and all subsets S of the range of A we have,

P
(
A(x) ∈ S

)
≤ eε · P

(
A(x′) ∈ S

)
(2.10)

where the probability is taken over the randomness used by the algorithm.

The main difference between this definition and the standard definition of Differential Privacy is that in

differential privacy the probabilities are of the outputs of an algorithm that takes all users’ data, while an

ε-local differential privacy algorithm takes as input a single user’s data.

This approach is much convenient for practical purposes, in case a data set comes from different parties,

for example, smart phone devices, the randomization can be done locally.

The main disadvantage of this method is the fact that the randomization is strictly related to the

algorithm we want to compute. In addition, the privacy guarantees are stated for the final outcome and

not for the user’s data itself. In fact, most of the local differential privacy methods are based on adding a

particular type of noise to the user’s data. Thus, this randomized observation may give personal information.

Part II

An Information Theoretical Approach to

Limit Leakage in Comparisons

17

Chapter 3

Privacy Leakage Measurements

In this chapter, we will discuss different ways to quantify the privacy leakage after processing data. For this,

we will use information theory tools, which will allow us to formalize our problem and analyze the privacy

requirements regardless of the computational capacities that an adversary may have. Indeed, information

theory helps to understand fundamental limits of a hiding mechanism, guiding the development of techniques

to address new challenges related to privacy concerns in cloud computing settings.

3.1 Preliminaries

In general, we will understand that a privacy protection mechanism takes a piece of data X, and transforms

it into a new random variable Y . The variable X can refer to a data instance or a complete set of data.

Thus, we are interested in analyzing the statistical relationships between X and Y , in particular we are

interested in studying the information that we can know about X by observing Y . This motivates the

following definition.

Definition 3.1.1 Let X and Y be two random variables. The Information Density at the point (x, y) is

given by

i(x ; y) = log P(X = x|Y = y)
P(X = x) (3.1)

Thus, the information density in the point (x, y) compares the prior probability of obtaining x as an

instance of X, and the probability of obtaining x for X under the knowledge that Y = y. In other words,

it is a direct comparison between a prior and a posterior. If this number is very close to 0, it means that

the knowledge of Y = y contributes little information about whether X = x. On the other hand, if the

information density is far from 0, then it means that the knowledge that Y = y reveals relevant information

about whether X = x or not.

18

CHAPTER 3. PRIVACY LEAKAGE MEASUREMENTS 19

Note that, by Bayes’s rule, we can obtain easily the symmetry property, that is i(x, y) = i(y, x). There-

fore, the same measure works to quantify how much information the knowledge of X = x reveals about

whether Y = y or not.

In order to obtain a global measure about the leakage that Y produces on X one can try to combine the

information density at different values of (x, y). Within the different ways to do it, the simplest is to take

the average weighted by the probability of obtaining (x, y). As a result, we get a measure that is commonly

used in Information Theory.

Definition 3.1.2 The Mutual Information [56] between two random variables X and Y is

I(X ; Y) =
∑
x,y

P(X = x , Y = y) log P(X = x |Y = y)
P(X = x) (3.2)

=
∑
x,y

P(X = x , Y = y) i(x, y) (3.3)

The mutual information is just the average of the Information Density through all possible values of X

and Y . Some of the well known properties of the mutual information are the following,

1. Non-negativity. For any pair of discrete random variables X and Y , we always have

I(X ; Y) ≥ 0 (3.4)

2. Symmetry. The mutual information between X and Y is equal to the mutual information between Y

and X.

I(X ; Y) = I(Y ; X) (3.5)

3. Relation to the entropy. The mutual information between two random variables can be written as a

difference between two entropies; the entropy of X and the conditional entropy of X given Y . In other

words, the mutual information can be seen as a measure of reduction of entropy of one random variable

under the knowledge of the other one.

I(X ; Y) = H(X)−H(X|Y) (3.6)

4. Measure of independence. X and Y are independent if and only if I(X ; Y) = 0. Thus, if the mutual

information is zero, any knowledge about one random variable is irrelevant to knowledge about the

other random variable.

CHAPTER 3. PRIVACY LEAKAGE MEASUREMENTS 20

Figure 3.1: Common setting in encryption schemes. Two parties share a key that they use to communicate
securely.

3.2 Information Secrecy

The mutual information has been used to analyze different problems both in signal processing and commu-

nication theory. In this section, we will see its connection to preserving secrecy in cryptographic settings.

Here, we assume the well established approach, where there are two parties, Alice and Bob, who want to

communicate each other over a untrusted channel. We assume that Alice has a message X to be shared

with Bob. In order to prevent that an eavesdropper may observe the message, Alice decides to encrypt her

message. To do so, Alice and Bob have already shared a random secret key R, so Alice uses it, combined

with X, to produce the message Y . To ensure the secrecy of the message, an eavesdropper should not gain

any information about X from observing Y without the knowledge of R. Hence, a cryptosystem can be

described by the triplet (X,R, Y), where the random variable X represents the messages that Alice can send

(assuming that a message comes from a particular distribution), R is the random variable that describes the

key generation, and Y the possible encrypted messages. Figure 3.1 illustrates this setting.

The security of this setting can be formalized in information theoretical terms, motivating the following

definition.

Definition 3.2.1 A cryptosytem (X,R, Y) is an Error-free perfect secrecy [57] system if

I(X ; Y) = 0 (3.7)

H(X |R, Y) = 0 (3.8)

I(X ; R) = 0 (3.9)

The first equation of this definition states that X and Y must not be related, ensuring perfect secrecy.

The second equation says that, under the knowledge of R and Y , there is no entropy corresponding to X,

which is a condition for decryption. The last equation states that the message X and the secret key R are

not related, which is just a guarantee for practical purposes.

CHAPTER 3. PRIVACY LEAKAGE MEASUREMENTS 21

Hence, in a system with perfect secrecy, an adversary who does not have the key cannot find any statistical

relationship between a plaintext X and its ciphertext Y . Nevertheless, if the adversary has the cipher text

and the key, there is no uncertainty about the plaintext.

However, in order to achieve perfect secrecy, it is possible to prove [109] that the support of the random

variable X must contain fewer elements than the support of R. In other words, the key space must be larger

than the plaintext space. This, of course, has important consequences for practical purposes, since the

possible messages that Alice can send depends on how large the key space is. This fact has been extensively

studied both in Information Theory and Cryptography. To guarantee a level of security in more practical

conditions, different relaxations to perfect privacy have been proposed.

Definition 3.2.2 A cryptosystem (X,R, Y) satisfies Strong Secrecy [58] [59] with leakage ξ if

I(X ; Y) ≤ ξ (3.10)

Of course, it is desirable that the value of ξ is as small as possible to obtain a high level of security. Note

that due to the constrains that appear in cryptosystems with perfect secrecy, we can claim that most of the

current encryption schemes satisfy strong secrecy with some value of ξ. We can also say that strong secrecy

is a necessary condition to obtain a secure cryptosystem.

The idea of controlling the mutual information between X and Y has been also considered for designing

privacy mechanisms. One example is known as the rate-distortion approach, where attempts to constrain

or optmize a utility function such as an empirical loss R̂X(Y) = 1
n

∑n
i=1 lossXi(Y). The goal is to minimize

the mutual information between Y and X while ensuring some amount of utility, i.e.

min
P(Y |X)

I(X ; Y) s.t. E
[
R̂X(Y)

]
≤ γ (3.11)

To find the rate-distortion function P(· |X), the Blahut-Arimoto algorithm [60] [61] is used which starting

from some initial P(Y) iteratively updates

P(Y |X) ∝ P(Y)e−βR̂X(Y) (3.12)

3.3 Comparison of Transformed Messages

One of the aspects that is not addressed in the traditional framework is what happens when we have multiple

encrypted messages. An adversary may not be interested in learning the relation between the plaintext and

the ciphertext. It may just want to find statistical dependencies between different ciphertexts, because the

relationship between ciphertexts may tell them something about the relation between the corresponding

plaintext.

CHAPTER 3. PRIVACY LEAKAGE MEASUREMENTS 22

To limit the adversary’s learning capabilities, we should control the leakage between comparisons, that

is, for any i, j, i 6= j, we would like to make I(Yi ; Yj) as small as possible.

One important observation is that this is not a necessary condition for the other properties. Indeed, even

under a strong property as Perfect Secrecy we may not have a guarantee to protect data under relationship

learning. Just to illustrate this, we can take the example of One-time Pad with reused key.

Example 3.3.1 Let X1 and X2 be elements in {0, 1}. We can select as secret key an element R ∈ {0, 1}

uniformly random. With this, we can encrypt these values as Y1 = X1 ⊕R and Y2 = X2 ⊕R. In this case,

we have Perfect Secrecy in terms of (Xi, Yi); in fact, I(Xi ; Yi) = 0. However, since Y1 ⊕ Y2 = X1 ⊕X2, we

can conclude that, if X1⊕X2 = 1, then I(Y1 ; Y2) = 1. In the same way, if X1⊕X2 = 0, then I(Y1 ; Y2) = 1.

Our goal is to allow learning relationships, but only if the plaintext satisfies some specific conditions. In

particular, the data owner wants to use the cloud to perform some particular computation, but she or he is

not interested in recovering the original data once it is uploaded to the cloud. We also assume that she or

he is willing to leak some information in exchange for making computation simpler.

Thus, we have two research questions to explore:

1. How to control the information leakage?

2. What kind of computations can be done?

We need a flexible framework that allows us to control the trade-off between privacy and utility. In the

next chapter we try to address these questions.

Chapter 4

Limited Leakage Transformations

In this chapter, we will introduce the concept around which our work revolves; Limited Leakage Transfor-

mations. The objective in our case is to transform data points so that when comparing transformed values,

they can reveal information if and only if the original points are close enough; if the data points are far

enough, negligible information is leaked. To do this, we will give a general definition of what we understand

by a Limited Leakage Transformation, and then analyze particular constructions of these kinds of functions,

analyzing their practical implications.

To facilitate the reading, it was decided to exclude from this chapter the proofs of all the theorems and

propositions, and to present them in the appendix of this work.

4.1 General Assumptions

Throughout this chapter, we will assume that there is an individual, who we will refer to as Data owner,

that has a finite collection of data points. We assume these are elements in a metric spaceM, provided with

a metric d, which satisfies the standard properties. The data owner wants to perform some computation on

its data using the cloud.

We will also assume there is an adversary who can observe the data located in cloud but he or she

cannot make any modification to it; thus, we will not consider that the integrity of the data is an issue. The

adversary’s objective is essentially trying to get as much information as possible observing the data located

in the cloud.

Since the data owner can consider that its data is sensitive, he or she decides to transform it in order

to limit the leakage of information, but in some way, to continue allowing some comparison between her or

his data instances. Since we are working with the metric space structure, it is natural to think that the

type of calculations that the data owner wishes to make depends on the value of the metric between two

23

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 24

points. Indeed, as we mentioned before, there are many algorithms of machine learning that depend on some

measure of similarity between data instances, and ultimately, some measure of distance between different

examples. Most of these algorithms make extensive use of distance whenever it is small enough, making

cases where the distance is large, that is, when the similarity is small, have an insignificant effect, or even

cases that the data owner wants to avoid.

In this way, the information useful for a distance-based machine learning algorithm is associated to those

comparisons where the distance is small. This does not mean that, in general, the information revealed

between data instances whose distance is large is not relevant for other tasks, but for purposes of the

algorithm that the data owner wants to compute this information that is not useful, so it is desirable to

hide it from a potential adversary. In other words, the data owner is willing to reveal to the cloud, or to a

potential adversary, the information that is strictly necessary for the algorithm that he wishes to calculate.

Thus, if the data owner wants to use the cloud to train an algorithm that depends on the distance between

points, but only if it is small, then it can transform its data points in order to control the information leakage

that is not associated with this condition.

Next, we will try to formalize these ideas, delivering a precise definition of transformations that allow to

control the information leakage by comparison, and to establish different mathematical statements.

4.2 Controlling information leakage in data comparison

As mentioned earlier, we consider we are working with points in a metric space M, and we are measuring

the closeness between points with a metric d, which satisfies the standard properties of a metric, which are:

1. d(x0 , x1) = 0 if and only if x0 = x1

2. For every x0 , x1 ∈M we have that d(x0 , x1) = d(x1 , x0)

3. For every x0 , x1 , x2 ∈M, we have that d(x0 , x1) ≤ d(x0 , x2) + d(x2 , x1)

It is worth saying that beyond the assumption of metric space, we are not considering any other restriction

on the setM, in particular, this could be an infinite set like RN or the set of finite binary sequences, or a

finite set such as {0, 1}N , to give some examples.

To prevent an adversary gaining information about our points in this space, we are going to transform the

points to a space E . In principle, we will not impose any metric structure on E , but in the following chapters

we will see how to take advantage of this to do certain operations in this space that reveal information about

the corresponding points in the original spaceM. For now, the only relevant assumption about E is that it

is a finite set.

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 25

Figure 4.1: We assume that a privacy mechanism transform data instances x using a source of randomness
R into an object QR(x)

In principle we would like to be able to design this transformation and make its design public. Since we

can not control the randomness of the elements in M, and as we said, we are assuming that they do not

have any random components, we must introduce some source of randomness in order to avoid dictionary

attacks by the adversary. Thus, similar to what is an encryption scheme, we will generate a secret key R,

which for purposes of this model is a random variable that does not depend on any point ofM. Then, using

this secret key R, we can compose a transformation QR that allows us to convert points inM into points in

E . Therefore, for any x ∈M, R composes the random variable QR(x) with support in E ; all the randomness

of QR(x) comes from R and x is considered as a fixed parameter.

This idea seems to be very similar to a standard encryption scheme, however, we have two key differences.

First, since we want to enable operations in the cloud, we must allow some leakage that is associated with

the proximity of the points to be hidden. This cannot be achieved with classic encryption models. Indeed,

although the security of the models can be controlled, the potential leakage is uniform for all the points,

and consequently, all the possible relationships that can be established. In addition, by design, standard

encryption models do not allow inference of relationships with encrypted data. While we could do that using

Homomorphic Encryption, the computational cost increases by several orders of magnitude.

The second important difference is the fact that in this setting we are not interested in recovering the

original point after transforming it. Our only interest is to be able to perform some operations in the cloud.

Part of this work is to show that we can make estimates of the closeness between points without necessarily

preserving all information about them. What remains to be determined is what type of properties the

random transformation QR must have in order to satisfy the requirements described above.

The first property that must be satisfied is the fact that the value of the random variable QR(x) does

not reveal any information about x. This is formalized in the following definition.

Definition 4.2.1 We say that the random transformation QR satisfies indistinguishability if for any x0,

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 26

and x1 ∈M, the corresponding random variables QR(x0) and QR(x1) have the same probability distribution.

In other words, the distribution of QR(x) over the possible values in E does not depend on x, and

therefore, only observing realizations of QR(x) we can not infer anything about x. It should be noted that

this does not mean that when observing realizations on other points you can not gain information about

x. Indeed. if we go back to the example of One-time pad, we can notice that if we consider M = {0, 1},

and R ∼ Bernoulli(0.5), then One-time pad can be described as QR(x) = x⊕R. In this case, QR satisfies

indistinguishability, but we already know that by applying the same transformation on another point inM

an adversary can infer information about x.

Thus, the indistinguishability property seems to be a necessary condition, but it is far from being suf-

ficient for the requirements we seek. In order to be able to limit the information leakage between instance

comparisons, it is useful to consider the leakage measures discussed in the previous chapter, to limit the

possible inferences that an adversary can make. In particular, we will use the mutual information between

transformed points, making it negligible when the distance between the original points is large. Formally,

we introduce the following definition.

Definition 4.2.2 Consider that the random variable R composes a transformation QR : M→ E. We say

that QR satisfies the Limited Leakage Property (LLP) with respect the metric d, if there exist positive

constants C and γ such that for every x0, x1 ∈M we obtain,

I
(
QR(x0) ; QR(x1)

)
≤ C exp

(
− γ d(x0,x1)

)
(4.1)

Therefore, LLP states that if two points are far enough, then their corresponding transformation should

look independent, this means, the adversary can not learn any useful statistical relationship analysing these

transformed points.

The values of the parameters C and γ determine the information leakage that occurs when comparing

transformed points. The parameter C is associated with the entropy of a transformed point. In effect, if

x0 = x1, we have that if QR satisfies LLP, then

I
(
QR(x0) ; QR(x1)

)
= H

(
QR(x0)

)
(4.2)

≤ C (4.3)

Consequently, if QR satisfies LLP, then the parameter C must be at least an upper bound for the entropy

of the transformation H(QR(x0)) at each point. Note that, if QR also satisfies the indistinguishability

property, then the value of entropy H(QR(x0)) does not depend on x0.

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 27

On the other hand, the parameter γ refers to the leakage control. If γ grows, the speed with which the

information leakage decays as function of the distance between points will be higher. It is important to note

that in either case, LLP considers that the relationship between distance and information leakage has an

exponential decay. This ensures that for sufficiently large distances, the information leakage is negligible,

and therefore, for practical purposes, an adversary can not distinguish between comparing two transformed

points, or two independent realizations of the same random variable.

However, the pairwise comparison between transformed points seems to not be a strong enough guarantee.

In fact, limiting leakage from pairwise comparison is not enough to bound the overall information leakage.

The following example illustrates this fact.

Example 4.2.1 Consider Y1 and Y2 two independent random variables, both distributed as a Bernoulli(0.5),

We can define the random variable Y3 as Y1 ⊕ Y2, where ⊕ stands for the XOR operation. Then the joint

probability function is given as the following table shows,

Y1 Y2 Y3 = Y1 ⊕ Y2 P(Y1, Y2, Y3)
0 0 0 0.25
0 1 1 0.25
1 0 1 0.25
1 1 0 0.25

Table 4.1: Joint probability function that illustrates that pairwise independence does not imply joint inde-
pendence.

It is straightforward to check out that in this case, we get I(Y1 ; Y2) = I(Y1 ; Y3) = I(Y2 ; Y3) = 0, but

I(Y1, Y2 ; Y3) = 1. Indeed, knowing the values of Y1 and Y2 we can determine the value of Y3 with no error.

In general, the pairwise mutual information just gives us a lower bound of a more generic information

leakage measurement, as is shown bellow,

I
(
Q(x0) ; Q(x1), Q(x2), ..., Q(xn)

)
≥ max

i
I
(
Q(x0) ; Q(xi)

)
(4.4)

This inequality comes directly from the Information Processing Inequality considering the projection map-

ping. Hence, the information leakage from pairwise comparison is just a lower bound of the information

leakage produced by more complex comparisons.

Note that this consideration is relevant in practical scenarios. Even though an adversary cannot learn

relationships between a transformed point Q(x0) and Q(xi) because I(Q(x0), Q(xi)) is limited, eventually,

the adversary can learn other relationships if I (Q(x0) ; Q(x1), Q(x2), ..., Q(xn)) is large.

That said, it is worth asking whether there are conditions in which the Limited Leakage Property

can guarantee control of information leakage over more complex comparisons. For this, it is necessary to

introduce the following definition.

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 28

Definition 4.2.3 We say that a transformation QR is ε−persistent if for any point x ∈M

P
(
QR(x) = QR(z) , ∀z ∈ B(x, ε)

)
≥ 1

2 (4.5)

where B(x, ε) is the ball of radius ε with center x using the metric d. Formally,

B(x, ε) = {z ∈M : d(x , z) ≤ ε} (4.6)

This definition captures a requirement that seems reasonable for purposes of making comparisons when

two points are close enough. Thus, a random transformation QR is ε-persistent if for any point x in M,

the probability that all points that are distant less than ε have the same transformation value QR(x) is

greater than 1/2. Since this probability, in principle, can vary depending on the value of x, it is convenient

to introduce the following quantity,

Definition 4.2.4 Let ε be a positive number and QR a random transformation, we can define the degree

of ε-persistence as,

ρ(ε , QR) = inf
x∈M

P
(
QR(x) = QR(z) , ∀z ∈ B(x, ε)

)
(4.7)

From this definition, following statements are easily derived.

Proposition 4.2.1 If R is a random variable that composes the transformation QR, then the following

statements are true,

1. QR is ε-persistent if and only if ρ(ε,QR) ≥ 1
2

2. ρ(0, QR) = 1

The notion of persistence allows us to understand the information leakage when the random transforma-

tion is applied on collections of points that are nearby. Thus, we can understand how to quantify the mutual

information between the transformations of two groups whose points are in a conglomerate, as is illustrated

in the figure 4.2.

The following theorem connects the Limited Leakage Property with the concept of ε-persistence, allowing

to find an upper bound for the information leakage produced by complex comparisons of transformed data

points.

Theorem 4.2.1 Consider that {x0,x1, ...,xn} ⊆ B(x0, ε1) and {z0, z1, ..., zm} ⊆ B(z0, ε2). If QR is a ran-

dom transformation that satisfies LLP with constants C and γ, and QR is ε−persistent with ε > max{ε1, ε2},

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 29

Figure 4.2: It is interesting to analyze the information leakage produced by comparing the transformed
points from one group of points against the transformed points from other group, and to study the effect of
the geometry in the leakage. In particular, we would like the study the effect on the leakage depending on
how spread the points are.

then

I
(
QR(x0) , QR(x1) , ..., QR(xn) ; QR(z0) , QR(z1) , ..., QR(zm)

)
≤ C exp

(
− γ d(x0 , z0)

)
+H(p1) +H(p2)

+(1− p1) log(|E|n − 1)

+(1− p2) log(|E|m − 1) (4.8)

where pi = ρ(εi, QR), and H(p) is the entropy of a random variable distributed as a Bernoulli(p), this is

H(p) = −p log p− (1− p) log(1− p).

This result can be considered as a kind of generalization to LLP. Indeed, if we consider that the degrees

of persistence are zero, then the upper bound of the theorem will be just the term C exp
(
− γ d(x0 , z0)

)
,

and this condition is achievable if ε1 = ε2 = 0, getting the Limited Leakage Property.

A disadvantage of this bound is the fact that it depends linearly on the number of points on the ball

around the points x0 or z0. Thus, given that this is only an upper bound for the information leakage, it is

not clear from this result if it actually grows in the same way with the number of points observed. However,

this result allows us to quantify the information leakage through a non trivial upper bound for it.

4.3 Designing a Limited Leakage Transformation

So far we have only defined what we understand by transformations that satisfy the Limited Leakage

property and a theorem that analyzes the leakage of more complex comparisons under the assumption of ε

-persistence. However, we have not shown any example of a transformation that achieves these conditions.

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 30

In this section we will introduce a concrete example that complies with the definitions and properties

that we have established. We will consider in this case thatM corresponds to the N -dimensional Euclidean

space with the Euclidean distance d(x, z) = ‖x− z‖ =
√∑N

i=1(xi − zi)2. In addition, we will consider that

E is equal to the finite set ZMk , where Zk = {0, 1, ..., k − 1}. The description of the random transformation

is established by the following definition,

Definition 4.3.1 Gaussian Modular Hashing. Let k be an integer number greater than 1. Let A be an

M × N matrix such that its components are independent and randomly generated according to a Gaussian

distribution N (0, σ2), and U be a vector with M random independent components distributed uniformly

between 0 and k. We define the transformation Qk,A,U : RN → ZMk as

Qk,A,U (x) = bAx + Uc (mod k) (4.9)

where (mod k) and b·c are component-wise, and b·c stands for the floor function.

Thus, in this case, the secret key R corresponds to (k,A, U). Note that k is not a random variable, but is

a constant integer number. However, since k defines the distribution of U , just for completeness, we decided

to include it in R.

To illustrate the effect of a Gaussian Modular Hash over the points of the Euclidean space, figure 4.3

shows the case where k = 3, transforming points belonging to R2. We can observe how this transformation

is defined as a partition on the Euclidean space given by different stripes in different orientations and width

produced in a random way.

Figure 4.3: Example of realization of a Gaussian Modular Hash function from R2 to Z4
3. Each plot illustrates

the value a one component of Q3,A,U (x) for different values of x.

This construction seems to be similar to that used in the Learning with Errors (LWE) problem [76]

[77]. Indeed, the fact that both technique use an affine linear transformation over the data to be protected.

However, there are several difference that make significant distinctions on the kind of properties we can

obtain. The first difference is related to the input data; in our construction we are dealing with real value

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 31

vectors, but in the LWE problem, the input data is considered a vector in Zq, with q prime. Even though

we could consider in practical scenarios a correspondence between real value vector and integer vector, for

analysis of our scheme is useful to keep our assumption, especially because we are interested on study the

effect on distance between points.

The second difference is in the distribution used to generate the parameters of the transformation. In

both cases the operation takes the form Ax+U . As we already said, in our construction the coefficients of A

are generated using a zero-mean Gaussian distribution. However, the in the LWE problem the distribution

for the coefficients of the matrix A is a uniform distribution over Zq. Regarding the distribution of U , in

LWE a custom distribution χ is used, unlike our method, that uses a uniform distribution.

Finally, other major distinction is on the kind of operations we use. In LWE both the additions and

multiplication are done in modulo q. In our case, additions and multiplications are done as floating number,

and the modulo appears just after converting the real value vector into an integer value vector through the

floor function. In other world, we use the modulo operation primarily as a quantization function. Overall,

with these difference stated, we should expect different properties.

In fact, We can show that a Gaussian Modular Hash transformation satisfies the properties we described

in the previous section. First, we can analyze the distribution obtained after applying the transformation

over a single point. The next result shows that indistinguishability is achievable.

Theorem 4.3.1 Indistinguishability. If (k,A, U) satisfies the conditions to compose a Gaussian Modular

Hash function Qk,A,U , then, for all x ∈ RN and for all i ∈ ZMk we have

P
(
Qk,A,U (x)

)
= 1

kM
(4.10)

Hence, the distribution of Qk,A,U (x) does not depend on the value of x, so observing realizations from

this random variable, we cannot gain any information about the original vector x.

The second important result about Gaussian Modular Hashing is the fact that satisfies LLP using the

Euclidean distance as a metric, as the following theorem states,

Theorem 4.3.2 Limited Leakage Property. If (k,A, U) satisfies the conditions to compose a Gaussian

Modular Hash function Qk,A,U , then, there exist positive constants C and γ such that for any pair of points

x1, x2 ∈ RN the mutual information between Qk,A,U (x1) and Qk,A,U (x2) is bounded as follows,

I
(
Qk,A,U (x1) ; Qk,A,U (x2)

)
≤ C exp (−γσ‖x1 − x2‖) (4.11)

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 32

Figure 4.4: Probability that all elements in an ε-ball have the same hash value, as a function of ε for different
values of σ, considering N = 100 and M = 1.

Here, we can see that the Gaussian Modular Hash satisfies LLP, but one of its main characteristics is the

fact that the speed of decay depends on σ, which is the standard deviation of the Gaussian random variable

used to generate A. Thus, since the parameter σ can be selected independently from the data points, this

parameter helps to control the information leakage by design, that is, if we want that the mutual information

between hashed data is smaller than κ when the distance between the points is larger than δ, then we can

find a good value of σ to achieve this condition.

Finally, it remains to determine under what values of ε this transformation is ε-persistent. The next

result clarifies this,

Theorem 4.3.3 If (k,A, U) satisfies the conditions to compose a Gaussian Modular Hash function Qk,A,U ,

where σ2 is the variance of aij, then, the degree of persistence is given by

ρ(ε,Qk,A,U) =
(
γ
(
N
2 ,

1
4ε2σ2

)
Γ
(
N
2
) − 2

√
2σε

γ
(
N+1

2 , 1
4ε2σ2

)
Γ
(
N
2
))M

(4.12)

where γ(s, x) =
∫ x

0 ts−1e−tdt is the lower incomplete gamma function, and Γ(z) =
∫∞

0 xz−1e−xdx is the well

known gamma function.

With this result, we can compute and plot the value of the persistence as a function of ε for different

values of σ, which according to the previous theorem, controls the information leakage. Figure 4.4 shows

this for M = 1.

We can see that as the value of σ increases, the range of ε values for which ρ(ε,QR) is larger than 1
2

decreases. We also can observe that this probability decreases almost linearly until a threshold point. With

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 33

this, we can conclude that there are values of σ that allows us to reach ε-persistence, and eventually to

control the information leakage under complex comparisons.

4.3.1 The case k = 2

In addition to the general results, we can further exploit the structure of the Gaussian Modular Hash. The

following properties appear when we consider k = 2, that is, the result of the transformation are binary

vectors.

The following result shows that information leakage can be controlled when comparing two transformed

data against one.

Theorem 4.3.4 If we consider the Q2,A,U is Gaussian Modular Hash, then the mutual information between

Q2,A,U (x0) and (Q2,A,U (x1), Q2,A,U (x2)) goes exponentially fast to 0 when the minimum distance from x0

to x1 and x2 goes to infinity.

Figure 4.5: Geometric condition to control information leakage. When we compare two transformed points
against a third transformed point, the information leakage is negligible if this third point is far enough.

Thus, this result shows, unlike the general result established in the previous section, that the information

leakage goes to zero exponentially fast, regardless having an additional point.

The last observation is related to the generalization of this result. The following theorem states a different

bound for the mutual information between one transformed point and a set of transformed points that belong

to an ε ball in the original space, as figure 4.6 illustrates.

Theorem 4.3.5 Let x0 be a point in RN . Consider the set of points {x1, x2, ...,xn} ⊆ B(x1, ε). If we

consider that QR is a Gaussian Modular Hash with R = (2, A, U), then

I
(
QR(x0) ; QR(x1), ..., QR(xn)

)
≤ I(QR(x0) ; QR(x1))

+1− ρ(ε,QR) + P
(
QR(x1) = QR(x∗)

)
log 1

ρ(ε,QR)

where x∗ is the farthest point to x1 in the set {x1, x2, ...,xn}.

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 34

Figure 4.6: Geometric condition to control information leakage in complex comparisons.

Even though this result does not show that the information leakage goes to zero when the distance

between x0 and x1 grows, it is able to give a non-trivial bound to the mutual information. The most notable

consequence of this result is the dependence on epsilon, which, as seen, if it tends to zero, then similar results

are obtained to satisfy LLP. Furthermore, the fact that the dimension does not depend on the number of

points in the ball B(x1, ε) makes the bound very useful for situations where we do not control the number

of points to be transformed.

4.3.2 Leaking conditions

The results presented in the previous section give us guarantees to control the information leakage produced

by the comparison between transformed version of a single point x0 and the transformation of the points

x1, ...,xn. In a practical scenario, x0 may represent the instance a private data point while the set {x1, ...,xn}

represent points generated by an adversary to gain information about x0. We already know that if the set

is far enough from the point x0 and its diameter is also small, then the information leakage is small.

A good question is to know what happens with the leakage information in case these conditions are

not met. To address this point, we can think on the persistence property. In fact, by construction, our

transformation enables to identify when two points are close just by analyzing a collision, thus, if the

distance between two points is small, then the probability of obtaining the same value after applying our

transformation is high (larger that 0.5). Hence, if at least one point of the set {x1, ...,xn} is close to x0, then

you could identify that just for simple collision analysis. In information theoretical terms, we can simply use

the inequality shown in 4.4 and state that information leakage is not negligible. From an adversarial point

of view, this is relevant because the comparison allows to estimate information about the private data x0.

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 35

The key issue is the possibility to infer the actual distance between data points just by comparing the

transforming points. In fact, in [105] a triangulation attack is discussed to evaluate the security of hashing

methods to protect data. Here it is shown that if an adversary obtain the distance between the private

point x0 and other three random points, it is possible to obtain a good estimation of the private data.

In this case, unlike our method, it is possible to estimate any distance value through hashes; in our case

that property is limited by the value of the distances, thus, if the distance between the points is large, no

useful comparison can be made, because the comparison should be similar to compare two indistinguishable

independent random variables. Overall, under the context of limited leakage transformations, an adversary

can gain information about data points as long as the adversarial points are close enough to the privata data

point.

4.4 Other Metrics

We have analyzed in detail a concrete example of a random transformation that satisfies our privacy require-

ments. It remains to be asked if it is possible to extend these concepts to other metrics. Below are some

guidelines on how to build limited leakage transformations for different metrics.

4.4.1 Mahalanobis Distance

Given a positive definitive matrix S, its corresponding Mahalanobis distance is defined as a metric in RN ,

as follows

dS(x1 , x2) =
√

(x1 − x2)>S−1(x1 − x2) (4.13)

This distance is extensively used in Statistics and Machine Learning, since it is related to the likelihood

obtained under a multivariate Gaussian model. It turns out that it is possible to adapt the Gaussian Modular

Hash function to transfer the properties obtained for the Euclidean distance to the Mahalanobis distance.

Definition 4.4.1 Γ-Gaussian Modular Hash. Let k be an integer number greater than 1. Let A be a

M×N matrix such that each of its rows are independent and randomly generated according to a multivariate

Gaussian distribution N (0, σ2Γ ·Γt), and U be a vector with M random independent components distributed

uniformly between 0 and k. We define the transformation Qk,A,U : RN → ZMk as

Qk,A,U (x) = bAx + Uc (mod k) (4.14)

where (mod k) and b·c are component-wise, and b·c stands for the floor function.

With this hash function, we can obtain the indistinguishability result along with the following,

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 36

Proposition 4.4.1 If Qk,A,U is a Γ−Gaussian Modular Hash, then then, there exist positive constants

C and γ such that for any pair of points x1, x2 ∈ RN the mutual information between Qk,A,U (x1) and

Qk,A,U (x2) is bounded as follows,

I
(
Qk,A,U (x1) ; Qk,A,U (x2)

)
≤ C exp (−γσ dS(x1,x2)) (4.15)

where S−1 = ΓΓt

4.4.2 Manhattan Distance

A more interesting case is the one corresponding to the distance `1, or also known as Manhattan Distance,

where the distance between two vectors x and z is given by ‖x − z‖1 =
∑N
i=1 |xi − zi|. In order to build

a transformation that satisfies LLP with respect the Manhattan distance, it is necessary to use a specific

distribution for the key generation.

Definition 4.4.2 Let X be a random variable and σ > 0. X is distributed as Cauchy(σ) if its density

function is given by,

fX(x ; σ) = 1
π
· σ

x2 + σ2 (4.16)

Simulating this type of distribution is not difficult. For example, we can use the following well known

property to obtain samples from a Cauchy distribution.

Proposition 4.4.2 If X ∼ Unif(0, 1) and any σ > 0, then we obtain σ · tan
(
π(X − 1

2)
)
∼ Cauchy(σ).

The Cauchy distribution allows to define the random transformation described below,

Definition 4.4.3 σ-Cauchy Modular Hashing. Let k be an integer number greater than 1. Let A be

an M ×N matrix such that its components are independent and randomly generated according to a Cauchy

distribution Cauchy(σ), and U be a vector with M random independent components distributed uniformly

between 0 and k. We define the transformation Qk,A,U : RN → ZMk as

Qk,A,U (x) = bAx + Uc (mod k) (4.17)

where (mod k) and b·c are component-wise, and b·c stands for the floor function.

With this change on the distribution in the key generation, we can switch the metric by the Manhattan

distance in the formulation of the limited leakage property, as the following proposition states,

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 37

Proposition 4.4.3 If Qk,A,U is a σ-Cauchy Modular Hash, then then, there exist positive constants C and

γ such that for any pair of points x1, x2 ∈ RN the mutual information between Qk,A,U (x1) and Qk,A,U (x2)

is bounded as follows,

I
(
Qk,A,U (x1) ; Qk,A,U (x2)

)
≤ C exp (−γσ ‖x1 − x2‖1) (4.18)

4.4.3 Cosine Distance

The cosine similarity is a measure extensively used in Machine Learning. This is a similarity measure

between two vectors (non-null) given by 〈x,z〉
‖x‖·‖z‖ . Thus, two vectors are considered similar if this number is

close to 1. In order to get a kind of metric that captures in a similar way this notion of closeness, cosine

distance is defined as

dcos(x, z) = 2− 2 〈x, z〉
‖x‖ · ‖z‖ (4.19)

Note that this is not a metric strictly speaking. In fact, it is easy to find different values of x and z such

that dcos(x, z) = 0. However, its use is very common in different tasks.

In order to adapt the proposed hash to the cosine distance, it is enough to notice that this distance

corresponds to the squared Euclidean distance with normalized vectors. Therefore, using a Gaussian Modular

Hash it is possible to prove the following,

Proposition 4.4.4 If Qk,A,U is a Gaussian Modular Hash, then then, there exist positive constants C and

γ such that for any pair of points x1, x2 ∈ RN the mutual information between Qk,A,U (x1) and Qk,A,U (x2)

is bounded as follows,

I

(
Qk,A,U

(
x1

‖x1‖

)
; Qk,A,U

(
x2

‖x2‖

))
≤ C exp (−γσ dcos(x1,x2)) (4.20)

Note, however, that for this case, the actual distance between the original vectors is bounded between 0

and 2, so the analysis of the information leakage is restricted to this range.

4.5 Comparison with other methods

From a practical perspective, we can compare the proposed approach with different privacy mechanisms.

First, we can make a comparison between Limited Leakage Transformations and well known cryptographic

tools. In particular we can compare our method with Standard Symmetric Encryption and Cryptographic

Hashing. There are three aspects we are interested to analyze: the need of secret keys, the capacity to recover

the original message, and the feasibility of performing computation on transformed data. For these three

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 38

Standard Encryption Cryptographic Hash LLP Transformation

Keys Secret Public Secret

Recovering Plaintext No error Infeasible Depends on the Struc-
ture of Plaintext in
case of knowing the key

Computation Infeasible Through Collision Next Part

Table 4.2: Comparison between standard cryptographic methods

methods, table 4.2 summarizes our observations. First of all, we can say that both in LLP transformations

and in Encryption we need to keep our keys secret, otherwise privacy can be compromised. On the other

hand, we know that using the secret key, the plaintext can be recovered with no error using the secret key

on the ciphertext obtained from Encryption. In the case of Cryptographic hash, we know that recovering

the original message from its hashed value is an unfeasible task. For the case of the transformations we have

discussed, we do not have a strong statement; indeed, it is a research topic.

With respect to the kind of computations we can perform after transforming data points, it is well known

that, using standard Encryption this task in unfeasible; no operation can be performed on encrypted data

using standard probabilistic schemes. In the case of a Cryptographic Hash, the only operation we can do

is identifying collisions, that is, we just can identify if two data points are the same or not (with high

probability). Finally, we can consider that thetransformation with ε-persistence and LLP are a relaxation

of the Cryptographic Hash, in terms of whether we can identify if two points are close enough or not. In the

next part of this work we will continue analyzing the effects of comparing transformed points that are close.

On the other hand, the idea of leaking relevant information to improve efficiency in a particular task is

not new. For example, in Order-preserving encryption (OPE) [106] [107] the objective is to encrypt data

such that the order between plaintexts is preserved. Thus, it is possible that a remote untrusted server

can index private encrypted data that it receives, using a data structure that permits efficiently answering

queries based on ranges; returning ciphertexts whose corresponding plaintexts belong to some range [a, b].

Despite the idea of leaking information is the same, the analysis of the privacy requirements is different

from our approach. The security of most of the OPE schemes are based on random injections on large sets,

being vulnerable to multiple attacks [108]. The main difference with our approach is the fact that we are

interested on just leaking local information (just when points are close enough), while in OPE any arbitrary

CHAPTER 4. LIMITED LEAKAGE TRANSFORMATIONS 39

order relation can be infer by comparing ciphertexts.

Finally, we can compare Differential Privacy with our method. In fact, even though both approaches

take a probabilistic formulation, they have significant differences. The main distinction is the fact that

differential privacy mechanisms are algorithm dependent, this means that the method can change if the

objective of the algorithm changes. Moreover, most of the differential privacy approaches consider that the

data is processed in a trusted infrastructure, where the randomness is added. In contrast, our method just

makes assumptions about the geometric relationship between data points, being agnostic about a potential

algorithm to be used. In addition, if the transformation satisfies the indistinguishability property, we know

that, observing one single transformed point, an adversary cannot infer any relevant information about the

original point.

The method presented can be comparable to the work shown in [15], where a binary quantization func-

tion is proposed to preserve privacy. Nevertheless, the proposed transformation does not satisfy the indis-

tinguishability property, and the analysis of the decay of the mutual information is done in a particular case.

In [105] a privacy mechanism over a type of hashes is proposed. However, to analyze the mutual information

between data points distributional assumptions must be made.

4.6 Contributions

We have proposed the concept of Limited Leakage Transformation as a privacy mechanism that allows to

transform data points such that it removes relationships between vectors that are far enough, but maintains

persistence if they are close.

We have shown a generic theoretical result about how the information leakage can be controlled under

determined geometric conditions on the data points. We also have presented particular examples of this

kind of transformation, providing a rigorous analysis about the information leakage at different levels of

comparisons.

In the next part of this work, we discuss how to take advantage on the information leakage obtained

when two points are close in order to perform some computation on transformed points, and analyze its

implication in machine learning systems.

Part III

Limited Computation. About the utility of

the information leakage.

40

Chapter 5

Limited Distance Estimation

In the previous chapter we showed a family of transformations that satisfy a privacy guarantee that re-

lates the distance between points to the relation we can learn comparing their corresponding transformed

values. We demonstrated that if the points are far enough, the mutual information between transformed

points is exponentially close to zero, making the comparison between them meaningless, because comparing

transformed points will be indistinguishable from comparing independent random variables.

Hence, the natural question is what should happen when the points are close. In fact, part of the

willingness to sacrifice privacy to enhance computation is to understanding properly the kind of operation

we can perform comparing transformed values and identify the information we are leaking.

In this chapter, we will focus on the Modular Hash function, as we proposed previously, and we will

analyse how to estimate the actual distance between data points using hashes. From the properties we have

from the previous chapter, we know that this estimation can be done only if the points are close enough.

We will call this kind of estimation Limited Distance Estimation. To do so, we analyse two metrics in the

hash domain ZMk : the Hamming distance and the Modular distance. We establish an analytical relationship

between these metrics with the corresponding metric in RN .

Later, in the following chapter, we will make the connection with some Machine Learning tasks, and in

particular how to run Machine Learning Algorithms over the hashed data.

5.1 General Observation

We want to estimate the distance between x and z using the values of QR(x) and QR(z). In particular, we

will study the expected value of f(QR(x), QR(z)), for some function f . If QR satisfies the indistinguishability

property along with LLP, and if the distance between x and z is large, then E
[
f(QR(x), QR(z))

]
≈ K, where

K is a constant value which does not depend on either of x or z. Indeed, under these conditions, we can not

41

CHAPTER 5. LIMITED DISTANCE ESTIMATION 42

Figure 5.1: We want to study the relationship between transformed points when the original vectors are
close enough.

distinguish whether we are comparing QR(x) with QR(z) or if they are two independent random variables

W1 and W2 with the same distribution of QR(x).

5.2 Hamming Distance between Hashes

The first approach for trying to recover the actual distance between points through the comparison of

hashes is analyzing the probability of getting a collision between them. It turns out that we can recover the

distance between the original points through hash collision as long as the distance between data points is

small enough. Since we are comparing hashes, which are elements in ZMk , we need to define a way to take

advantage of the collision at component-wise level.

Definition 5.2.1 Let a and b ∈ ZMk , we can define the Normalized Hamming Distance between these

two points as,

dH
(
a , b

)
= 1

M

M∑
i=1

1[ai 6= bi] (5.1)

where

1[a 6= b] =

 1 if a 6= b

0 otherwise
(5.2)

Hence, the Normalized Hamming Distance between two elements in ZMk is a number between 0 and 1,

and its formulation does not depend directly on k.

One important observation about the Gaussian Modular Hash function is the fact that its components

are statistically independent with the same distribution, therefore, it is enough to analyze the probability

CHAPTER 5. LIMITED DISTANCE ESTIMATION 43

of collision at component level. Moreover, under this observation it is easy to see that we can consider

the Normalized Hamming Distance simply as an average of independent and identically distributed random

variables.

The following theorem gives us a precise formulation for the probability of getting a collision of in any

component between hashes,

Theorem 5.2.1 If x1 and x2 ∈ RN and R = (k,A, U) is a random key to compose a σ-Gaussian Modular

Hash, then the probability of getting a collision in the j component is given by the following expression,

P
(
QR(x1)j = QR(x2)j

)
= 1

k
+ 2
k

∞∑
i=1

sinc2
(
i

k

)
exp

(
−2
(
π σ i ‖x1 − x2‖

k

)2
)

(5.3)

where sinc(x) = sin(πx)
πx .

Despite the complexity of the expression obtained in the previous theorem, from this result, we can see

that the probability of getting a collision depends just on the Euclidean distance between points x1 and x2.

To have a better understanding of this expression, we can bound it and study its asymptotic behavior,

Theorem 5.2.2 If x1 and x2 ∈ RN and R = (k,A, U) is a random key to compose a σ-Gaussian Modular

Hash, then

1
k
≤ P

(
QR(x1)j = QR(x2)j

)
≤ 1

k

(
1 + k2

3 exp
(
−2
(
πσ‖x1 − x2‖

k

)2
))

(5.4)

Therefore, if ‖x1 − x2‖ → ∞, then

P
(
QR(x1)j = QR(x2)j

)
→ 1

k
(5.5)

Thus, the probability of collision converges exponentially fast to the constant value 1
k , which corresponds

to the probability of getting a collision after drawing two independent and uniform distributed random

variables over Zk.

From theorem 5.2.1, and thanks to the linearity of the expectation, it is very straightforward to obtain

the following corollary,

Corollary 5.2.2.1 If R = (k,A, U) is a random key to compose a σ-Gaussian Modular Hash, then, for any

pair of points x1 and x2 ∈ RN the expected value of the Normalized Hamming Distance is given by

E
[
dH
(
QR(x1) , QR(x2)

)]
= 1− 1

k

(
1 + 2

∞∑
i=1

sinc2
(
i

k

)
exp

(
−2
(
π σ i ‖x1 − x2‖

k

)2
))

(5.6)

CHAPTER 5. LIMITED DISTANCE ESTIMATION 44

Figure 5.2 shows the shape of obtained from this expression for different values of k as function of the

Euclidean distance.

Euclidean Distance
0 2 4 6 8 10

d Q
(x

1,x
2)

0

0.2

0.4

0.6

0.8

1

mod 2
mod 5
mod 10
no mod

Figure 5.2: Expected value of Normalized Hamming Distance between Gaussian Modular Hashes as function
of the Euclidean distance using different values of k.

From here, we can see that when the Euclidean distance is small enough, there is one-to-one relationship

between the Euclidean distance and the expected value of the Hamming distance between hashes.

All these results are in expectation and eventually the actual value of the Hamming distance between

hashes may differ. However, thanks to the Law of Large Numbers, the Normalized Hamming Distance

between QR(x1) and QR(x1) converges to the expected value for large values of M, since this distance is an

average of independent and identically distributed random variables. We see in figure 5.3 that the empirical

estimate closely follows the plot for the theoretical expression.

Euclidean Distance
0 2 4 6 8 10

d Q
(x

1,x
2)

0

0.2

0.4

0.6

0.8

1

mod 2
mod 5
mod 10
no mod

Figure 5.3: Simulations of Normalized Hamming distance between Gaussian Modular Hashes as function of
the Euclidean distance between data points

A more formal guarantee is given by following result, where the probability of having a small error in

CHAPTER 5. LIMITED DISTANCE ESTIMATION 45

estimation depends on the value of M and the number of points to be transformed,

Proposition 5.2.1 If we have n points x1, ...,xn ∈ RN , and M ≥ 1
ε2 log

(
n
2η

)
, then

P
(
∀xi,xj ,

∣∣∣dH(QR(xi), QR(xj))− E [dH(QR(xi), QR(xj))]
∣∣∣ < ε

)
≥ 1− η (5.7)

This result allows to control the error in the estimation of the Euclidean distance based on this one-to-

one relationship depending on the number of components in the hash function. A larger M allows a better

estimation, but also a larger information leakage. Therefore, here we have a clear trade-off between privacy

and utility.

5.3 Modular Distance between Hashes

We also can use the topological structure in Zk, and work with the modular distance. The modular distance

dmod is a natural metric in Zk, and it is defined for any pair (a, b) ∈ Zk × Zk as

dmod(a, b) = min
(
|a− b| , k − |a− b|

)
(5.8)

This is equivalent to computing the shortest path between numbers assuming they are arranged as a

ring, as figure 5.4 shows.

Figure 5.4: Topology of Zk to define the Modular Distance between its elements.

Then, similarly to the Hamming distance case, we can extend this metric to ZMk using a normalized

version of it. The next definition clarifies this point,

CHAPTER 5. LIMITED DISTANCE ESTIMATION 46

Definition 5.3.1 Let a and b ∈ ZMk , we can define the Normalized Modular Distance between these

two points as,

dmod
(
a , b

)
= 1

M

M∑
i=1

dmod(ai, bi) (5.9)

Note that for the case k = 2 we obtain dH = dmod. Using this metric, we can find a similar relationship to

the previous case, stating a relation between the modular distance between hashes to the Euclidean distances

between the original data points, as the following theorem shows,

Theorem 5.3.1 If R = (k,A, U) is a random key to compose a σ-Gaussian Modular Hash, then, for any

pair of points x1 ,x2 ∈ RN , ∀k even, we have:

E [dmod (QR(x1) , QR(x2))] = k

4 −
2k
π2

∞∑
j=1

1
(2j − 1)2 exp

(
−2
(
π σ (2j − 1) ‖x1 − x2‖

k

)2
)

(5.10)

This expression seems to be complex and, even though there is a functional relation between ‖x1 − x2‖

and the expected value of the modular distance between the corresponding hashes, it is not clear how to

estimate the actual euclidean distance after applying this kind of technique.

The following result gives us an estimation of the error when we want to use directly the modular distance

as an estimation of the Euclidean distance:

Theorem 5.3.2 Setting σ =
√

π
2 , and given R = (k,A, U) the random key that composes a σ−Gaussian

Modular Hash, and defining the error

ε(‖x1 − x2‖ , k) :=
∣∣∣E[dmod (QR(x1) , QR(x2))

]
− ‖x1 − x2‖

∣∣∣ (5.11)

we have that

ε(‖x1 − x2‖ , k) ≤ F (‖x1 − x2‖, k) (5.12)

where

F (t, k) = t · exp
(
− k2

4πt2

)
(5.13)

It is easy to see that F is increasing in t and decreasing in k. Moreover, for a fixed t, when k tends to

infinity F (t, k) tends to 0. Therefore, we can prove the following proposition

CHAPTER 5. LIMITED DISTANCE ESTIMATION 47

Proposition 5.3.1 ∀ε > 0 , ∀T > 0, ∃k even, ∀‖x1 − x2‖ < T

ε(‖x1 − x2‖, k) < ε (5.14)

This proposition states that, given a threshold T , we can find a value of k large enough, such that the

difference between ‖x1 − x2‖ and the expected value of the modular distance between the corresponding

hashes is as small as we want for all the distances smaller than T . Figure 5.5 (left) shows an alternative

way of seeing this, which plots the expression given by Theorem 5.3.1, showing an almost linear behavior

for distances smaller than some threshold, then converging to k
4 . Therefore, we can compute an accurate

estimate of the Euclidean distance between x1 and x2 using their hashes directly.

For practical purposes, we need to use the Normalized Modular distance as the estimate of the Euclidean

distance, and similarly to the Hamming distance case, the error depends on M , the number of components

that the hash has. The following proposition helps us to control this error in the estimation,

Proposition 5.3.2 Taking σ =
√

π
2 and R = (k,A, U) the random key that composes a σ−Gaussian

Modular Hash, if M ≥ log(2)·(β+1)·k2

8ε2 , then

P
(∣∣∣dmod (QR(x1) , QR(x2)) − E [dmod (QR(x1) , Qk,A,U (x2))]

∣∣∣ < ε
)
≥ 1− 1

2β (5.15)

Thus, the Normalized Modular Distance is similar to its expectation value with high probability if M

satisfies the described condition. For example, if β = 10, ε = 0.5 and k = 8, then with M ≥ 244 we can

obtain an estimate of the expected Modular distance, and as we showed, a very close estimate of the actual

Euclidean distance with precision 0.5 with probability more than 0.999.

A very relevant consequence of this results is the non-dependency of N , the dimensionality of the data

points, on M , the required number of components in the hash. Hence, we may consider this random trans-

formation as a dimensionality reduction technique. Figure 5.5 (right) shows how the normalized modular

distance approximates the Euclidean distance when this is smaller than some threshold, using different values

of k, being totally consistent with the previous theoretical results.

Finally, it should be mentioned that the results presented here are valid for the Euclidean distance. Using

the previously described constructions, such as Γ-Gaussian Modular Hash, or Cauchy Modular Hash, we can

obtain analogous results for the Mahalanobis distance and Manhattan distance respectively.

CHAPTER 5. LIMITED DISTANCE ESTIMATION 48

0 1 2 3 4 5 6
0

1

2

3

4

5

6

‖x1 − x2‖

E
[d

L
e
e
(Q

k
,A

,U
(x

1
) i
,Q

k
,A

,U
(x

2
) i
)]

k = 4
k = 8
k = 16

0 1 2 3 4 5 6
0

1

2

3

4

5

6

‖x1 − x2‖

d
L
e
e
(Q

k
,A

,U
(x

1
),
Q

k
,A

,U
(x

2
))

k = 4
k = 8
k = 16

Figure 5.5: Left: Expected value of the Modular Distance between QR(x1) and QR(x2) as a function of
‖x1 − x2‖ using expression given by Theorem 5.3.1 and considering σ =

√
π
2 . Right: Simulated data.

Normalized modular distance between hashes as a function of ‖x1 − x2‖ for σ =
√

π
2 , N = 5000 and 500

samples.

5.4 Related Work and Contributions

The idea of finding a transformation that preserves the distance between data instances is not new. The

most well known example of this is the transformation provided by the Johnson-Lindenstrauss Lemma, which

preserves the Euclidean distance under a multiplicative error, this is

(1− ε)‖x− z‖2 ≤ ‖f(x)− f(z)‖2 ≤ (1 + ε)‖x− z‖2 (5.16)

with a small value of ε.

One way to construct this kind of transformation is using random projections. It is possible to prove

that if A is a matrix with components drawn randomly from a particular distribution, the conditions in 5.16

are achieved by the transformation f(x) = Ax with high probability.

Other examples are Locality Sensitive Hashing (LSH) [10] schemes, that map the input data space into

a set of “buckets” using a probabilistic map such that vectors that are close to each other in the input space

map into the same bucket with very high probability, whereas those that are distant from one another have

a high probability of being mapped into different buckets.

Formally, a locality sensitive hashing function is a map h from a metric spaceM to a set B such that,

given any two elements x1, x2 ∈M,

d(x1, x2) < r ⇒ h(x1) = h(x2) with probability ≥ P1 (5.17)

d(x1, x2) > cr ⇒ h(x1) 6= h(x2) with probability ≥ P2

for some radius of interest r and some constant c. Ideally both P1 and P2 are high. Thus, vectors that are

CHAPTER 5. LIMITED DISTANCE ESTIMATION 49

less than a distance r apart have a high probability of being hashed to the same value, while that is highly

improbable if they are more than cr apart.

Although LSH schemes have been primarily used as a mechanism for fast nearest-neighbor matching

[10, 11] they have also been used to both hide the data, and compute distances [12, 13]. However, they do

not satisfy the privacy requirements stated in the previous part of this work. Actually, in general it is not

difficult to infer information about the hidden element just observing the transformed point.

In order to guarantee privacy they must be combined with homomorphic encryption schemes [14]. In [15]

Boufounos et al. propose a band-quantization scheme that is shown to be information-theoretically secure,

and has been successfully applied to nearest-neighbor problems [15]; however it reveals the length of the

input vector.

Therefore, the main contribution of this part is to show that the computational approach presented in

this chapter is not inconsistent with our privacy requirements, and in fact, we can use the transformed data

to perform a limited distance computation.

Chapter 6

Private Distance-based Machine Learning

Until now we have analyzed how to take advantage of the hash comparisons when the original points are

close enough. In the previous chapter we showed two approaches to infer the actual distance between points

in the case of Modular Hashes. This can be very useful in cases where you have to do distance calculations

where the value of the distance is not entirely sensitive but the data on which it is calculated is.

In this chapter we will study how to use distance-based machine learning models on data to which

Modular Hash has been applied in order to preserve privacy in the sense described in the previous chapters.

We will show how the algorithms can be adapted as well as conditions on the hashes in order to make the

least possible modification to the machine learning methods.

6.1 Use by Substitution

As we mentioned earlier, our focus in this work is distance-based machine learning methods, so the simplest

way to use the hashing schemes presented is simply to replace the distance between points by the corre-

sponding metric between hashes. For example, in case the algorithm depends on the Euclidean distance, we

can consider the following approximation

dmod
(
QR(x1) , QR(x2)

)
≈ ‖x1 − x2‖ (6.1)

So, instead of uploading the data without protection to the cloud to train a distance-based algorithm, we

can apply some of the hash functions discussed before uploading the data to the cloud, so that the estimate

of the distances over the data has been limited by limiting the information leakage as we mentioned before.

This applies very directly to several Machine Learning algorithms. For example, in Clustering, where the

objective is to identify groups in data. The same approach can be used for Nearest Neighbor Classification,

where it is assumed that we have a data set where each data instance has a label associated with it, which

50

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 51

Figure 6.1: The Kernel trick is based on the idea of mapping data points into a higher dimensional space in
order to find linear patterns.

corresponds to some class. Thus, if you want to estimate the label of a new instance, the algorithm proposes

to associate the label of the closest example.

In both cases, an explicit change of the calculation of the distance under the approximation 6.1 must be

made. However, we know that in case of using the Gaussian Modular Hash function, and considering k = 2,

then we have that ∀a, b ∈ ZM2

dH(a , b) = 1
M
‖a − b‖2 (6.2)

So in this case it is not necessary to make any adaptation of the algorithm in view that the Euclidean

distance between hashes has a direct correspondence with the Hamming distance, and consequently, with

the distance between the original points, being a very favorable point for practical purposes. However, as

we will see in the next section, we can make a less obvious connection between our methods with more

sophisticated algorithms, in particular, Kernel methods.

6.2 Hashing to Compute Kernels

Kernel methods have been widely used in different machine learning tasks, the most popular being the

classification task, through the Support Vector Machine (SVM) model. The main idea is to assume that

finding a non-linear pattern is equivalent to finding a linear pattern after mapping the data to a larger space.

Thus, a data instance x ∈ RN is mapped using a function ϕ as ϕ(x) ∈ RP where P >> N .

In general, many linear algorithms are determined by the inner product between examples, which after

applying the mapping corresponds to using 〈ϕ(x) , ϕ(z)〉 where x and z are two instances of data.

Thus, the kernel trick is based on realizing that, in order to recognize non-linear patterns, instead of

modeling the function ϕ, it is more convenient to directly model this internal product in high dimensions.

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 52

Therefore, a kernel function will be any function K(x, z) where there is a function ϕ such that

K(x, z) = 〈ϕ(x) , ϕ(z)〉 (6.3)

All of this, without the need of defining the function ϕ explicitly.

Different Kernel functions have been proposed. Among those that stand out are the shift-invariant

kernels, which are those whose value does not change if the data are moved by the same amount. In

particular, if the kernel depends on the norm of the difference between the vectors, then it is shift-invariant.

The best known example of this type of kernel is the Radial Basis Kernel, whose expression is given by

K(x1 , x2) = exp
(
−σ2 ‖x1 − x2‖2) (6.4)

A variant of this kernel is known as Laplacian Kernel, which is given by the following expression,

K(x1 , x2) = exp
(
− γ π ‖x1 − x2‖1

)
(6.5)

where γ is a parameter of the model.

In this section we will show how to approximate this kind of kernel using hashing methods, and we will

discuss the connection with the Modular Hashes, then finalize with an empirical evaluation of this technique.

6.2.1 A hash function to estimate kernels

The two previous kernel functions are closely linked with the Modular Hashes previously studied. To illustrate

this we will take the case of Cauchy Modular Hash, but the analysis is analogous to the Gaussian case. To

see this connection, it is necessary to introduce a small variant of these hash functions.

Definition 6.2.1 Let A be an M × N matrix such that its components are independent and randomly

generated according to a Cauchy(γ) distribution, and U be a vector with M random independent components

distributed uniformly between 0 and 2. We define the transformation HA,U : RN → {− 1√
M
, 1√

M
}M as

HA,U (x) = 1√
M

h(Ax + U) (6.6)

where h is taken component-wise and it is given by

h(t) = 2 · (btc (mod 2))− 1 (6.7)

The periodic function h of period 2 is illustrated in Figure 6.2 and can take values of either 1 or −1.

Thus, this transformation takes a real value vector with N components and gives a vector with M

components, which can be either 1√
M

or − 1√
M
. This definition is needed to ease the computation between

hashes for approximating a kernel. In fact, the following theoretical result shows this,

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 53

−4 −3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

t

h(
t)

Figure 6.2: The function h quantizes real values to -1 or 1 for each hash component.

Theorem 6.2.1 ∀x1 , x2 ∈ RN , the expected value of inner product between their corresponding transformed

points is:

E
(〈
HA,U (x1) , HA,U (x2)

〉)
= 8

π2

∞∑
i=1

1
(2i− 1)2 exp

(
− π γ (2i− 1)‖x1 − x2‖1

)
(6.8)

This expression only depends on the `1 distance between the original vectors x1 and x2. Figure 6.3(a)

shows the shape of these curves for fixed values of γ. It is easy to prove that this function is decreasing and

tends to 0 when ‖x1 − x2‖1 tends to infinity. In addition, if x1 = x2, the previous expression is 1.

The expression given in Theorem 6.2.1 is not exactly the expression for the Laplacian Kernel described

in equation 6.5. However, we can find bounds which depend on this kernel. The following proposition shows

an upper and lower bound for the expected value of the inner product between hashes.

Proposition 6.2.1 The expression given by theorem 6.2.1 can be bounded as follows,

8
π2 exp

(
− π γ‖x1 − x2‖1

)
≤ E

(〈
HA,U (x1) , HA,U (x2)

〉)
≤ exp

(
− π γ‖x1 − x2‖1

)
(6.9)

These inequalities show how similar the Laplacian Kernel is compared to the expression given by theorem

6.2.1. We can see that the difference between these two kernels is bounded by π2−8
π2 exp(−πγ‖x1 − x2‖1),

which means that the difference decreases as ‖x1 − x2‖1 increases, converging to 0. Actually, in the worst

case, this is when ‖x1 − x2‖1 = 0, the difference between these kernels is π2−8
π2 ≈ 0.189.

Nevertheless, both Theorem 6.2.1 and Proposition 6.2.1 are in expectation and eventually the actual

result given by the stochastic hashing may differ. However, thanks to the Law of Large Numbers, the Inner

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 54

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

‖x1 − x2‖1

E
[
〈

H
A
,U
(x

1
)
,
H

A
,U
(x

2
)〉
]

γ = 1

γ = 0.2

(a) Theoretical Expression

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

‖x1 − x2‖1

〈

H
A
,U
(x

1
)
,
H

A
,U
(x

2
)〉

γ = 1

γ = 0.2

(b) Simulations

Figure 6.3: (a) Theoretical Expression. Expectation of the inner product between HA,U (x1) and
HA,U (x2) as a function of ‖x1 − x2‖1 using Theorem 6.2.1 considering γ = 1 and γ = 0.2. We took
the first 5,000 terms of the series. (b) Simulations. Inner product between HA,U (x1) and HA,U (x2) as a
function of ‖x1 − x2‖1 with N = 5000, M = 2500 and γ = 1 and γ = 0.2.

Product between HA,U (x1) and HA,U (x2) converges to the expected value for large values of M . In fact, at

the moment of computing the inner product between two hashes, we are performing an operation which is a

sum of i.i.d. random variables, divided by M , to obtain a simple average of random variables. Figure 6.3(b)

shows a simulation, where the empirical value is plotted as a function of the actual `1 distance between

vectors. We see here that the empirical estimate closely follows the plot for the theoretical expression in

figure 6.3(a).

Similarly to the case of distance estimation, a more formal guarantee is given by theorem 6.2.2 based on

Hoeffding’s inequality, where the probability of having a small error estimation depends on the value of M

and the number of points to transform.

Theorem 6.2.2 If we have n points x1, ...,xn ∈ RN , and M ≥ 4
ε2 log

(
n
2η

)
, then

P
(
∀xi,xj ,

∣∣∣〈HA,U (xi) , HA,U (xj)〉 − E (〈HA,U (xi) , HA,U (xj)〉)
∣∣∣ < ε

)
≥ 1− η (6.10)

This result gives a way to measure the quality of the approximation made by the hashes. In particular,

if η and ε are fixed, the number of components needed in the hashing function depends on the log of the

number of points n that we want to transform. Moreover, note that the value of M does not depend on

the dimensionality of the input data. Both facts may have important implications when we work with high

dimensional data.

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 55

6.2.2 Connection with Modular Hash

As we have seen, the hash function HA,U takes a real valued vector x and outputs a vector with M compo-

nents whose values can be either − 1√
M

or 1√
M
. This means that even though M may be smaller than the

original data dimension, the final representation of each hash component is a float number.

However, we can recode this hash function using the Modular Hash function we have already studied. In

fact, we can note that

Q2,A,U (x) = 1
2

(
HA,U (x) + 2

)
Therefore, there is a deterministic relation between the hash HA,U and our modular hash. This means

that all the privacy guarantees that the modular hash has are transferred to this new hash.

Moreover, it is quite straightforward to prove that the inner product HA,U (x1) and HA,U (x2) can be

recovered using Q2,A,U (x1) and Q2,A,U (x2). Indeed, we have the next equation

〈HA,U (x1) , HA,U (x2)〉 = 1− 2 · dH
(
Q2,A,U (x1) , QA,U (x2)

)
(6.11)

Thus, we can recover the kernel approximation using the Normalized Hamming distance between hashes.

However, for this purpose we prefer to use the hash function HA,U since there is no need to adapt any

algorithms that work directly with inner products. We just need to transform the data and run the algorithm

on it.

Indeed, SVM models are usually trained using its dual form that naturally leads to the kernel trick;

its dual form only depends on the inner product between pairs of input vectors. The kernel trick implies

the computation of the Kernel matrix using the input features and a non-linear kernel. However, such

computation scales poorly because its time and storage complexity are quadratic in the dimensionality and

number of the input features. Hence, we can apply our hashing scheme to the SVM. First, we take the input

features and generate our hashes as described in the previous sections. Then, we use the hashes to compute

the kernel matrix with the inner product, which is a linear operation. This combination approximates a

non-linear Laplacian kernel SVM. Formally

K(x,y) = 〈φ(x), φ(y)〉 ≈ 〈H(x), H(y)〉 (6.12)

We can name this procedure Hashing Trick.

6.2.3 Empirical Evaluation

To show the benefits of using hashing with a linear SVM over using the input features and a non-linear

SVM with Laplacian kernel we present an evaluation in the Acoustic Scene Classification task, where the

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 56

Figure 6.4: The audio recordings are used to extract input features. Then, these features are used to train
an SVM in two different ways. One is to pass the features directly to a non-linear SVM, second is to compute
hashes and pass them to a linear SVM. Lastly, the trained SVM is used for classification.

objetive is to identify an audio recording as belonging to a predefined set of scene classes that characterizes

an environment, for example, park, home, or office.

The experiments presented are in the context of the DCASE Task 1 - Acoustic Scene Classification [68].

The pipelines of the experiments are also illustrated in Figure 6.4.

Acoustic Scenes Data Set

For our experiments we used the “DCASE: TUT Acoustic Scenes 2017” development dataset [68]. It consists

of recordings from various acoustic scenes of 3-5 minutes long. The 15 acoustic scenes are: Bus, Cafe /

Restaurant, Car, City center, Forest path, Grocery store, Home, Lakeside beach, Library, Metro station,

Office, Residential area, Train, Tram, Urban park.

Audio Feature Extraction

A typical approach in this task is to capture diverse characteristics from the audio signal by computing

different types of features. We extracted the large set of audio features of 6,553 dimensionality employed

in [69, 70]. The set includes different features to extract different relevant information from the acoustic

scenes, which consist of multiple sound sources. The set is extracted using the toolkit openSMILE [71] with

the configuration file emolarge.conf. The features are divided in four categories: cepstral, spectral, energy

related and voicing features, and are extracted every 10 ms from 25 ms frames. Moreover, we included

functionals, such as mean, standard deviation, percentiles and quartiles, linear regression functionals, or

local minima/maxima. All these features played the role of input data to train a classifier.

Acoustic Scene Classification

First, we evaluate the input features using the non-linear SVM with the Laplacian kernel. Then, we evaluate

the hashes with a linear SVM to approximate the baselines. Lastly, we include from our previous work [7]

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 57

Method \ γ 2−12 2−14 2−16 2−18 2−20

Laplacian Kernel 71.21 77.91 78.64 78.51 78.51
Hash (M = 26) 19.80 40.59 37.75 23.71 13.00
Hash (M = 28) 31.28 53.95 50.96 44.00 28.94
Hash (M = 210) 49.85 68.44 66.28 58.11 46.95
Hash (M = 212) 64.45 74.86 75.18 70.51 64.92
Hash (M = 214) 68.57 76.06 76.31 75.93 72.90
Hash (M = 216) 69.70 76.72 77.55 77.38 76.21

Table 6.1: Accuracy performance (%) as γ varies for the Laplacian kernel (with input features), Series kernel
(with input features) and different hashing sizes M in bits (with linear SVM). The best results for each type
are in bold. Note how as the value of M increases the performance is better approximated.

the random features with a linear SVM to approximate the Laplacian kernel.

We trained SVM classifiers with a one-vs-all setup and tuned the γ parameter. For each experiment we

used the feature vectors of the testing set to evaluate performance and measured it with accuracy. As a

baseline model, we trained a SVMmodel with Laplacian kernel using the described 6,533 features components

as input.

Then, we used our hashing scheme and tried different hash sizes (M) to compare against the baseline

performance. Hence, we used the training and testing acoustic feature vectors of 6,553 dims to compute

hashes. The size of the hashes was varied from M = 26 to M = 216 bits. The hashes were used to train the

SVM with a linear kernel.

Results on Acoustic Scenes Classification

For the model with Laplacian kernel we obtained a range of accuracy results from 71.21% to 78.64%,

depending on the value of γ, as it is shown in table 6.1.

The accuracy results of the hashes improved as the size M increased to a number close to the baselines.

Similar to the baseline experiments, the performance varied depending on the value of the parameter γ. For

the best performing hash and largest size (216) the range was 69.70% (γ = 2−12) to 77.55% (γ = 2−16).

Table 6.1 shows these values.

Furthermore, we can observe that after applying the hashing technique and training a linear model on

the hashes we have a minimal loss of performance with respect the original kernel method. Moreover, we

have the computational advantage of working with a linear problem instead of a non-linear quadratic one.

Significant findings are related to the size of the output obtained from our hashing function. In this

experiment, each input sample is represented by a vector of 6,553 components, which is more than 218 bits if

each component is represented by 8 bytes. In contrast, to achieve similar results with our hashing technique,

we need 216 bits, that is, a factor of 4 reduction in size. Hence, this method not only changes a nonlinear

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 58

Method Accuracy # of Bits
DCASE Challenge [68] 74.8% -
Laplacian Kernel 78.6% > 218

Random features M = 212 [7] 75.8% 218

Hashing M = 216 77.5% 216

Table 6.2: The performance of the hashing scheme outperforms the reported Challenge score and the random
features. Moreover, performance is comparable to using the Laplacian Kernel, however with the benefits of
reducing the bit representation by 4 times.

problem to a liner one, but also reduces the dimensionality of the feature vector.

We can compare these techniques with other methods. Particularly, in table 6.2 we include the official

DCASE performance based on a Multilayer Perceptron, our baselines, our hashing scheme and the random

features [7].

Random features are a similar technique, which allowed us to approximate the Laplacian kernel with

an accuracy of 75.8%. Even though the dimensionality of the random features was 3 times lower than the

original vector, each random feature component used 218 bits if each component is represented by 8 bytes.

In contrast, using the hashing technique, with 214 bits we obtain a performance of 76.31%. Hence, we can

reduce the size of the final representation by 16 times and obtain comparable results. Actually, with a small

loss of performance, we may use hashes with 212 bits and obtain an accuracy of 75.18%, reducing the size

of the final representation by 64 times or 6 orders of magnitude.

6.3 Related Work and Contributions

Through appropriate choice of kernel, SVMs can approximate non-linear functions or decision boundaries

given enough training samples, however, the computation of the kernel matrix scales poorly. The Kernel

matrix’s time and storage complexity increase in the dimensionality and number of the inputs, which con-

trasts to linear functions, which can be computed much faster [19]. One solution to take the best of both

approaches is by computing random features [21, 28, 29], which maps the input features into a randomized

lower-dimensional feature space. Then, the resulting random features are combined in a linear manner to

approximate a non-linear kernel, but at a much lower cost than direct computations of kernels.

One effective method for quantizing features is through hashing schemes [20]. Hashing schemes, roughly

speaking, quantize the random features to be represented with just one bit instead of real numbers represented

by 32 or 64 bits. This has significant implication in storage, because even if the dimensionality of the

random features is the same or larger than the input features dimension, the overall size in bits of the

transformed vector can be an order of magnitude smaller. This reduction has benefits in storage, processing

and transmission [20].

CHAPTER 6. PRIVATE DISTANCE-BASED MACHINE LEARNING 59

Random features and hashing schemes are kernel dependent; this means that to approximate different

non-linear kernels we need different kinds of random transformations of the input features. The most popular

and best-studied kernels are shift-invariant [22, 23], such as Guassian, Laplacian and Cauchy. The Gaussian

employs the `2 norm and the Laplacian employs the `1 norm, and although both offer different benefits, the

latter has been significantly less studied. The Laplacian kernel, in particular, has outperformed the Gaussian

kernel without hashing schemes for sound-event classification [24, 25] and with hashing schemes for image

processing [26, 27]. However, to the best of our knowledge, the mathematical and theoretical guarantees to

employ hashing schemes to approximate Laplacian kernels was unavailable in the literature.

In conclusion, we have introduced a scheme that hashes features, which are combined with a linear

function to approximate a non-linear Laplacian kernel. Additionally, the hashing reduces the dimensionality

of real-valued vectors into bits-based representations by reducing storage up to six orders of magnitude. We

evaluated our hashing scheme in the context of the 2017 DCASE Task 1 - Acoustic Scene Classification [68].

Our main contribution are the mathematical and theoretical guarantees to validate the approximation of

the Laplacian kernel, which was unavailable in the literature and can be applied to tasks other than audio.

Part IV

Applications

60

Chapter 7

Speech Signal Protection

7.1 Introduction

Certainly, the most natural communication tools used by human beings are their voices. Hence, it is

expected that a lot of research has been devoted to analyzing and understanding speech signals for several

applications. One of them is Speaker Authentication, where the objective is to determine or verify the identity

of the speaker. Other applications include Automatic Speech Recognition, where the goal is to transcribe a

recorded speech signal into its corresponding sequence of words.

One way to implement these applications is based on using a set of template recordings, where finding

a word or identifying a speaker can be made through a distance computation between features of the query

signal and each template in the database. Since these databases are frequently large, external cloud-based

repositories are used and, as a consequence, the corresponding distance computation is made in the cloud.

However, speech data may carry many privacy concerns. Eventually, we could infer private information

from speech, such as gender, age, ethnicity, education and emotional states. Thus, the server could extract

this information from templates and queries, and then use it for undesired purposes. Moreover, the recordings

may be edited in order to create fake speech that the client never spoke. Furthermore, authentication

techniques can be applied to identify the presence of a user in other media such as YouTube or Flickr videos.

Hence, we need a mechanism that enables signal comparison and at the time hides private information

to the server without losing performance. In particular, we are interested on speaker authentication through

distance computation based on templates. In our context, this equates to determining whether a speaker in

a recording matches a target speaker in an example recording, without revealing any information about the

signals to the server.

Thus, the private mechanism described in this work may help to solve these privacy concerns as well as

61

CHAPTER 7. SPEECH SIGNAL PROTECTION 62

allowing comparison between signals, which in this problems means to verify an identity.

Just to provide some context, first we will show a brief description of the tools used in speaker authentica-

tion. In general, these kinds of systems do not use any kind of mechanism to protect the speech information.

Then, we will describe some of the properties that a protected system must have according to the literature,

and finally we will show that the transformation we have presented, the Gaussian and Cauchy modular hash

function, satisfy similar properties.

7.2 Speaker Authentication Basics

As we mentioned previously, in most of the speech processing applications we want to extract information

from a signal and make an inference about it. In the Speaker Verification problem, for example, the purpose

is to determine if the user is indeed who she or he claims to be.

In general, this kind of system does not work directly from the speech signal, because audio recordings

comprise sequences of samples of varying length. Therefore, if we want to apply a common classifier for

verification, the signals must be converted to fixed-length “feature” vectors. To perform this conversion, we

employ a representation known as Gaussian mean supervectors [17]. Each recording is first parametrized

into a sequence of “Mel-frequency cepstral coefficient” (MFCC) vectors [18]. Each vector in the sequence is

augmented by the first- and second-order differences between its immediate neighbors, resulting in a sequence

of 39-dimensional feature vectors. The distribution of the feature vectors in each recording is modeled by a

Gaussian mixture model, learned using a maximum a posteriori estimator. The means of the Gaussians are

then concatenated to result in the desired supervector, which are considered as feature vector of a recording.

On the other hand, in the client-server model, the speaker verification system is in the server and the

client executes a program which computes the features and sends them to the server. Speaker verification

has two phases: the enrollment, where the user submits a few samples of recordings or feature vectors

to the system, and verification, where the user submits a test feature vector and the system makes an

acceptance decision based on its similarity to the enrollment data. Therefore, in this systems it is necessary

that the server contains some templates and receives queries in order to compare them, generating the

privacy concerns previously described. Obviously, this scheme can be used for any biometrics signal. Figure

7.1 summarizes both phases.

Here, we use an authentication framework that uses a nearest neighbor classifier to perform authentication

[38] [40] [44]; as we shall see, even this simple mechanism suffices to provide near-perfect authentication

performance in our two-factor setting, that is properly defined below. In the enrollment phase the user u

submits a set Eu of supervectors to the server. During verification, the subject claims identity u and submits

CHAPTER 7. SPEECH SIGNAL PROTECTION 63

Figure 7.1: Enrollment and verification processes in a biometric system.

a single test recording supervector x. The system computes

d(x , Eu) = min
y∈Eu

D(x , y) (7.1)

whereD is some metric to compare feature vectors. The subject is successfully authenticated if d(x , Eu) ≤ t,

for a predefined threshold t. On the other hand, if d(x , Eu) > t, then the subject is rejected. In our work

we specifically use the `2 or `1 distance to compare vectors. Thus, the server takes a decision based on

d(x , Eu) = min
y∈Eu

‖x − y‖1 (7.2)

7.3 Cancelable Biometrics

It is clear that the described setting applies for any kind of biometrics; for example, fingerprints or face

recognition, among others. An important problem that is common to all biometric authentication systems,

including speech, is that biometrics are unique and permanent. A compromised biometric is compromised for

ever. Unlike conventional written passwords which can simply be replaced if compromised, once a biometric

is compromised it can never be used again.

In order to solve these problems, researchers have introduced the concept of Cancelable Biometrics [32]

where the client transforms the biometric signal (or feature vectors derived from it) before sending it to

the server. The server only receives the modified signals that nevertheless retain the information required

for authentication. A number of different types of transformations have been proposed, with different

properties, advantages and disadvantages [33] [42] [44]. The approach provides the biometric with two

CHAPTER 7. SPEECH SIGNAL PROTECTION 64

desirable properties. First, when properly performed, the transform masks the biometric itself and prevents

the inference of undesired information from it. Secondly, the biometric signatures stored by the server now

become cancelable – if compromised to an outside adversary the client only needs to change the transform

used to modify the signal. The original biometric itself stays secure.

Of particular interest to us are Two Factor Transformations (TFT) [34] which transform the biometric

through a secret parameter, known as a key. The secret key itself can be generated using a text password

provided by the user, which can seed a random number generator [35]. The system must now work with

the TFT-modified signals in order to perform authentication. Ideally, using the correct password/key to

transform signals, the system performance on transformed signals must be comparable to that obtained with

the original unprotected signal. If the identity claimant is unaware of the correct key, however, the system

must absolutely reject the authentication. If properly performed, in addition to the benefits mentioned in

the earlier paragraph, this technique adds a further security measure: it effectively converts the biometric

authentication to a two-factor process. In order to be authenticated the client must possess both, the correct

biometric and the correct password.

Ideally, the TFT “hides” the true biometric from the server which cannot recover the original biometric

from the transformed signal. However, simply hiding individual signals may be insufficient: information may

nevertheless be gleaned through the comparisons of transformed signals and templates about the general

distribution of distances between signals, which may in turn be used to learn about the biometric itself.

Thus, an additional desideratum for TFTs is that comparison of TFT-transformed signals must also be

uninformative. This requirement however is opposed to the fact that authentication is based on comparison

of signals and templates. Most solutions thus strike the compromise that they do not necessarily guarantee

the uninformativeness of comparison, relying mainly on the privacy of the password/key for security.

To formalize the concept of TFT, we can consider that it is a one-way function that considers as input

the feature x and a user specific key K, to generate a transformed version T (x,K). As stated by Chikkerur

et al. [44], if D is a metric to compare features, a TFT should satisfy the following properties:

1. Local Similarity Preservation. If two features belong to the same user, they should be similar, so the

transformation must preserve similarity, i.e.

D(x1 , x2) < t ⇒ D(T (x1,K) , T (x2,K)) < θ (7.3)

2. Mismatch must persist. If two features vectors do not belong to the same user, the distance between

them should be large, so the transformation does not make mistmatched vectors closer. Formally, this

CHAPTER 7. SPEECH SIGNAL PROTECTION 65

means

D(x1 , x2) > t ⇒ D(T (x1,K) , T (x2,K)) > θ (7.4)

3. Uninformativity. The transformed version of the feature vector should not match with the original

signal, this is

D(x , T (x,K)) > t (7.5)

4. Unlinkability. Two transformation of the same vector using different keys must not match. Formally,

this is

D(T (x,K1) , T (x,K2)) > θ (7.6)

Note that, according to these properties, to not have any inconsistency with the metric D, both the biometric

x and the transformed biometric T (x,K) must belong to the same space.

In addition, any authentication system must be resistant to imposter claims. Under this model, where

to perform an authentication we need both a feature vector and the secret key, we consider the following

attacks:

1. An attacker does not get access to either a valid feature vector x or the key K

2. An attacker has access to a feature vector only.

3. An attacker has access to the secret key only.

The Two factor transformation should be resistant to all these attacks. Note that, if the attacker gets both

elements, a compromised feature vector x and the secret key K, it is not possible to prevent an attack.

7.4 Limited Leakage Transformation as TFT

We demonstrate that our approach, Limited Leakage Transformations, can be used to protect biometrics,

in particular speech features, satisfying analogous properties to the described above.

In fact, we can adapt a speaker verification system using our methods. For the enrollment phase, instead

of sending raw supervectors x1, ...,xn to the server, a user must create a password, fixing an integer value

k, and use it as a seed to generate a matrix A and a vector U , according the suggested distributions to

compose a Gaussian or Cauchy Modular Hash. These two parameters work as a secret key, allowing him to

send Qk,A,U (x1), ..., Qk,A,U (xn) to the server. In the verification phase, the user recovers the key using the

CHAPTER 7. SPEECH SIGNAL PROTECTION 66

same password and, instead of submitting the supervector x, submits Qk,A,U (x). Then, to make a decision,

the server computes the Normalized Modular Distance between the transformed test supervectors and the

transformed enrollment vectors as given in Section 7.2 to authenticate the user.

Finally, we note that the relationships we derive are statistical in nature. This is to be expected from

any TFT mechanism that makes claims relating to information leakage. Hence, to conclude this section, we

can now reformulate the properties of good TFTs presented in probabilistic terms as below, and note that

the proposed transform satisfies all of them.

1. Local Similarity Preservation.

‖x1 − x2‖ < t ⇒ E
[
dmod

(
Qk,A,U (x1) , Qk,A,U (x2)

)]
< θ (7.7)

This means that the Normalized Modular Distance between transformed points using the same secret

key reveals information about the distance between the original points as long as these are close enough.

2. Mismatch must persist

‖x1 − x2‖ > t ⇒ E
[
dmod

(
Qk,A,U (x1) , Qk,A,U (x2)

)]
> θ (7.8)

In other words, if the distance between the original points is larger than some threshold, the Normalized

Modular Distance should be large too. In our case, not only is it large, it will also be uninformative,

i.e. not provide any information about the true distance between the original vectors.

3. Uninformativity. For any i ∈ ZMk and for any x ∈ RN ,

P
(
Qk,A,U (x) = i

)
= 1

kM
(7.9)

Thus, the probability of obtaining a particular hash value does not depend on the original point, i.e.,

a hash itself does not reveal information about the original vector. Note that this is different from the

uniformativeness of the distance between mismatched hashes, mentioned above.

4. Unlinkability. If (k,A1, U1) is independent of (k,A2, U2), then

E
[
dmod

(
Qk,A1,U1(x) , Qk,A2,U2(x)

)]
= k

4 > θ (7.10)

This means that, even if we transform the same vector using independent keys, the resulting hashes

will be independent. As a consequence, thanks to the Limited Leakage Property, we cannot distinguish

the hashes of a pair of distant vectors from two hashes of the same signal using independent keys.

CHAPTER 7. SPEECH SIGNAL PROTECTION 67

7.5 Empirical evaluation

To illustrate the scope of oue technique, we applied our proposed technique to the speaker verification task

using a Cauchy Modular Hash with k = 2.

We ran experiments on the YOHO Speaker Verification corpus [16], comprising utterances by 138 speak-

ers. Each utterance contains a spoken sequence of three two-digit numbers. The corpus is split into an

enrollment set (96 utterances per speaker) and a verification set (40 utterances per speaker). In order to

develop a speaker verification system, we require both recordings from target speakers and a large number

of recordings from attackers. In our experiments, however, we did not explicitly record imposters; instead,

for each of the 138 speakers, the remaining 137 were used as imposters. All experiments were conducted

using the verification approach described in Section 7.2; thus, a subject is accepted in the verification phase

if the `1 distance between the verification query and some element in the corresponding enrollment set is

smaller than a threshold.

The first row of Table 7.1 shows the baseline performance obtained using supervectors of the speech

recordings directly, without any transformation. The resolution of the supervector depends on the number

of Gaussians in the GMM used to model the distributions of the MFCC vectors in the recordings. In fact,

the performance improves as the number of Gaussians increases.

The second row shows the performance of the system using our transformation under the ideal condition,

where the imposters have neither the key nor the biometric. In this setting the system is perfect, making

no mistakes at all. Thus, combining a speech signal with a password using the TFT transform increases

the performance of the system. In addition, notice that the server sees neither the password nor the actual

supervectors, and thus learns nothing about the speaker.

In adverse scenarios, the performance is not compromised. The third row of table 7.1 shows a system

where the adversary has managed to obtain a valid biometric signal from the user, but does not have the

secret key. We assume that, under the lack of knowledge about the secret key, the adversary generates an

independent key and uses it to transform the compromised biometric. Once again, the system is perfect.

Finally, the fourth row shows the scenario where an adversary has managed to steal the user’s key, but does

not have his biometric. We note only minimal degradation attributable to the TFT with respect to the

unprotected baseline. The explanation for this degradation lies in the randomness introduced by the hashes.

In all cases we computed no more than 64 bits in the transformation per component of the supervector.

In general, we observed a trade-off between the number of bits per components and the performance in

this last task; having fewer bits can be useful for storage and computation, but the performance can be

compromised with smaller representations.

CHAPTER 7. SPEECH SIGNAL PROTECTION 68

Experiment / # gaussians 4 8 16 32
Baseline 5.66 3.21 1.99 1.27
Transform 0 0 0 0
Stolen Voice 0 0 0 0
Stolen Key 5.80 3.40 2.23 1.57

Table 7.1: Experimental Results. EER(%) for each scenario, considering different number of gaussians. We
took γ = 0.02

7.6 Conclusion

In this chapter we have discussed how to use our proposed method as a Two Factor Transformation to

protect speech data for speaker verification tasks, which converts speaker verification into a two-factor task.

In addition, and more importantly, it hides the speech data from both the system and adversaries, protecting

the privacy of the user. The proposed TFT allows us to obtain an acceptance response if the distance between

two feature vectors of the biometric speech signals is smaller than a threshold without revealing the actual

speech data, while providing information-theoretic security at larger distances to protect the biometric. Also,

this is a cancelable framework where, if the user’s account is compromised on the server, he or she only needs

to change his key to re-enroll since the actual biometric remains private. Moreover, our experiments also show

that this transformation improves the accuracy of the system in all usage scenarios where the adversary does

not possess the secret key, while only affecting performance minimally in the most compromised situations.

Chapter 8

Private Image Retrieval

8.1 Introduction

It is common for cloud users to require content-based access to their data. For instance, they may desire to

retrieve from the cloud a record that matches a given key or query. To perform this retrieval, the system

must compare the query to the contents of the stored data, identify relevant records, and return them to

the user. This, however, requires the server to be able to inspect the contents, immediately granting it

access to the data, and in consequence, raising some privacy concerns for users. In fact, even if the server is

to perform any organization of the data on its own, it requires access to the contents of the data, thereby

violating eventual privacy requirements of the user. More generally, if the user requires to retrieve a ranked

list of records in response to a similarity-based query, the necessary computation would require exposure of

the data to the server.

To protect the data we may apply conventional encryption functions, but they destroy neighborhood

by design; if they do not, they become susceptible to differential cryptanalysis. Thus, given any cleartext

message x, its encryption E(x) provides no information about x itself, unless the encryption keys are known.

It also destroys all the information for similarity search. This is particularly relevant for multimedia files,

where a matching between files is based on a fuzzy similarity score instead of a strong match. In the case

of image retrieval, it is usual to consider a similarity-based approach, where different informative features

are extracted from each image file, and two images are deemed to be similar if their corresponding features

are close enough. Thus, typically an image retrieval system operates in two phases, an indexing phase,

where the images of a database are organized according to the similarity provided by the closeness between

feature vectors, and a retrieval phase, where given an image query we identify the most similar images in

the database comparing the feature vectors from the database to the feature vector obtained from the image

69

CHAPTER 8. PRIVATE IMAGE RETRIEVAL 70

Figure 8.1: Standard design of an Image Retrieval System.

query.

Note that under this system design, generally both the image database and feature database are located in

the cloud, and therefore both images and features are unprotected. However, if we assume that the features

of the images can be computed locally before being sent to the cloud, then we can obtain a minimum of

security by uploading the images encrypted to the cloud, along with their retrieval-relevant features, which

are in the clear. Thus, the client can retrieve encrypted images by comparing the corresponding unprotected

feature vectors, and then she or he decrypt the encrypted file using a secret key. Despite this security

procedure, as expected, the feature vector can reveal information about the content of the image, generating

potential privacy risks.

We consider that our proposed approach can contribute to address this problem. The overall solution

is very straightforward using the kind of transformation we have studied in this thesis, as we detail in the

following section.

8.2 Limited Leakage Transformation for Retrieval

To address the problem of private image retrieval, we believe the utility of our proposed Limited Leakage

transformations is immediately obvious. Given a collection of images x1, x2, · · · , xn, we store in the cloud

the encrypted image E(xi) along with the hash QR(fi), where fi corresponds to the feature vector extracted

from the image xi. The key R for the hash remains with the user; given the security guarantees shown in

chapter 4, the hashes in isolation provide minimal information about the data. In order to retrieve records

based on any image query q, we compute its feature vector fq and we transmit the hash QR(fq) to the cloud.

CHAPTER 8. PRIVATE IMAGE RETRIEVAL 71

Figure 8.2: Design of a proposed image retrieval system that promoted privacy.

Here, the cloud may find close matches, those that fall within δ of the query, by comparing QR(fq) and the

hashes QR(fi) for the image records. Instances which fall within it may be ranked and retrieved.

Moreover, the hashes have the property that they are very fast to compute and the distance computa-

tion between the hashes comprises the computation of a Hamming distance, which is also trivially fast to

calculate. By appropriately relaxing δ, they also provide means of effecting a trade-off between privacy and

computational efficiency.

These ideas have been implemented in an actual image retrieval system [53]. Here, our work is used as a

key component of the system in a similar way as is described in figure 8.2. To improve search efficiency, K-

means algorithm is used to construct a tree-index, showing comparable results with the unprotected scheme

both in search accuracy and speed. In fact, using the tree structure and the hamming distance between

hashes it is possible to obtain a cost in search smaller than linear orders of computations.

8.3 Conclusions

In this chapter we have presented an application on image retrieval with privacy constraints. Based on the

guarantees presented in the previous chapters, we know that our proposed transformations helps to hide the

information provided by a feature vector but preserving similarity relationships if these are strong enough.

CHAPTER 8. PRIVATE IMAGE RETRIEVAL 72

These properties fit very well for this problem, where we are just interested on identifying the most similar

points for a query. Even though there are other techniques, such as Locality Sensitive Hashing, which allows

to speed up this kind of search, they do not have the privacy requirements that we have shown as is is

discussed in [1]. Indeed, this kind of hash function do not satisfy either the indistinguishability property nor

the limited leakage property or something similar.

Chapter 9

Two-party Computation for Distance

Inference

9.1 Introduction

In this chapter we want to show that the particular construction of Gaussian Modular Hash may help us

to solve a two party computation problem for distances. In particular, consider two parties, Alice and Bob,

who have two real valued vectors x1 and x2 ∈ RN respectively, with a large value of N . One or both parties

require the computation of ‖x1 − x2‖. However, at the same time, it is required that none besides Alice

learns about x1, and none besides Bob is exposed to x2.

Different methods have been suggested to solve this problem. These have generally involved the use of

secure multi-party computation protocols (GCS) [8] or fully homomorphic encryption [9, 14] which enables

the computation of distances over encrypted data. As we already know, even though this provides the

participants with the desired privacy, they could be computationally unattractive.

An alternate approach uses trusted third parties to facilitate the computation. Here, Alice and Bob

interact with a third party, Charles, to compute the distances between their signals with information the-

oretical privacy. No party gets additional information regardless their computational power. Under this

approach, protocols based on secret sharing using polynomials on finite fields have been proposed to com-

pute the Euclidean distance [30] between privately held real-valued vectors. While secure, the precision of

the computation depends on how well real numbers are represented in the selected field. Moreover, the

communication complexity of this kind of protocol is proportional to the dimensionality of the data, which

is problematic when Alice and Bob need to compute a distance between high dimensional vectors in the

presence of communication constraints. Moreover the third party itself is to be fully trusted, a questionable

73

CHAPTER 9. TWO-PARTY COMPUTATION FOR DISTANCE INFERENCE 74

condition in most practical scenarios.

We consider that the hashes we proposed can provide an advantage to solve this problem. The key

observation which helps to address these drawbacks is the fact that the joint probability function of two

Gaussian modular hashes just depends on the Euclidean distance between the actual points.

P
(
Qk,A,U (x1) = i , Qk,A,U (x2) = j

)
= f

(
i , j , ‖x1 − x2‖

)
(9.1)

So, if a third party just observes the corresponding hashes of x1 and x2, then, the only information possible

to infer the is Euclidean distance between points. This helps us to introduce the concept of Somewhat Third

Trusted Party.

9.2 Somewhat Third Trusted Party

Suggesting the use of a third party is always controversial, because once we send a piece of information to it,

we do not have any control on the data, which could potentially be misused. The idea of a Somewhat Trusted

Party is to limit the information that it receives for a particular task. In our case, for distance computation,

the Somewhat Trusted Party should obtain just the information necessary to compute the distance. Thus,

this party is trusted because we believe that the computation will be done correctly and the result will be

sent with no modifications, but it is also somewhat because we are not willing to send the raw vectors to

perform the computation.

We propose to use Gaussian Modular Hash to solve this problem for distance computation. Indeed, we

have seen that this transformation provides a good estimate of the actual distance between inputs through

the modular distance between hashes. In addition, since this hash satisfies the limited leakage property as

well as the indistinguishability property, it hides the information of the inputs preserving just the information

needed to estimate the distance between them. We propose the following protocol:

Input: Alice and Bob have x1 and x2 ∈ RN respectively.

Output: Alice and/or Bob obtain an estimation of ‖x1 − x2‖, provided it is lower than some threshold T .

Protocol:

1. Alice and Bob agree on a threshold T and precision ε.

2. Alice generates (k,A, U) and sends them to Bob securely, this is

aij ∼ N
(

0, π2

)
and ui ∼ Unif(0, k)

The parameters T and ε define the value of k and the dimensionality of A and U according to the

theorems presented in chapter 5.

CHAPTER 9. TWO-PARTY COMPUTATION FOR DISTANCE INFERENCE 75

Figure 9.1: Protocol for distance computation using a Somewhat Third Trusted Party

3. Alice computes Qk,A,U (x1) and sends it to Charles.

4. Bob computes Qk,A,U (x2) and sends it to Charles.

5. Charles computes d = dmod (Qk,A,U (x1) , Qk,A,U (x2)) and sends d to Alice and Bob.

First, we can see that after this protocol no party gets anything more than the estimate of ‖x1−x2‖. Alice

and Bob never see each others’ vectors. Charles never sees the plain vectors and receives just two vectors

in ZMk , where each one can be seen as a sequence of independent realizations of draws from a uniform

distribution in Zk. Since Charles does not know (A,U), he does not have any mechanism to reconstruct the

actual vectors, or even extract any kind of information more than the distance between them.

Note that it is important that Charles must not know (A,U); otherwise he may reconstruct the original

vectors, particularly if he has some knowledge of the domain of the signals. For the same reason Alice

and Bob cannot directly share their hashes after sharing the key (k,A, U). Provided these conditions are

followed, the scheme can be shown to be information theoretically secure.

One drawback of this protocol is related to the key transmission. Indeed, if the vectors have a high

dimension, transmitting the matrix A may cause a communication overhead. To prevent this problem,

we can make A public and keeping secret U and introducing a secret random permutation in the hash

components.

CHAPTER 9. TWO-PARTY COMPUTATION FOR DISTANCE INFERENCE 76

9.3 Enhancing Privacy with Cryptography

In case we would like to prevent the use of a third party, we can establish a cryptographic protocol which lets

us compute the modular distance privately. However, since the calculation of the modular distance involves

a minimum between two numbers, it is not combine well with the application of cryptographic techniques,

such as homomorphic encryption. Although methods like Secure Multiparty Computation can deal with this

type of problem (computing minima), both the communication and computation complexity increase as the

length of the hash increases.

Nevertheless, it is possible to reduce the modular distance computation to a Hamming Distance com-

putation, an operation that can be easily performed in the encrypted domain. In fact, we can encode any

element in Zk, with k an even number, as a vector in {0, 1} k2 . If a ∈ Zk, we define c(a) ∈ {0, 1} k2 as follows:

If a ≤ k
2 ,

c(a)i =

 1 if i ≤ a

0 otherwise
(9.2)

If a > k
2 ,

c(a)i =

 0 if i ≤ a− k
2

1 otherwise
(9.3)

Example 9.3.1 In Z6, the code left

c(0) =

0

0

0

 c(1) =

1

0

0

 c(2) =

1

1

0

 c(3) =

1

1

1

 c(4) =

0

1

1

 c(5) =

0

0

1

This kind of coding has the following property,

dmod(a, b) = dHamming(c(a) , c(b)) =
k/2∑
i=1

c(a)i ⊕ c(b)i (9.4)

Therefore, an element z ∈ ZMk can be coded as c(z) ∈ {0, 1}M · k2 , where

c(z) =

c(z1)

c(z2)
...

c(zM)

(9.5)

CHAPTER 9. TWO-PARTY COMPUTATION FOR DISTANCE INFERENCE 77

Then, the Normalized Modular Distance between z1 and z2 ∈ ZMk is equal to

dmod(z1 z2) = dHamming(c(z1), c(z2))
M

(9.6)

With this result we enable the estimation of the Euclidean distance between two points in RN using the

Hamming distance of two binary vectors. As a consequence, we can replace the third party computation

by any protocol which computes securely the Hamming distance between binary vectors; for example, [31]

defines a two party protocol based on Oblivious Transfer.

To summarize, we define the following protocol,

Protocol:

1. Alice generates (k,A, U) and sends them to Bob.

2. Alice computes c(Qk,A,U (x1)) privately.

3. Bob computes c(Qk,A,U (x2)) privately.

4. Alice and Bob apply a secure two party protocol to compute the Hamming distance d between

c(Qk,A,U (x1)) and c(Qk,A,U (x2)).

5. Alice and Bob compute the estimate of ‖x1 − x1‖ as d
M .

Unlike most protocols based on homomorphic encryption to compute the Euclidean distance, the com-

plexity of the presented protocols does not depend on the dimensionality of the vector at the moment of

applying the cryptographic technique. Hence, our proposal for computing the Euclidean distance between

two vectors is to embed them in binary vectors and compute the Hamming distance between them.

9.4 Conclusions

In this chapter we have presented an application of Gaussian Modular Hashes. We know that, given a

threshold T , we can generate hashes from vectors preserving the Euclidean distance if this is smaller than

T . These hashes are uninformative if the random parameters of the function are unknown. With this kind

of transformation, we enable the description of protocols to compute distances privately and efficiently. In

fact, the hash defined is not only uninformative, but it can be seen as a transformation which reduces the

data dimension and preserves the Euclidean distance in the modular distance output space. Although the

fact that the preservation of the distance holds until some threshold seems to be a drawback, if both Alice

and Bob know the maximum possible distance between their vectors (i.e. the threshold T within which they

CHAPTER 9. TWO-PARTY COMPUTATION FOR DISTANCE INFERENCE 78

would like to enable distance computation), then they can set an appropriate value of k which lets them

preserve all possible values of the distance within that threshold.

In addition, we describe how to prevent the use of a third party, by using a particular encoding of

the hashes that transforms the modular distance between hashes into a Hamming distance between binary

vectors, and a cryptographically secure two-party computation protocol for Hamming distance computation.

Part V

Conclusions

79

Chapter 10

Thesis Conclusions

In this thesis, we have analyzed the problem of performing operations on the cloud with private data. We

considered a setting where a data owner can transform its data instances prior to sending them to the cloud,

in order to prevent an adversary from gaining potentially sensitive information about the data. We proposed

the concept of Limited Leakage Transformations, which are functions with two properties: a transformed

points provides no information about the original data, and the comparison of transformed points cannot

provide information about the points if the distance between them is large, but it is persistent for points

that are close.

We considered the utility of this transformation for training distance-based machine learning models in

the cloud with sensitive data. Our privacy mechanism allows us to hide information in the cloud, exhibiting

just the relevant information related to points that are sufficiently close. We also analyzed concrete potential

applications that this kind of mechanism may have. We summarize our results below.

10.1 Summary of Results

Part II

In this part, we studied measures of privacy loss, concluding that the mutual information between trans-

formed points is a reasonable and natural way to measure information leakage between transformed points.

Later, in chapter 4, we introduced the concept of Limited Leakage Transformation as a privacy mechanism.

This allows to transform data points in a manner that removes relationships between vectors that are distant

from one another. In order to understand the different types of comparisons that an adversary can make,

we introduced the idea of information leakage under complex comparisons, which basically is the mutual

information between two sets of transformed data.

80

CHAPTER 10. THESIS CONCLUSIONS 81

We proved a generic theoretical result about how the information leakage can be controlled under spe-

cific geometric conditions of the data points. We also have presented particular examples of this kind of

transformation, providing a rigorous analysis about the information leakage at different levels of comparison.

Moreover, we note that the proposed particular constructions are relatively fast to compute; they are simply

quantized linear operations.

Finally, we make a comparison between our technique and other approaches that aim to preserve privacy.

We conclude that our technique is agnostic to the potential calculation to be performed on the cloud, unlike

other methods such as differential privacy, where the main objective is preserving privacy after releasing a

set of statistics or a machine learning model.

Part III

In this part we studied different kinds of operations that can be useful when the points are sufficiently close.

We started by analyzing the Normalized Hamming distance between transformed points, in particular using

our proposed Gaussian Modular Hash function. We showed that metric between transformed vectors provides

a good estimation of the actual Euclidean distance between original points. The computational advantage is

evident; Hamming distance computation is a fast operation in general, with negligible computational cost.

We also analyzed another topology in Zk, provided by the modular distance. We could show that the

normalized modular distance can estimate accurately the Euclidean distance if this is smaller than some

threshold. For both methods to compute distance between hashed data, we gave theoretical guarantees over

the necessary number of components to bound the error estimation.

Next, in chapter 6, we focus on machine learning algorithms based on distances. One contribution was to

make a direct connection with kernel methods, showing that a small modification of the hash function can

be connected to kernel estimation, allowing us to covert a non-linear kernel-computation problem using the

original vectors into a linear problem with hashed data. This is particularly useful in large scale scenarios,

where computing the Gram-kernel matrix is an infeasible task.

We also presented an empirical evaluation of this technique, for the particular case of the Laplacian

kernel, showing a minimal loss of performance in the problem of audio scene classification (as an exemplar

task) using support vector machines.

Part IV

In this last part, we analyze the scope of our proposed concept in different applications. In all of them

the use of distance computation is a key element. First, we went through the problem of protecting speech

CHAPTER 10. THESIS CONCLUSIONS 82

signals, which is a relevant topic since an audio recording may contain a lot of sensitive information about

the speaker. One popular application of speech processing is speaker identification, where speech is used as

a signature for individuals. Beside the fact the speech signal may be used for undesirable purposes, other

problems arise in this application. As in any biometric, if the input signal is compromised, security concerns

appear; for example, an imposter may try to impersonate a particular person for accessing a system. To

deal with these problems, the concept of cancelable biometrics has been proposed in the past. In this work,

we could show that Limited Leakage transformations can be used to define a Two Factor Transformation,

satisfying the required conditions to obtain a cancelable function, and therefore, allowing to protect the

biometric signals from potential privacy risks.

We also explored the problem of retrieving images with privacy constraints. We discusse how our method,

besides enhancing privacy, can be used to perform fast search of files. A system for private image retrieval

has been implemented using our approach.

Finally, we study a secure two-party computation protocol based on our technique to compute distances

without revealing the corresponding vectors. To do so, we first introduced the notion of “somewhat-trusted”

third party, who receives the information to estimate the distance but can not infer any other information

about the corresponding vectors involved. Since our hash function also works as a dimensionality reduction

method, this method can be used to speed up the calculation. Moreover, if the use of a third part is not

desired, we can combine this technique with cryptographic approaches. Since the distance estimation can be

done using a Hamming distance between transformed points, we can use any cryptographic technique that

is optimized to perform this operation.

10.2 Discussion

We have presented the concept of Limited Leakage Transformation, which has the property that comparing

transformed vectors reveals information about their similarity in a limited way, giving information about

their similarity if they are close, but providing no information about it if the points are far enough. Based

on Information Theory tools, we study generic theoretical results and we propose concrete constructions

of transformations that satisfy our requirements. In general, these transformations are fairly efficient to

compute, which is a relevant property since in the context of cloud computing, the evaluation of these

functions must be done before sending the data to the cloud.

We also analyzed the different operations that can be performed on the transformed data. We studied

how to estimate distances and how to train distance-based machine learning models. We observe that, in

general, these operations are fast to compute and also reduce the complexity of some machine learning

CHAPTER 10. THESIS CONCLUSIONS 83

algorithms. Finally, both theoretically and empirically, we could observe that our method also provides a

new way to set the trade-off between privacy and utility. In fact, controlling the information leakage has an

effect on the performance of the quality of distance estimation and the accuracy of classification models. For

our concrete examples, we observe that the way to control the information leakage is by varying the number

of components in the transformed vector or through the variance of the random keys used by the transform.

From a user perspective, this is very convenient; she or he can determine, based on their own risk tolerance,

the information that they are willing to leak.

In this way, we believe that our proposed approach allows us to perform fast and private computations

on the cloud.

Chapter 11

Future Work

In this thesis, we have developed the concept of Limited Leakage Transformation, presenting both theoretical

and empirical results, as well as, analyzing different applications. However, there is a lot of room to continue

developing this theory.

11.1 Multiparty Formulation

An open question relates to obtaining a multiparty scheme based on our method. It is very often to assume

that the data comes from different sources, for example, different users of a platform. If all the users need

to send the data to a common repository to perform computation there, it is reasonable to think that they

need to have their own secret key. However, if users generate their keys independently, we know that they

produce independently transformed values, and therefore, the comparison between them will be useless.

Thus, something interesting to explore is how to combine different, independent keys in order to obtain

similar properties as that presented in this work.

Another direction is related to controlling the leakage based on different users’ role. For example, for the

interactions of some particular users we would like a small level of leakage, while for other interactions we

are willing to tolerate larger information leakage.

11.2 Transforming Non-vector objects

The concept of Limited Leakage Transformation and ε−persistence were defined for any metric space. This

provides a generic framework to work with. Nevertheless, the practical constructions we presented are just

for the Euclidean space with some norm. Therefore, we think that it could be very relevant to explore

transformations for other kind of metric spaces, such as graphs or variable length strings.

84

CHAPTER 11. FUTURE WORK 85

The challenge is to find computationally efficient transformations which allow us to control the informa-

tion leakage in an easy manner.

11.3 Signal Reconstruction using Keys

One problem, which comes from the Compressed Sensing field, is whether we can recover the original vector

x from QR(x) and R. All the privacy statements stated in this work make the assumption that R must

be kept secret. However, it is not evident how to reconstruct the original signal knowing the secret key. If

this can be done with an efficient algorithm, then we can also consider our transformation as a compressing

technique. If not, it means that the keys can be released and the main risk related to the privacy of the

data are dictionary attacks. Nevertheless, the evidence seems to point to the former scenario. In [110] some

algorithm have been presented to reconstruct signal under specific geometric conditions with a similar (but

not the same) scheme to compress data.

Appendix A

Random Convolutional Features

A.1 Introduction

One particularly important task in time signal processing is signal classification, where given a time signal,

we must determine the class it belongs to. Applications range from classification of medical time signals (such

as ECGs) to automatic speech recognition, classification of financial series, astronomy, and even modeling

language.

The most common approaches employ statistical models, such as Hidden Markov Models [78] [79] [80],

conditional random fields [81] [82], or convolutional or recurrent neural networks [83] [84] [85] [86]. While

highly effective, these approaches are typically data intensive, prone to overfitting, and often need high

tuning of hyperparameters.

An alternate approach is through kernel methods, such as support vector machines, which are generally

less data intensive and easier to optimize. However, these come with a concomitant challenge: that of defining

an appropriate kernel that captures the similarity between instances. Conventional similarity measures such

as the inner product will not suffice, since one must also consider the alignment between time signals when

computing their similarity. Consider, for instance, the two signals sin(ωk) and sin(ωk + φ), where k is the

running time index. Although the two are structurally identical, the inner product between the two will

vary with the phase shift φ. In order to correctly compute the similarity between the two signals, they must

be aligned to line up; however the amount of shift will generally not be known a priori. Hence, a good

similiarity measure between time signals must be shift invariant.

Several common solutions for computing kernels between time signals view them as regular vectors

and do not consider the alignment between them [87]. Other approaches do implicitly consider the issue,

but generally construct expensive statistical machinery to do so [88][89] [90] [91]. Fourier-transform-based

86

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 87

methods transform the signals into the Fourier domain, to deal with the issue of shift invariance [92], however

they effectively consider every alignment, not just the right one, making them susceptible to noise [93]. The

kernels that best account for the alignment between the two signals are DTW-based kernels [94] [95] that

explicitly find the optimal warping between them in the process of computing their similarity. However,

the computational complexity of finding the optimal warp is quadratic, or even cubic in the length of the

sequences, making them impractical in many scenarios.

Possibly the most appropriate similarity measure in this setting is the peak cross-correlation between the

signals. The cross-correlation of two time signals computes the inner product between the signals at every

alignment between the two. Formally, given two time signals f = (f1, ..., fN) and g = (g1, ..., gN) of length

N , the cross-correlation between the two, represented as f ? g, is the signal computed as

(f ? g)i =
∑
k

fk · gk+i (A.1)

Different settings of the limits of the summation in k result in different types of cross-correlation. The

linear cross-correlation between f and g is obtained by summing k from −∞ to ∞, assuming that both f

and g take value 0 outside the index range 1 · · ·N . The circular cross-correlation is obtained by summing

k from 1 to N , and assuming gk+i = gN−k−i for k + i > N [96]. The linear cross-correlation may also be

obtained from the circular cross-correlation by zero-padding both signals out to length 2N and computing

the circular cross-correlation over the longer zero-padded sequences. In either case, the outcome of Equation

A.1 is a complete time signal, where each term (f ? g)i computes the inner product between f and g when

the latter has been shifted by i in order to line it up with f .

The peak cross correlation is the maximal value of the cross correlation, maxi(f ? g)i, which is the inner

product under the best scoring alignment between the two time signals. Although this quantity has good

properties such as symmetry, and accounts well for the alignment of the two signals, it does not define a

valid kernel; the corresponding gram matrix may not be positive definite [97]. Instead, we define a cross-

correlation kernel as a weighted combination of the elements of the cross-correlation, such that the maximum

value of the cross-correlation has a larger weight compared to the remaining values:

K(f , g) = 1
N

∑
i

exp (γ · (f ? g)i) , (A.2)

where γ is a positive parameter which governs the relative contribution of the individual terms – as γ

increases, the contribution of the maximum values of the cross-correlation is larger. It can be proved that

K(f , g) as defined above is indeed a proper kernel [97].

For the circular cross-correlation, one way to compute this is through the Fourier Transform. Using the

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 88

properties of the Fourier Transform it is straightforward to see that [96]

K(f , g) = 1
N

∑
i

exp
(
γ · F−1 (F(f) · F(g)∗)i

)
(A.3)

where F(f) is the Fourier transform of f , F−1 is the inverse Fourier transform operator, and F(g)∗ is the

component-wise complex conjugate of F(g). Using the Fast Fourier Transform algorithm to compute the

Fourier transforms, the complexity of computing K(f , g) is O(N logN) [98]. While this is less computa-

tionally expensive to compute than other time-signals kernels, it is still significantly more expensive than

computing a simple inner product, which has a complexity of only O(N). The difference is even greater when

the sequences must be increased in length by zero-padding, in order to compute the linear cross-correlation

via circular cross-correlation.

This leads us to the key challenge addressed in this work. The cost of computing the kernel is a significant

component of both training and evaluating kernel machines such as SVMs. For SVMs in particular, for non-

linear kernels such as the cross-correlation kernel, we must solve the dual form of the optimization to train

the model, which requires the computation of a gram matrix. Gram matrix computation scales quadratically

(both in time and storage complexity) with the number of training samples. Thus, for the cross-correlation

kernel, training the SVM with L training samples would require O(L2N logN) computations, just for the

gram matrix. In addition, given a model with V support vectors, the inference would require O(V N logN)

computations per sample to be classified.

In such situations, it is well known that random projections of the data can be used to derive simpler,

lower-dimensional representations of the data on which the kernels can be approximated, to derive savings

in both computation and storage [29] [99]. This method has been successfully applied to both inner-product

kernels of high-dimensional data [100] [21], and to a variety of non-linear kernels [101] [102], although in the

latter case the actual manner of computing the random features depends on the kernel.

In this work we extend this principle to derive a randomized scheme for computing lower-dimensional

representations of time-signals data, from which cross-correlation kernels can be computed through a simple

inner-product computation. We call these random convolutional features.

The proposed method has multiple desirable features. The computation of random features makes no

assumption about the length of the time signals; this is, the number of components in the low-dimensional

representation depends only on the energy in the signal, and not on the number of samples in it. In practice,

the number of components required is generally smaller than the length of the time signal itself. Thus the

cost of computing a kernel thus becomes that of computing a low-dimensional inner product. For energy-

normalized signals, this becomes a fixed-dimensional computation. The final benefit is one that is common

to most random-feature-based approximations of kernel functions: since kernel computation now becomes an

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 89

inner product, the training of the SVM can be solved in its primal form, eliminating the need for the gram

matrix. The time and space complexity of the model too simply become the size (number of components)

in the random feature itself; the cost of inference reduces to that of deriving the projection itself.

This part is organized as follows. In Section 2 we describe our proposed random feature construction

providing some theoretical guarantees to validate its use. In Section 3, we present a experimental results

on a number of data sets, showing that these benefits come at no cost to classification performance, which

remains comparable to that obtained with the full cross-correlation kernel. Finally, in Section 4, we conclude

analyzing the scope of this techniques and discussing future directions.

A.2 Methods

In this section we describe the construction of our random feature scheme that approximates the cross-

correlation kernel.

First, we present our scheme, named random convolutional features, which defines a random mapping

from time signals to a low dimensional space, approximating the cross-correlation kernel through the com-

putation of inner products between random features. Later, we show theoretical guarantees to validate the

approximation to the cross-correlation kernel.

A.2.1 Random Convolutional Features

As its name says, the random feature scheme presented is based on a convolutional operation. The random-

ness of this features comes from its parameters which are randomly generated according to some particular

distributions.

Definition. Let γ be a positive number. LetW = {w1, ...,wM} be a set ofM random time signals of length

N , where each component is random and independently generated according to a Gaussian distribution

N (0, γ), and U a set M scalars where each one is random and independently generated using a uniform

distribution between 0 and 2π. We define a random convolutional feature as the random mapping ψW,U,γ :

RN → RM as follows:

ψW,U,γ(f)i =
√

2
N
√
M

exp
(γ

2 ‖f‖
2
) N∑
j=1

cos ((wi ∗ f)j + ui) (A.4)

where ∗ denotes the convolution operation between signals.

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 90

22 23 24 25 26 27 28 29 210 211 212
0

1

2

3

4

1032

0 1 2 3 4 5 6 7

1030

0

1

2

3

4

5

6

7

1030

Figure A.1: Approximation of Cross-correlation Kernel through inner product of Random Features. (Left)
Effect of the number of components in the random mapping on the approximation error for Kernel estimation.
(Right) Pairwise comparison between the cross-correlation and its estimation through random features. Each
dot is a corresponds to a pair (f1, f2). We consider M = 1024. Both figures where generated using the Gun-
Point data set from [103]

A.2.2 Theoretical Results

The following results show the relation of the random convolutional features to the cross-correlation kernel.

The first result analyzes the expected values of inner products between random features while the second

shows how to use these inner products.

Theorem 1. For any time signals f1, f2 ∈ RN , the expected value of the inner product between their

corresponding random mappings ψW,U,γ(f1) and ψW,U,γ(f2) is given by:

E
(〈
ψW,U,γ(f1) , ψW,U,γ(f2)

〉)
= K

(
f1 , f2

)
= 1

N

N∑
i=1

exp
(
γ · (f1 ? f2)i

)
(A.5)

Proof

Since w are totally random, we can interchange the convolutional operation by a cross-correlation.

E (ψW,U,γ(f1)i · ψW,U,γ(f2)i) = 2
N2M

exp
(γ

2 ‖f1‖2
)
· exp

(γ
2 ‖f2‖2

)
·

E

 N∑
j=1

cos ((wi ? f1)j + ui)

 ·
 N∑
j=1

cos ((wi ? f2)j + u)

= 2

N2M
exp

(γ
2 ‖f1‖2

)
· exp

(γ
2 ‖f2‖2

)
·

E

 N∑
j=1,k=1

cos ((wi ? f1)j + ui) · cos ((wi ? f2)k + ui)

but, by definition of cross-validation, we know that (w ? f)j = 〈w , f(j)〉, where f(j) is the circular shifted

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 91

version of f shifted by j positions. Then, from [21], we have

E [ψW,U,γ(f1)i · ψW,U,γ(f2)i] = 2
N2M

exp
(γ

2 ‖f1‖2
)
· exp

(γ
2 ‖f2‖2

)
·

N∑
j=1,k=1

E
[

cos ((wi ? f1)j + ui) · cos ((wi ? f2)k + ui)
]

= 1
N2M

N∑
j=1,k=1

exp(γ〈f1(j) , f2(k)〉)

but, we know that 〈f1(j) , f2(k)〉 = 〈f1 , f2(k−j)〉. Therefore,

E [ψW,U,γ(f1)i · ψW,U,γ(f2)i] = 1
N2M

·N
N∑
j=1

exp(γ〈f1 , f2(j)〉)

= 1
NM

N∑
j=1

exp(γ(f1 ? f2)j)

Finally, using the linearity of expectation, we get the desired result.

�

Thus, the cross-correlation kernel corresponds to the expected value of the inner product between the

proposed random features. Furthermore, we can analyze the convergence of actual inner product to the kernel

function. The following statement, based on applying Hoeffding’s inequality, provides some guarantees.

Theorem 2. If we have a set of L time signals of length N , T = {f1, f2, ..., fL}, and C ≥ ‖fi‖2 for all i,

then, considering M ≥ 16 exp(2γC)
ε2 log

(
L
η

)
, we have

P
(
∀fi, fj ∈ T ,

∣∣∣〈ψW,U,γ(fi) , ψW,U,γ(fj)
〉
−K

(
fi, fj

)∣∣∣ < ε
)
≥ 1− η (A.6)

Therefore, the probability of obtaining a small error in the estimation of the kernel using the inner

product between random features depends on the number of components in the random features and the

energy of the time signals. Figure A.1 illustrates this.

Applying this technique to SVMs has several advantages. In case of using directly the cross-correlation

kernel, we know that for training we need to obtain the gram matrix which requires O(L2 N logN) computa-

tions. Alternatively, we can compute random features and train a linear model using a fast implementation.

Obtaining the random features requires O(MLN logN). So, if M � L, we can observe a natural advantage

in the training phase. In the case of inference, using the kernel function directly requires to store O(V N)

values and perform O(V N logN) operations for each prediction, where V is the number of support vectors.

On the other hand, using random features, we must store O(M) values and perform O(MN logN) com-

putations for each prediction. Then, in case of M � V we get a benefit for inference computation, while

having M � V N gives benefits in model storage.

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 92

A.3 Experiments

As a proof of concept, we applied the presented technique over 15 different data sets for the task of time

signals binary classification. This section aims to show the benefits of the modeling capabilities of the cross-

correlation kernel as well as analyze the benefits of using random convolutional features with linear SVM

over the raw time signals with the cross-correlation kernel.

A.3.1 Datasets

For our experiments, we used 15 data sets provided by the University of California, Riverside time series

classification archive [103]. Each data set consists of equal-length time series belonging to one of two classes.

The data sets selected and details about the size of the training and testing sets, as well as the time series

length are presented in table A.1.

Beside the sample points, this archive also provides the prediction error of three different classification

methods; 1-Nearest Neighbor using Euclidean distance, 1-Nearest Neighbor using Best Warping Window

DTW, and 1-Nearest Neighbor using DTW with no Warping window.

A.3.2 Results using Nonlinear SVM with Cross-correlation kernel

First, we evaluate the capabilities of the cross-correlation kernel over the 15 data sets presented in table

A.1 using a SVM classifier based on this kernel. To select the hyperparameters γ that defines the kernel,

and C corresponding to the SVM cost, we performed a grid search considering γ ∈ {2−10, 2−9, ..., 2−1, 1}

and C ∈ {10−4, 10−2,1 ,102 , 104}, doing the selection through jack-knife cross-validation. In table A.1 the

selected parameters can be found, as well as their corresponding error classification rate.

We can observe that in 11 of 15 data sets, SVM models with cross-correlation kernel outperform alter-

native methods. This shows empirically the utility of this kernel function.

A.3.3 Results using Linear SVM with Random Features

To analyze the utility of our proposed random features we trained linear SVMs using different values of

M . To select the hyperparameters we proceeded as before. In table A.1 we present the error rates we

obtained. We can observe how the error rate changes as the number of components on the random features

increases. In general, we observe that error rate decreases as M increases; except for the case of the data

set BirdChicken.

Moreover, in 7 of 15 data sets the difference between the nonlinear method compared to the linear method

is less than 1% using 256 or less components in random features, and in other 4 data sets the difference is

APPENDIX A. RANDOM CONVOLUTIONAL FEATURES 93

Table A.1: Results in Binary Classification Task.

Data set SVM with Cross-Correlation Kernel SVM with Random Convolutional Features Other Methods

Signal
Length

γ C Error
Rate M = 25 M = 26 M = 27 M = 28 1-NN

Euclidean
Distance

1-NN Best
Warping Window

DTW

1-NN DTW,
no Warping
Window

Gun-Point 150 0.0625 0.0001 0.013 0.035 0.031 0.028 0.025 0.087 0.087 0.093
Lightning-2 637 0.0156 0.0001 0.230 0.282 0.252 0.224 0.212 0.246 0.131 0.131
ECG 96 0.0313 1 0.100 0.159 0.142 0.130 0.129 0.120 0.120 0.230
Coffee 286 0.0313 0.0001 0.000 0.012 0.007 0.003 0.000 0.000 0.000 0.000
ECGFiveDays 136 0.1250 0.0001 0.005 0.009 0.003 0.006 0.002 0.203 0.203 0.232
MoteStrain 84 0.2500 0.0001 0.265 0.274 0.246 0.238 0.255 0.121 0.134 0.165
SonyAIBORobot Surface 70 0.1250 0.0001 0.068 0.237 0.212 0.183 0.182 0.305 0.305 0.275
SonyAIBORobot SurfaceII 65 0.0625 0.0100 0.132 0.199 0.194 0.187 0.168 0.141 0.141 0.169
TwoLeadECG 82 0.2500 0.0001 0.011 0.036 0.024 0.021 0.016 0.253 0.132 0.096
BeetleFly 512 0.0156 0.0001 0.050 0.303 0.292 0.270 0.242 0.250 0.300 0.300
BirdChicken 512 0.0078 0.0100 0.200 0.171 0.176 0.185 0.204 0.450 0.300 0.250
Ham 431 0.0313 0.0001 0.305 0.309 0.311 0.309 0.300 0.400 0.400 0.533
Herring 512 0.0010 100,000 0.359 0.418 0.424 0.421 0.407 0.484 0.469 0.469
ToeSegmentation1 277 0.0313 0.0001 0.118 0.274 0.248 0.225 0.221 0.320 0.250 0.228
ToeSegmentation2 343 0.0039 1.0000 0.123 0.182 0.157 0.140 0.136 0.192 0.092 0.162

less than 5%. This diversity is due the complexity of finding the decision boundary, as is established in [100].

We note that, even with 32 components the loss of performance be can considered acceptable in several

cases.

A.4 Conclusions

In this work we presented a random feature scheme that allows us to transform time signals into a low dimen-

sional vectors, and used them to approximate the cross-correlation kernel through a simple inner product

computation. Our main contribution was to show theoretical guarantees to validate this approximation. We

studied this scheme with SVMs for Time Signal Classification. The proposed random feature provides min-

imal loss of performance in several cases, reducing storage and transforming a non-linear learning problem

into a linear one. This has a significant implication in big data scenarios, where a large number of signals

must be processed.

Moreover, the presented scheme has other potential applications. For example, with this technique we

could train compact models on devices; linear models are much simpler to train than kernel-based models,

specially with low dimensional data. Another application is related to cloud computing and privacy. In case

we need to process sensitive time signals (e.g. medical or financial data), we can apply this random mapping

keeping the random parameters W and U private. Then, we can still process the transformed data in the

cloud, hiding in somehow information without exposing the original data.

Finally, we think this work can provide some guidelines to understand other methods based on cross-

correlation, such as Convolutional Neural Networks. In fact, previous works have shown that it is possible

to obtain good performance even without training the random initialized filters [104], being consistent with

our results.

Appendix B

Proofs

B.1 Proof Theorem 4.2.1

Theorem 4.2.1.

Consider that {x0,x1, ...,xn} ⊆ B(x0, ε1) and {z0, z1, ..., zm} ⊆ B(z0, ε2). If QR is a random transformation

that satisfies LLP with constants C and γ, and QR is ε−persistent with ε > max{ε1, ε2}, then

I
(
QR(x0) , QR(x1) , ..., QR(xn) ; QR(z0) , QR(z1) , ..., QR(zm)

)
≤ C exp

(
− γ d(x0 , z0)

)
+H(p1) +H(p2)

+(1− p1) log(|E|n − 1)

+(1− p2) log(|E|m − 1)

where pi = ρ(εi, QR), and H(p) is the entropy of a random variable distributed as a Bernoulli(p), this is

H(p) = −p log p− (1− p) log(1− p).

Proof

First, we will prove the following result,

Proposition. For any set of points {x0,x1, ...,xn} and {z0, z1, ..., zm} is always true the next

inequality,

I
(
QR(x0) , QR(x1) , ..., QR(xn) ; QR(z0) , QR(z1) , ..., QR(zm)

)
≤ I

(
QR(x0) ; QR(z0)

)
+H

(
QR(x1), ..., QR(xn)

∣∣∣QR(x0)
)

+H
(
QR(z1), ..., QR(zm)

∣∣∣QR(z0)
)

Proof Proposition

94

APPENDIX B. PROOFS 95

It is easy to observe that

P
(
QR(x0) = i0, ..., QR(xn) = in, QR(z0) = j0, ..., QR(zm) = jm

)
≤ P

(
QR(x0 = i0 , QR(z0) = j0

)
Then, we have

log
P
(
QR(x0) = i0, ..., QR(xn) = in, QR(z0) = j0, ..., QR(zm) = jm

)
P
(
QR(x0) = i0, ..., QR(xn) = in

)
· P
(
QR(z0) = j0, ..., QR(zm) = jm

) ≤ log
P
(
QR(x0) = i0 , QR(z0) = j0

)
P
(
QR(x0) = i0

)
P
(
QR(z0) = j0

)
+ log

P
(
QR(x0) = i0

)
P
(
QR(x0) = i0, ..., QR(xn) = in

)
+ log

P
(
QR(z0) = j0

)
P
(
QR(z0) = j0, ..., QR(zn) = jn

)

Then, multiplying by the joint probability of all the transformed points and doing the

proper marginalization, we have the result. �

Proof of Theorem

Under the hypothesis the theorem, and using the previous proposition, we just need to find an

upper bound for the conditional entropy terms. Without loss of generality, we can just focus on

the set {x0, ...,xn}.

To do so, we use a similar approach used to prove Fano’s inequality. Let’s consider the random

variable E as follows,

E =

 1 if QR(x0) = QR(x1) = ... = QR(xn)

0 otherwise

With this, using the well known properties of the entropy (and conditional entropy), we have the

following equality,

H
(
QR(x1), ..., QR(xn), E

∣∣∣QR(x0)
)

= H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0)
)

+H
(
E
∣∣∣QR(x0), QR(x1), ..., QR(xn)

)
but, since E is a deterministic function of QR(x0), QR(x1), ..., QR(xn), we have

H
(
E
∣∣∣QR(x0), QR(x1), ..., QR(xn)

)
= 0

On the other hand, we can also write the following,

H
(
QR(x1), ..., QR(xn), E

∣∣∣QR(x0)
)

= H
(
E
∣∣∣QR(x0)

)
+H

(
QR(x1), ..., QR(xn)

∣∣∣QR(x0), E
)

APPENDIX B. PROOFS 96

Note that, since
1
2 ≤ ρ(ε1, QR) ≤ P(E = 1)

therefor,

H
(
E
∣∣∣QR(x0)

)
≤ H(E) ≤ H(ρ(ε1, QR))

With all this, we have

H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0)
)
≤ H(ρ(ε1, QR)) +H

(
QR(x1), ..., QR(xn)

∣∣∣QR(x0), E
)

Finally, we can note the next equation,

H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0), E
)

=
∑
q∈E

P
(
QR(x0) = q , E = 1

)
H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0) = q, E = 1
)

+P
(
QR(x0) = q , E = 0

)
H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0) = q, E = 0
)

But note that, if E = 1, then, all the transformed points have the same value, so, if we know

the value of QR(x0), we can determine the value of the remaining points, so

H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0) = q, E = 1
)

= 0

On the other hand, if E = 0, we know that, there one case that can not happen. Thus, we can

bound the othe conditional entropy term as follows,

H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0) = q, E = 0
)
≤ log

(
|E|n − 1

)
Overall, we have the following inequality

H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0), E
)
≤ P(E = 0) log

(
|E|n − 1

)
but, since ρ(ε,QR) ≤ P(E = 1), we have P(E = 0) ≤ 1− ρ(ε1, QR), obtaining

H
(
QR(x1), ..., QR(xn)

∣∣∣QR(x0), E
)
≤ (1− ρ(ε1, QR)) log

(
|E|n − 1

)
getting our result.

�

APPENDIX B. PROOFS 97

B.2 Proof Theorem 4.3.1

Theorem 4.3.1.

Indistinguishability. If (k,A, U) satisfies the conditions to compose a Gaussian Modular Hash function

Qk,A,U , then, for all x ∈ RN and for all i ∈ ZMk we have

P
(
Qk,A,U (x)

)
= 1

kM

Proof

First, we need to prove the following proposition,

Proposition. Let X be a continuous random variable, and U a continuous uniform random

variable between 0 and k. If X and U are independent, then X+U(mod k) is uniformly distributed

between 0 and k.

Proof Proposition.

It is easy to see that, the density function of X + U is given by

fX+U (x) = 1
k

[FX(x+ k)− FX(x)]

where FX is the cdf of X. Then, if x ∈ [0, k]

fX+U (mod k)(x) =
∑
i∈Z

fX+U (x+ ik)

=
∑
i∈Z

1
k

[FX(x+ k + ik)− FX(x+ ik)]

= 1
k

∑
i∈Z

[FX(x+ (i+ 1)k)− FX(x+ ik)]

Clearly we have a telescope summation. Therefore,

fX+U (mod k)(x) = 1
k

[(
lim
i→∞

F (x+ ik)
)
−
(

lim
i→−∞

F (x+ ik)
)]

= 1
k

�

Proof Theorem

Since all the hash components are independent, we can just focus in a single value, which is

equivalent to consider the number of columns in A as M = 1.

APPENDIX B. PROOFS 98

Notice that

bAx + Uc (mod k) = bAx + U (mod k)c (B.1)

and, by the previous proposition, if X is a random variable and U a uniform between 0 and k,

then X + U(mod k) is distributed as a Uniform between 0 and k. Then, bAx + U(mod k)c is

uniformly distributed over Zk

�

B.3 Proof Theorem 4.3.2

Theorem 4.3.2.

Limited Leakage Property. If (k,A, U) satisfies the conditions to compose a Gaussian Modular Hash

function Qk,A,U , then, there exist positive constants C and γ such that for any pair of points x1, x2 ∈ RN

the mutual information between Qk,A,U (x1) and Qk,A,U (x2) is bounded as follows,

I
(
Qk,A,U (x1) ; Qk,A,U (x2)

)
≤ C exp (−γσ‖x1 − x2‖) (B.2)

Proof

Similar to the previous case, since all the hash components are independent, we can just focus in

a single value, which is equivalent to consider the number of columns in A as M = 1. Hence, the

a bound for the mutual information must just be multiplied by M for the more generic setting.

To prove this theorem, we need to demonstrate several previous results:

Lemma. Consider that (k,A, U) composes a Gaussian Modular Hash function, and x1 and x2

are any points in RN . If we define the random variables Q1 = Qk,A,U (x1) and Q2 = Qk,A,U (x2),

then the following statements are true:

1. ∀i ∈ Zk , P(Q1 −Q2 = i) = P(Q1 −Q2 = −i)

2. If n1 −m1 = n2 −m2, then P(Q1 = n1 , Q2 = m1) = P(Q1 = n2 , Q2 = m2)

3. If n1 −m1 = n2 −m2 ± k, then P(Q1 = n1 , Q2 = m1) = P(Q1 = n2 , Q2 = m2)

Proof Lemma

1. We know that, as in the previous arguments, that

APPENDIX B. PROOFS 99

P(Q1 −Q2 = i) =
∫ ∞

0
gi,k(l)fL(l)dl (B.3)

where fL is the density function of L ∼ N
(
0 , σ2‖x1 − x2‖2), and gi,k = tri ∗ hi,k

where

hi,k(x) =
∞∑
j=0

δ(x− i− jk) +
∞∑
j=0

δ(x+ i+ jk) (B.4)

Similarly

P(Q1 −Q2 = −i) =
∫ 0

−∞
gi,k(l)fL(l)dl (B.5)

and by the symmetry of gi,k and fL we have the result. This can be seen in the

figure B.1.

−i− 2k −i− k −i 0 i i + k i + 2k

0.2

0.4

0.6

0.8

1
gi,k

fL

Figure B.1: Illustration of functions gi,k and fL

2. First, we have to notice that, if X and Y are continuous random variables, and

U ∼ Unif(0, k), then

P(X + U ≤ x , Y + U ≤ y) = P(X ≤ x− U , Y ≤ y − U)

=
∫ k

0
P(X ≤ x− u , Y ≤ y − u) 1

k
du

= 1
k

∫ k

0
FX,Y (x− u, y − u)du

= 1
k

∫ x

x−k
FX,Y (t, y − x+ t)dt

= 1
k

∫ y

y−k
FX,Y (x− y + t, t)dt

APPENDIX B. PROOFS 100

Besides, if n,m ∈ Z

P (bX + Uc = n , bY + Uc = m) = P(X + U ≤ n+ 1 , Y + U ≤ m+ 1)

−P(X + U ≤ n+ 1 , Y + U ≤ m)

−P(X + U ≤ n , Y + U ≤ m+ 1)

+P(X + U ≤ n , Y + U ≤ m)

then, if n,m ∈ Z such that 0 ≤ n < k and 0 ≤ m < k

P(bX + Uc = n , bY + Uc = m mod k) =
∑
i,j∈Z

P (bX + Uc = n+ ik , bY + Uc = m+ jk)

=
∑
i,j∈Z

[P(X + U ≤ n+ ik + 1 , Y + U ≤ m+ jk + 1)

−P(X + U ≤ n+ ik + 1 , Y + U ≤ m+ jk)

−P(X + U ≤ n+ ik , Y + U ≤ m+ jk + 1)

+P(X + U ≤ n+ ik , Y + U ≤ m+ jk)]

=
∑
i,j∈Z

1
k

∫ n+ik+1

n+ik+1−k
FX,Y (t,m− n+ (j − i)k + t)dt

−1
k

∫ n+ik+1

n+ik+1−k
FX,Y (t,m− n+ (j − i)k − 1 + t)dt

−1
k

∫ n+ik

n+ik−k
FX,Y (t,m− n+ (j − i)k + 1 + t)dt

+ 1
k

∫ n+ik

n+i+k−k
FX,Y (t,m− n+ (j − i)k + t)dt

Doing a change of variables in the indexes in the summation, j = j − i and i = i,

we have

P(bX + Uc = n , bY + Uc = m mod k) =
∑
i,j∈Z

1
k

∫ n+ik+1

n+(i−1)k+1
FX,Y (t,m− n+ jk + t)

−F (t,m− n+ jk − 1 + t)dt

−1
k

∫ n+ik

n+(i−1)k
FX,Y (t,m− n+ jk + 1 + t)

−FX,Y (t,m− n+ jk + t)dt

=
∑
j∈Z

1
k

∫ ∞
−∞

2FX,Y (t,m− n+ jk + t)

−FX,Y (t,m− n+ jk − 1 + t)

−FX,Y (t,m− n+ jk + 1 + t)dt

Thus, this last expression depends on the difference between m and n.

APPENDIX B. PROOFS 101

3. From the last expression, we have

P(bX + Uc = n1 , bY + Uc = m1 mod k) =
∑
j∈Z

1
k

∫ ∞
−∞

2FX,Y (t,m1 − n1 + jk + t)

−FX,Y (t,m1 − n1 + jk − 1 + t)

−FX,Y (t,m1 − n1 + jk + 1 + t)dt

=
∑
j∈Z

1
k

∫ ∞
−∞

2FX,Y (t,m2 − n2 ± k + jk + t)

−FX,Y (t,m2 − n2 ± k + jk − 1 + t)

−FX,Y (t,m2 − n2 ± k + jk + 1 + t)dt

=
∑
j∈Z

1
k

∫ ∞
−∞

2FX,Y (t,m2 − n2 + jk + t)

−FX,Y (t,m2 − n2 + jk − 1 + t)

−FX,Y (t,m2 − n2 + jk + 1 + t)dt

= P(bX + Uc = n2 , bY + Uc = m2 mod k)

�

We also need to prove the next result

Proposition 1. If (k,A, U) composes a Gaussian Modular Hash function, then ∀x1,x2 ∈ RN

and ∀i ∈ Zk, defining the random variables Qi = Qk,A,U (xi), we have

P
(∣∣Q1 −Q2

∣∣ = i) + P
(∣∣Q1 −Q2

∣∣ = k − i
)
≤ 2 · P(Q1 = Q2) (B.6)

Proof of Proposition 1

We know that

P
(∣∣Q1 −Q2

∣∣ = i
)

=
∫ ∞
−∞

fL(l) · (tri ∗ hi,k (l)) dl (B.7)

where fL is the density function of L ∼ N
(
0 , σ2‖x1 − x2‖2), and gi,k = tri ∗ hi,k

where

hi,k(x) =
∞∑
j=0

δ(x− i− jk) +
∞∑
j=0

δ(x+ i+ jk)

Therefore

P
(∣∣Q1 −Q2

∣∣ = i

)
+ P
(∣∣Q1 −Q2

∣∣ = k − i

)
=

∫ ∞
−∞

fL(l) ·
(
tri ∗ hi,k (l)

)
dl +

∫ ∞
−∞

fL(l) ·
(
tri ∗ hk−i,k (l)

)
dl

=
∫ ∞
−∞

fL(l) ·
(
tri ∗

(
hi,k + hk−i,k

)
(l)
)

dl

APPENDIX B. PROOFS 102

However,

hi,k(x) + hk−i,k(x) =
∞∑
j=0

δ(x− i− jk) +
∞∑
j=0

δ(x+ i+ jk) +
∞∑
j=0

δ(x− (k − i) − jk) +
∞∑
j=0

δ(x+ (k − i) + jk)

=
∞∑
j=0

δ(x− i− jk) +
∞∑
j=0

δ(x+ i+ jk) +
∞∑
j=0

δ(x+ i− k − jk) +
∞∑
j=0

δ(x+ i+ k + jk)

=
∞∑
j=0

δ(x− i− jk) +
∞∑
j=0

δ(x+ i+ jk) +
∞∑
j=1

δ(x+ i− jk) +
∞∑
j=1

δ(x+ i+ jk)

=
∑
j∈Z

δ(x− i− jk) +
∑
j∈Z

δ(x+ i+ jk)

=
∑
j∈Z

δ(x+ jk) ∗ (δ(x− i) + δ(x+ i))

Then, applying the Parseval’s Theorem, we have

P
(∣∣Q1 −Q2

∣∣ = i
)

+ P
(∣∣Q1 −Q2

∣∣ = k − i
)

=
∫ ∞
−∞

f̂L(ξ) · ̂(tri ∗ (hi,k + hk−i,k))(ξ) dξ

=
∫ ∞
−∞

f̂L(ξ) · ˆtri(ξ) ̂(hi,k + hk−i,k)(ξ) dξ

=
∫ ∞
−∞

f̂L(ξ) · ˆtri(ξ)
̂(∑

j∈Z

δ(x+ jk) ∗ (δ(x− i) + δ(x+ i))

)
(ξ) dξ

=
∫ ∞
−∞

f̂L(ξ) · ˆtri(ξ) · 1
k

∑
j∈Z

δ
(
ξ + j

k

)
· 2 cos(2πξ) dξ

≤ 2
∫ ∞
−∞

f̂L(ξ) · ˆtri(ξ) · 1
k

∑
j∈Z

δ
(
ξ + j

k

)
dξ

= 2
∫ ∞
−∞

e
−2
(
π‖x1−x2‖ξ

δ

)2

· sinc2(ξ) · 1
k

∑
j∈Z

δ
(
ξ + j

k

)
dξ

= 2 · P
(
Q1 = Q2

)

�

The last result we need to prove our theorem is the following,

Proposition 2. If (k,A, U) composes a Gaussian Modular Hash function, then ∀x1,x2 ∈ RN

and ∀n , m ∈ Zk, defining the random variables Qi = Qk,A,U (xi), we have

P (Q1 = n , Q2 = m) ≤
P
(
Q1 = Q2

)
k

(B.8)

Proof of Proposition 2.

APPENDIX B. PROOFS 103

Let i be equal to n−m. From the previous lemma, we know that if |n−m| = |n2−m2|,

so

P (Q1 = n , Q2 = m) = P (Q1 = n2 , Q2 = m2) (B.9)

Then

P (|Q1 −Q2| = i) =
∑

|n2−m2|=i

P (Q1 = n2 , Q2 = m2)

= 2 · (k − i) · P (Q1 = n , Q2 = m)

Moreover, from the previous lemma we can also see that, if |n−m| = k − |n2 −m2|

P (Q1 = n , Q2 = m) = P (Q1 = n2 , Q2 = m2)

with this, we can get the following

P (|Q1 −Q2| = k − i) =
∑

|n2−m2|=k−i

P (Q1 = n2 , Q2 = m2)

= 2 · i · P (Q1 = n , Q2 = m)

Thus,

P
(∣∣Q1 −Q2

∣∣ = i
)

+ P
(∣∣Q1 −Q2

∣∣ = k − i
)

= 2 · (k − i) · P (Q1 = n , Q2 = m)

+2 · i · P (Q1 = n , Q2 = m)

= 2kP (Q1 = n , Q2 = m)

And using the previous proposition, we have

2k P (Q1 = n , Q2 = m) ≤ 2P (Q1 = Q2)

�

Proof of Theorem Defining the random variables Qi = Qk,A,U (xi)„ we have that the mutual

information between Q1 and Q2 is given by

I(Q1 ; Q2) =
k−1∑
n,m=0

P(Q1 = n , Q2 = m) log
(

P(Q1 = n , Q2 = m)
P(Q1 = n)P(Q2 = m)

)

but, we know that for any i ∈ Zk we have

P(Q1 = i) = P(Q2 = i) = 1
k

APPENDIX B. PROOFS 104

Then

I(Q1 ; Q2) =
k−1∑
n,m=0

P(Q1 = n , Q2 = m) log (P(Q1 = n , Q2 = m))− log 1
k2

Moreover, since

P (Q1 = n , Q2 = m) ≤ P(Q1 = Q2)
k

we have

I(Q1 ; Q2) ≤
k−1∑
n,m=0

P(Q1 = n , Q2 = m) log
(
P(Q1 = Q2)

k

)
− log 1

k2

= log
(
P(Q1 = Q2)

k

)
− log 1

k2

and, since we know (see theorem 5.2.2)

P(Q1 = Q2) ≤ 1
k

(
1 + k2

3 e
−2
(
πσ‖x1−x2‖

k

)2
)

and finally, using the Mean Value Theorem, we have

I(Q1 ; Q2) ≤ log
(

1
k2

(
1 + k2

3 e
−2
(
πσ‖x1−x2‖

k

)2
))
− log 1

k2

≤ k2 ·
(

1
k2 + 1

3e
−2
(
πσ‖x1−x2‖

k

)2

− 1
k2

)
= k2

3 exp
(
−2
(
πσ‖x1 − x2‖

k

)2
)

�

APPENDIX B. PROOFS 105

B.4 Proof Theorem 4.3.3

Theorem 4.3.3.

If (k,A, U) satisfies the conditions to compose a Gaussian Modular Hash function Qk,A,U , where σ2 is the

variance aij , then, the degree of persistence is given by

ρ(ε,Qk,A,U) =
(
γ
(
N
2 ,

1
4ε2σ2

)
Γ
(
N
2
) − 2

√
2σε

γ
(
N+1

2 , 1
4ε2σ2

)
Γ
(
N
2
))M

where γ(s, x) =
∫ x

0 ts−1e−tdt and it is known as the lower incomplete gamma function, and Γ(z) =∫∞
0 xz−1e−xdx is the well known gamma function.

Proof

Without loss of generality, we can consider M = 1.

Using the same principle if theorem 4.3.2, we can show that, since the hash is based on a random

projection, the following

ρ(ε,QR) =
∫ 1

0
(1− x)fX(x)dx

where fX is the density function of the random variable X, which is X = 2ε‖A‖ Note that, the

cumulative probability function of X is given by

FX(x) = P(2ε‖A‖ ≤ x)

= P
(
W ≤ x2

4ε2σ2

)
where W is a sum N of square independent Gaussians with zero-mean and standard deviation

1, i.e., W is distributed as a χ2
N . Thus, it is possible to prove that

ρ(ε,QR) = FX(1)−
∫ 1

0
xfX(x)dx

= Fχ2
N

(
1

4ε2σ2

)
−
∫ 1

0
fχ2

N

(
x2

4ε2σ2

)
x2

2ε2σ2 dx

and doing the change of variables y = x2

4ε2σ2 it is possible to show that

ρ(ε,Qk,A,U) =
γ
(
N
2 ,

1
4ε2σ2

)
Γ
(
N
2
) − 2

√
2σε

γ
(
N+1

2 , 1
4ε2σ2

)
Γ
(
N
2
)

For values of M > 1, we just need to multiply M times, since is a condition over M independent

random variables.

�

APPENDIX B. PROOFS 106

B.5 Proof Theorem 4.3.4

Theorem 4.3.4.

If we consider the Q2,A,U is Gaussian Modular Hash, then the mutual information between Q2,A,U (x0) and

(Q2,A,U (x1), Q2,A,U (x2)) goes exponentially fast to 0 when the minimum distance from x0 to x1 and x2 goes

to infinity.

Proof

First, we need to prove the following proposition

Proposition. Consider R = (2, A, U) composes a Gaussian Modular Hash. Given any three

points in RN , x0, x1 and x2, then

P (QR(x0) = i0 , QR(x1) = i1 , QR(x2) = i2) = 1
2 P (QR(x0) = i0 , QR(x1) = i1)

+1
2 P (QR(x0) = i0 , QR(x2) = i2)

+1
2 P (QR(x1) = i1 , QR(x2) = i2)

−1
4

Proof of Proposition.

It is possible to show that

P
(
QR(x0) = i0 , QR(x1) = i1 , QR(x2) = i2

)
= P

(
QR(x0) = i0+1 , QR(x1) = i1+1 , QR(x2) = i2+1

)
being the sum in modulo. Thus, we just need to focus of the half of the probability

distribution.

Just to simplify the notation, we define qi := Q2(xi). Thus, we have the following

linear system

0.5

P
(
q1 = 0 , q2 = 0

)
P
(
q0 = 0 , q2 = 0

)
P
(
q0 = 0 , q1 = 0

)

=

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

P
(
q0 = 0 , q1 = 0 , q2 = 0

)
P
(
q0 = 1 , q1 = 0 , q2 = 0

)
P
(
q0 = 0 , q1 = 1 , q2 = 0

)
P
(
q0 = 0 , q1 = 0 , q2 = 1

)

This linear system is invertible and it can be written as follows

APPENDIX B. PROOFS 107

P
(
q0 = 0 , q1 = 0 , q2 = 0

)
P
(
q0 = 1 , q1 = 0 , q2 = 0

)
P
(
q0 = 0 , q1 = 1 , q2 = 0

)
P
(
q0 = 0 , q1 = 0 , q2 = 1

)

=

−0.5 0.5 0.5 0.5

0.5 0.5 −0.5 −0.5

0.5 −0.5 0.5 −0.5

0.5 −0.5 −0.5 0.5

0.5

P
(
q1 = 0 , q2 = 0

)
P
(
q0 = 0 , q2 = 0

)
P
(
q0 = 0 , q1 = 0

)

We also need to note that

−P(qi = 0, qj = 0) = P(qi = 0, qj = 1)− 1
2

Thus, the theorem is proved. �

Proof of Theorem

First, using the previous proposition, definig Qi = QR(xi), we can note that

P
(
Q0 = i0 , Q1 = i1 , Q2 = i2

)
P
(
Q0 = i0

)
P
(
Q1 = i1 , Q2 = i2

) = 1 +
P
(
Q0 = i0 , Q1 = i1

)
+ P

(
Q0 = i0 , Q2 = i2

)
− 1/2

P
(
Q1 = i1 , Q2 = i2

)
Moreover, we can see that, always

P
(
QR(x) = i , QR(z) = j)

)
≤ 1

2P
(
QR(x) = QR(z)

)
≤ 1

4

(
1 + 4

3 exp
(
−2
(
πσ‖x− z‖

2

)2
))

Thus,

P
(
Q0 = i0 , Q1 = i1 , Q2 = i2

)
P
(
Q0 = i0

)
P
(
Q1 = i1 , Q2 = i2

) ≤ 1 + 1
3

exp
(
−2
(
πσ‖x0−x1‖

2

)2
)

+ exp
(
−2
(
πσ‖x0−x2‖

2

)2
)

P
(
Q1 = i1 , Q2 = i2

)
Since x1 and x2 are fixed, we can consider C = min{i1,i2} P

(
Q1 = i1 , Q2 = i2

)
and log(x) ≤ x−1,

we have

I(Q0 ; Q1, Q2) ≤ 1
3C

[
exp

(
−2
(
πσ‖x0 − x1‖

2

)2
)

+ exp
(
−2
(
πσ‖x0 − x2‖

2

)2
)]

and we have our result �

APPENDIX B. PROOFS 108

B.6 Proof Theorem 4.3.5

Theorem 4.3.5.

Let x0 a point in RN . Consider the set of points {x1, x2, ...,xn} ⊆ B(x1, ε). If we consider the Q2,A,U is

Gaussian Modular Hash, then

I
(
QR(x0) ; QR(x1), ..., QR(xn)

)
≤ I(QR(x0) ; QR(x1))

+1− ρ(ε,QR) + P
(
QR(x1) = QR(x∗)

)
log 1

ρ(ε,QR)

where x∗ is the farthest point to x1 in the set {x1, x2, ...,xn}.

Proof

Based on the definition of ρ(ε,QR), we can observe that

ρ(ε,QR) ≤ P
(
QR(x1) = QR(x2) = ... = QR(xn)

)
≤ P

(
QR(x1) = QR(x∗)

)
On the other hand, the summation that defines the mutual information can be splitted in two

terms, when QR(x1) = ... = QR(xn) and when not. We can analyze this last case. Note that,

defining the random variable Qi = QR(xi), we have

∑
i0

∑
not(i1=...=in)

P
(
Q0 = i0, , Q1 = i1 , ... , Qn = in

)
log

P
(
Q0 = i0, , Q1 = i1 , ... , Qn = in

)
P
(
Q0 = i0

)
P
(
Q1 = i1 , ... , Qn = in

)
≤

∑
i0

∑
not(i1=...=in)

P
(
Q0 = i0, , Q1 = i1 , ... , Qn = in

)
log

P
(
Q1 = i1 , ... , Qn = in

)
1/2P

(
Q1 = i1 , ... , Qn = in

)
=

∑
i0

∑
not(i1=...=in)

P
(
Q0 = i0, , Q1 = i1 , ... , Qn = in

)
= 1− P

(
Q1 = ... = Qn

)
≤ 1− ρ(ε,QR)

The other case can be written as follows

∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
log

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
1/2P

(
Q1 = i, ..., Qn = i

)
≤

∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
log

P
(
Q0 = i0 , Q1 = i

)
1/2 · 1/2 · ρ(ε,QR)

=
∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
log

P
(
Q0 = i0 , Q1 = i

)
1/2 · 1/2

+
∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
log 1

ρ(ε,QR)

APPENDIX B. PROOFS 109

But note that

∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
log

P
(
Q0 = i0 , Q1 = i

)
1/2 · 1/2

≤
∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i

)
log

P
(
Q0 = i0 , Q1 = i

)
1/2 · 1/2

= I(QR(x0) ; QR(x1))

On the other hand

∑
i0

∑
i

P
(
Q0 = i0 , Q1 = i, ..., Qn = i

)
log 1

ρ(ε,QR)

=
∑
i

P
(
Q1 = i, ..., Qn = i

)
log 1

ρ(ε,QR)

≤ P
(
QR(x1) = QR(x∗)

)
log 1

ρ(ε,QR)

Therefore, we have

I
(
QR(x0) ; QR(x1), ..., QR(xn)

)
≤ I(QR(x0) ; QR(x1))

+1− ρ(ε,QR) + P
(
QR(x1) = QR(x∗)

)
log 1

ρ(ε,QR)

�

APPENDIX B. PROOFS 110

B.7 Proof Theorem 5.2.1

Theorem 5.2.1.

If x1 and x2 ∈ RN and R = (k,A, U) a random key to compose a σ-Gaussian Modular Hash, then the

probability of getting a collision in j-component is given by the following expression,

P
(
QR(x1)j = QR(x2)j

)
= 1

k
+ 2
k

∞∑
i=1

sinc2
(
i

k

)
exp

(
−2
(
π σ i ‖x1 − x2‖

k

)2
)

where sinc(x) = sin(πx)
πx .

Proof

Without loss of generality, we assume A is a 1 × N matrix. Using the same analysis as in the

proof of theorem 4.3.2 , we have that the P(QR(x1) = QR(x2) | ‖A(x1 − x2)‖) is given by the

function gk depending on L = ‖A(x1 − x2)‖. In particular, we have

gk(x) =

x− ik + 1 if x ∈ [ik − 1, ik] for some i

−x+ ik + 1 if x ∈ [ik, ik + 1] for some i

0 otherwise

An illustration of this function is shown in the figure B.2. Besides, we know that the density

0 1 · · · k − 1 k k + 1 · · · 2k − 1 2k 2k + 1 · · ·
0

0.2

0.4

0.6

0.8

1

Figure B.2: Illustration of function gk

function of L is

fL(l) =
√

2
π

1
σ‖x1 − x2‖

exp
(
− l2

2σ2‖x1 − x2‖2

)
(B.10)

APPENDIX B. PROOFS 111

Then

P(QR(x1) = QR(x2)) =
∫ ∞

0
gk(l)fL(l)dl

But, since both gk and fL are positive, we can extend these functions over real line, defining g̃k

as

g̃k(x) =

 gk(x) if x ≥ 0

gk(−x) if x < 0

Similarly we define f̃L. Then

P(QR(x1) = QR(x2)) = 1
2

∫ ∞
−∞

g̃k(l)f̃L(l)dl

However, we can see that

g̃k(l) = traink ∗ tri (l)

where

traink(l) =
∞∑

i=−∞
δ(l − ik) and tri(l) =

 1− l if |l| ≤ 1

0 if |l| > 1

Additionally, using the Parseval’s theorem we have

P(QR(x1) = QR(x2)) = 1
2

∫ ∞
−∞

ˆ̃gk(ξ) ˆ̃fL(ξ)dξ

where ˆ̃gk and ˆ̃fL are the Fourier transform of g̃k and f̃L respectively. But, using the definition

of g̃k we have

ˆ̃gk(ξ) = t̂ri(ξ) · ˆtraink(ξ)

= sinc2(ξ) ·
(

1
k

∞∑
i=−∞

δ

(
ξ − i

k

))

On the other hand, since f̃L is a Gaussian, it is easy to see

ˆ̃fL(ξ) = 2 exp
(
− 2 (πσ‖x1 − x2‖ξ)2)

Therefore

P (QR(x1) = QR(x2)) =
∫ ∞
−∞

1
k
sinc2(ξ)

∞∑
i=−∞

δ

(
ξ − i

k

)
exp

(
−2 (πσ‖x1 − x2‖ξ)2

)
dξ

= 1
k

∞∑
i=−∞

sinc2
(
i

k

)
exp

(
−2
(
πσ‖x1 − x2‖i

k

)2
)

= 1
k

(
1 + 2

∞∑
i=1

sinc2
(
i

k

)
exp

(
−2
(
πσi‖x1 − x2‖

k

)2
))

�

APPENDIX B. PROOFS 112

B.8 Proof Theorem 5.2.2

Theorem 5.2.2.

If x1 and x2 ∈ RN and R = (k,A, U) a random key to compose a σ-Gaussian Modular Hash, then

1
k
≤ P

(
QR(x1)j = QR(x2)j

)
≤ 1

k

(
1 + k2

3 exp
(
−2
(
πσ‖x1 − x2‖

k

)2
))

(B.11)

Therefore, if ‖x1 − x2‖ → ∞, then

P
(
QR(x1)j = QR(x2)j

)
→ 1

k
(B.12)

Proof

The left-hand side inequality is trivial noting that in the series there are positive elements only.

For the second inequality, we have to notice that exp(−x) is decreasing, then ∀i ∈ N

exp
(
−2
(
πσ‖x1 − x2‖

k

)2
)
≥ exp

(
−2
(
πσ i ‖x1 − x2‖

k

)2
)

Besides, sinc(x) = sin(πx)
πx , and if x > 0

− 1
πx

≤ sinc(x) ≤ 1
πx

then

sinc2(x) ≤ 1
π2x2

Therefore

sinc2
(
i

k

)
≤ k2

π2i2

Then,
∞∑
i=1

sinc2
(
i

k

)
exp

(
−2
(
πσ‖x1 − x2‖i

k

)2
)
≤

∞∑
i=1

sinc2
(
i

k

)
exp

(
−2
(
πσ‖x1 − x2‖

k

)2
)

≤ exp
(
−2
(
πσ‖x1 − x2‖

k

)2
) ∞∑
i=1

k2

π2i2

= exp
(
−2
(
πσ‖x1 − x2‖

k

)2
)
k2

π2

∞∑
i=1

1
i2

= exp
(
−2
(
πσ‖x1 − x2‖

k

)2
)
k2

π2 ·
π2

6

Thus, replacing this inequality we get the result.

�

APPENDIX B. PROOFS 113

B.9 Proof Theorem 5.3.1

Theorem 5.3.1.

If R = (k,A, U) is a random key to compose a σ-Gaussian Modular Hash, then, for any pair of points

x1 ,x2 ∈ RN , ∀k even, we have:

E [dmod (QR(x1) , QR(x2))] = k

4 −
2k
π2

∞∑
j=1

1
(2j − 1)2 exp

(
−2
(
π σ (2j − 1) ‖x1 − x2‖

k

)2
)

Proof

We can consider, with loss of generality, that M = 1. We have that

P

(
dmod(QR(x1), QR(x2)) ≤ j

∣∣∣∣∣ ‖A(x1 − x2)‖
)

is given by the function gk depending on L = ‖A(x1 − x2)‖, described in the following figure

Besides, we know that the density function of L is

fL(l) =
√

2
π

1
σ‖x1 − x2‖

exp
(
− l2

2σ2‖x1 − x2‖2

)

Then

P (dmod(QR(x1) , QR(x2)) ≤ j) =
∫ ∞

0
gk(l)fL(l)dl

But, since both gk and fL are positive, we can extend these functions over the entire real line,

defining g̃k as

g̃k(x) =

 gk(x) if x ≥ 0

gk(−x) if x < 0

Similarly we define f̃L. Then

P (dmod(QR(x1) , QR(x2)) ≤ j) = 1
2

∫ ∞
−∞

g̃k(l)f̃L(l)dl

APPENDIX B. PROOFS 114

However, we can see that

g̃k(l) = traink ∗ h (l)

where

traink(l) =
∞∑

i=−∞
δ(l − ik)

and

h(x) =

x+ j + 1 if x ∈ [−j − 1,−j]

1 if x ∈ [−j, j]

−x+ j + 1 if x ∈ [j, j + 1]

0 otherwise

Additionally, using the Parseval’s theorem we have

P
(
dmod(QR(x1), QR(x2)) ≤ j

)
= 1

2

∫ ∞
−∞

ˆ̃gk(ξ) ˆ̃fL(ξ)dξ

where ˆ̃gk and ˆ̃fL are the Fourier transform of g̃k and f̃L respectively. But, using the definition

of g̃k we have

ˆ̃gk(ξ) = ĥ(ξ) · ˆtraink(ξ)

= 1
2π2ξ2 (cos(2πξj)− cos(2πξ(j + 1))) ·

(
1
k

∞∑
i=−∞

δ

(
ξ − i

k

))

because

ĥ(ξ) = 1
2π2ξ2 (cos(2πξj)− cos(2πξ(j + 1)))

On the other hand, since f̃L is a Gaussian, it is easy to see

ˆ̃fL(ξ) = 2 exp
(
−2 (πσ‖x1 − x2‖ξ)2

)
Therefore

P
(
dmod(QR(x1) , QR(x2)) ≤ j

)
=

∫ ∞
−∞

1
k

1
2π2ξ2 (cos(2πξj)− cos(2πξ(j + 1)))

·
∞∑

i=−∞
δ

(
ξ − i

k

)
exp

(
−2 (πσ‖x1 − x2‖ξ)2

)
dξ

= 1
k

∞∑
i=−∞

1
2
(
πi
k

)2

[
cos
(

2πj i
k

)
− cos

(
2π(j + 1) i

k

)]
e
−2
(
πσ‖x1−x2‖i

k

)2

= k

π2

∞∑
i=1

[
cos
(
2πj ik

)
− cos

(
2π(j + 1) ik

)]
i2

e
−2
(
πσ i‖x1−x2‖

k

)2

+ 2j + 1
k

APPENDIX B. PROOFS 115

Finally, noting that if k is even, we have

0 ≤ dmod(QR(x1) , QR(x2)) ≤ k

2

and

E [dmod(QR(x1) , QR(x2))] =
k/2∑
i=0

1− P
(
dmod(QR(x1) , QR(x2)) ≤ j

)
we can prove that

E
[
dmod(QR(x1) , QR(x2))

]
= k

4 −
2k
π2

∞∑
i=1

1
(2i− 1)2 e

−2
(
π‖x1−x2‖(2i−1)

δk

)2

�

B.10 Proof Theorem 5.3.2

Theorem 5.3.2.

Setting σ =
√

π
2 , and being R = (k,A, U) the random key that composes a σ−Gaussian Modular Hash, and

defining the error

ε(‖x1 − x2‖ , k) :=
∣∣∣E[dmod (QR(x1) , QR(x2))

]
− ‖x1 − x2‖

∣∣∣ (B.13)

we have that

ε(‖x1 − x2‖ , k) ≤ F (‖x1 − x2‖, k) (B.14)

where

F (t, k) = t · exp
(
− k2

4πt2

)

Proof

Using the same scheme as in the proof of theorem 5.3.1, we can see that

E [dmod (QR(x1) , QR(x2))] =
∫ ∞

0
fL(u)w(u),du

where fL is given by

fL(u) =
√

2
π

1
σ‖x1 − x2‖

exp
(
− u2

2σ2‖x1 − x2‖2

)
and w by the function shown in the following plot

APPENDIX B. PROOFS 116

It is easy to see that

w(u) ≤ u ∀u

then

E
[
dmod (QR(x1) , QR(x2))

]
≤

∫ ∞
0

fL(u)udu

=
√

2
π
σ ‖x1 − x2‖

Besides, noting that dmod
(
QR(x1) , QR(x2)

)
≥ 0, we can write∣∣∣∣∣E[dmod (QR(x1) , QR(x2))

]
−
√

2
π
· σ‖x1 − x2‖

∣∣∣∣∣ =
∣∣∣∣∫ ∞

0
fL(u) · (w(u)− u)du

∣∣∣∣
but ∣∣∣∣∫ ∞

0
fL(u) · (w(u)− u)du

∣∣∣∣ ≤
∫ ∞
k
2

fL(u) · udu

and we have

∫ ∞
k
2

fL(u) · udu =
√

2
π
σ‖x1 − x2‖ exp

(
− k2

8σ2‖x1 − x2‖2

)
Hence, setting σ =

√
π
2 we have

∣∣∣∣∣E[dmod (QR(x1) , QR(x2))
]
− ‖x1 − x2‖

∣∣∣∣∣ ≤ ‖x1 − x2‖ · exp
(
− k2

4π‖x1 − x2‖2

)
And defining

F (‖x1 − x2‖) = ‖x1 − x2‖ · exp
(
− k2

4π‖x1 − x2‖2

)
we have the result.

�

Bibliography

[1] Jiménez, Abelino, et al. “Secure modular hashing.” 2015 IEEE international workshop on information

forensics and security (WIFS). IEEE, 2015. 5, 72

[2] Jiménez, Abelino, and Bhiksha Raj. “A two factor transformation for speaker verification through l1

comparison.” 2017 IEEE Workshop on Information Forensics and Security (WIFS). IEEE, 2017. 5, 6

[3] Jiménez, Abelino, and Bhiksha Raj. “Privacy preserving Distance computation using somewhat-trusted

third parties.” 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2017. 5, 6

[4] Jiménez, Abelino, Benjamín Elizalde, and Bhiksha Raj. “Acoustic Scene Classification Using Discrete

Random Hashing for Laplacian Kernel Machines”. 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2018. 5

[5] Jiménez, Abelino, and Bhiksha Raj. “Time Signal Classification Using Random Convolutional Features”.

2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019.

5

[6] Nautsch, Andreas, Jiménez, Abelino, et al., “Preserving Privacy in Speaker and Speech Characterisation”.

Computer Speech and Language. 2019. 6

[7] Jimenez, Abelino and Elizalde, Benjamin and Raj, Bhiksha. “DCASE 2017 Task 1: Acoustic Scene

Classification Using Shift-Invariant Kernels and Random Features”. Workshop on Detection and Classi-

fication of Acoustic Scenes and Events. Munich, Germany. 2017. 56, 58

[8] M. Pathak and B. Raj, “Privacy-Preserving Speaker Verification and Identification Using Gaussian Mix-

ture Models”. IEEE Transactions on Audio, Speech and Language Processing, Vol 21:2, pp. 397-406,

2013. 73

[9] M. Naehrig, K. Lauter and V. Vaikuntanathan, “Can homomorphic encryption be practical?.” Proceedings

of the 3rd ACM workshop on Cloud computing security workshop, 2011. 73

117

BIBLIOGRAPHY 118

[10] P. Indyk and R. Motwani. “Approximate Nearest Neighbors: Towards Removing the Curse of Dimen-

sionality”. Proceedings of 30th Symposium on Theory of Computing, 1998. 48, 49

[11] A. Andoni and P. Indyk, “Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High

Dimensions”. Communications of the ACM, Vol. 51(1), pp. 117-122, 2008. 49

[12] M. A. Pathak and B. Raj, “Privacy Preserving Speaker Verification as Password Matching”. Proceedings

of ICASSP, 2012. 49

[13] M. Datar, N. Immorlica, P. Indyk and V.S. Mirrokni, “Locality-Sensitive Hashing Scheme Based on

p-Stable Distributions”. Proceedings of the Symposium on Computational Geometry, 2004. 49

[14] S. Rane and P. T. Boufounos, “Privacy-Preserving Nearest Neighbor Methods: Comparing Signals With-

out Revealing Them”. IEEE Signal Processing Magazine, Vol. 30(2), pp. 18-28, 2013. 49, 73

[15] P. T. Boufounos and S. Rane, “Secure Binary Embeddings for Privacy Preserving Nearest Neighbors”.

Proceedings of WIFS, 2011. 39, 49

[16] J. P. Campbell, “Testing with the YOHO CD-ROM Voice Verification Corpus”. Proc. ICASSP, Detroit,

Michigan, USA, May 1995. 67

[17] W. M. Campbell, D. E. Sturim, D. A. Reynolds, “Support vector machines using GMM supervectors

for speaker verification”. IEEE Signal Processing Letters, Vol. 13:5, pp. 308–311, 2006. 62

[18] B. Davis, and P. Mermelstein, “Comparison of Parametric Representations for Monosyllabic Word

Recognition in Continuously Spoken Sentences”. IEEE Trans. ASSP, Vol. 28(4), pp. 357–366, 1980. 62

[19] Yuan, Guo-Xun and Ho, Chia-Hua and Lin, Chih-Jen, “Recent advances of large-scale linear classifica-

tion”. Proceedings of the IEEE, 2012. 58

[20] Petros T. Boufounos and Hassan Mansour, “Universal embeddings for kernel machine classification”.

SampTA, 2015. 58

[21] Rahimi, Ali and Recht, Benjamin, “Random features for large-scale kernel machines”. Advances in

neural information processing systems, 2008. 58, 88, 91

[22] Aman Sinha and John C. Duchi, “Learning Kernels with Random Features”, NIPS, 2016. 59

[23] Lu, Zhiyun and May, Avner and Liu, Kuan and Garakani, Alireza Bagheri and Guo, Dong and Bellet,

Aurélien and Fan, Linxi and Collins, Michael and Kingsbury, Brian and Picheny, Michael and others,

BIBLIOGRAPHY 119

“How to scale up kernel methods to be as good as deep neural nets”. arXiv preprint arXiv:1411.4000,

2014. 59

[24] Mikami, Tsuyoshi and Kojima, Yohichiro and Yonezawa, Kazuya and Yamamoto, Masahito and Fu-

rukawa, Masashi, “An SVM-based classification of oral and nasal snoring sounds with Kullback-Leibler

kernel”. SICE Annual Conference (SICE), 2012 Proceedings of, 2012. 59

[25] Tsuyoshi Mikami and Yohichiro Kojima and Kazuya Yonezawa and Masahito Yamamoto and Masashi

Furukawa, “Spectral classification of oral and nasal snoring sounds using a support vector machine”.

Journal of Advanced Computational Intelligence and Intelligent Informatics, 2013. 59

[26] Jiyan Yang and Vikas Sindhwani and Quanfu Fan and Haim Avron and Michael Mahoney, “Random

Laplace Feature Maps for Semigroup Kernels on Histograms”. CVPR, 2014. 59

[27] Goh, King-Shy and Chang, Edward and Cheng, Kwang-Ting, “Support vector machine pairwise classi-

fiers with error reduction for image classification”, Proceedings of the 2001 ACM workshops on Multi-

media: multimedia information retrieval, 2001. 59

[28] Fuxin Li and Catalin Ionescu and Cristian Sminchisescu, “Random Fourier approximations for skewed

multiplicative histogram kernels”. DAGM 2010: Pattern Recognition pp 262-271, 2010. 58

[29] Andrea Vedaldi and Andrew Zisserman, “Efficient additive kernels via explicit feature maps”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 3(34):480âĂŞ492, 2012. 58, 88

[30] Y. Wang, P. Ishwar and S. Rane, “Information-theoretically secure three-party computation with one

active adversary”. 2012. [Online]. Available: http://arxiv.org/abs/1206.2669 73

[31] J. Bringer, H. Chabanne and A. Patey, “SHADE: Secure HAmming DistancE Computation from Obliv-

ious Transfer”. Financial Cryptography and Data Security Volume 7862 of the series Lecture Notes in

Computer Science pp 164-176. 2013. 77

[32] V. Patel, N. Ratha and R. Chellappa. “Cancelable Biometrics: A review”. IEEE Signal Processing

Magazine, Vol 32(5), pp. 54-65, 2015. 63

[33] C. Rathgeb and C. Busch. “Multi-biometrics Template Protection : Issues and Challenges”, INTECH,

2012 63

[34] A. Teoh, D. N. C. Ling, and A. Goh, “Biohashing: Two factor authentication featuring fingerprint data

and tokenised random number”. Pattern Recogn., vol. 37, no. 11, pp. 2245 - 2255, 2004. 64

BIBLIOGRAPHY 120

[35] M. Savvides, B. Kumar and P. Khosla. “Cancelable biometric filters for face recognition”. Proceedings

of the 17th International Conference on Pattern Recognition. 2004. 64

[36] N. Ratha, S. Chikkerur, J. Connell, and R. Bolle, “Generating cancelable fingerprint templates”. IEEE

Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 561-572, Apr. 2007.

[37] B. Yang, D. Hartung, K. Simoens, and C. Busch, “Dynamic random projection for biometric template

protection”. in Proc. IEEE Int. Conf. Biometrics: Theory Applications and Systems, Sept. 2010, pp. 1-7.

[38] P. Das, K. Karthik, and B. C. Garai, “A robust alignment-free fingerprint hashing algorithm based on

minimum distance graphs”. Pattern Recogn., vol. 45, no. 9, pp. 3373-3388, 2012. 62

[39] J. Hmmerle-Uhl, E. Pschernig, and A. Uhl, “Cancelable iris biometrics using block re-mapping and

image warping”. in Information Security (Lecture Notes in Computer Science, vol. 5735), P. Samarati,

M. Yung, F. Martinelli, and C. Ardagna, Eds. Berlin, Germany: Springer, 2009, pp. 135-142.

[40] J. K. Pillai, V. M. Patel, R. Chellappa, and N. K. Ratha, “Sectored random projections for cancelable

iris biometrics”. in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Mar. 2010, pp. 1838-1841.

62

[41] A. Teoh, A. Goh, and D. Ngo, “Random multispace quantization as an analytic mechanism for biohash-

ing of biometric and random identity inputs”. IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12,

pp. 1892-1901, Dec. 2006.

[42] M. Jeong, C. Lee, J. Kim, J. Choi, K. Toh, and J. Kim. “Changeable biometrics for appearance based

face recognition”. In Proc. of Biometric Consortium Conf., 2006 Biometrics Symposium, pages 1-5, 2006.

63

[43] H. Zhu, Q. He and Y. Li. “A two-step hybrid approach for voiceprint-biometric template protection”.

International Conference on Machine Learning and Cybernetics. 2012.

[44] A. Chikkerur, N. Ratha, J. Connell and R. Bolle, “Generating Registration-free Cancelable Fingerprint

Templates”. Proceedings of BTAS, 2008. 62, 63, 64

[45] M.S. Pinsker. “On Estimation of Information via Variation”. Probl. Peredachi Inf., 2005, vol. 41, no. 2,

pp. 3âĂŞ8 [Probl. Inf. Trans. (Engl. Transl.), 2005, vol. 41, no. 2, pp. 71-75].

[46] Gentry, Craig. “Fully homomorphic encryption using ideal lattices”. Stoc. Vol. 9. No. 2009. 2009. 8

BIBLIOGRAPHY 121

[47] Paillier, Pascal. “Public-key cryptosystems based on composite degree residuosity classes”. International

Conference on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg,

1999. 8

[48] ElGamal, Taher. “A public key cryptosystem and a signature scheme based on discrete logarithms”.

IEEE transactions on information theory 31.4 (1985): 469-472. 8

[49] Hoffstein, Jeffrey, Jill Pipher, and Joseph H. Silverman. “NTRU: A ring-based public key cryptosystem”.

International Algorithmic Number Theory Symposium. Springer, Berlin, Heidelberg, 1998. 8

[50] Acar, Abbas, et al. “A survey on homomorphic encryption schemes: Theory and implementation”. ACM

Computing Surveys (CSUR) 51.4 (2018): 79. 8

[51] Dwork, Cynthia. “Differential privacy”. Encyclopedia of Cryptography and Security (2011): 338-340.

13

[52] Dwork, Cynthia, and Aaron Roth. “The algorithmic foundations of differential privacy”. Foundations

and Trends in Theoretical Computer Science 9.3-4 (2014): 211-407. 14, 15

[53] Wang, Yuan, et al. “Towards efficient privacy-preserving encrypted image search in cloud computing”.

Soft Computing 23.6 (2019): 2101-2112 71

[54] Rane, Shantanu, and Petros T. Boufounos. “Privacy-preserving nearest neighbor methods: Comparing

signals without revealing them”. IEEE Signal Processing Magazine 30.2 (2013): 18-28. 10

[55] Yao, Andrew Chi-Chih. “Protocols for secure computations”. FOCS. Vol. 82. 1982. 11

[56] Cover, Thomas M., and Joy A. Thomas. “Elements of information theory”. John Wiley & Sons, 2012.

19

[57] Massey, James L. “An introduction to contemporary cryptology”. Proceedings of the IEEE 76.5 (1988):

533-549. 20

[58] Maurer, Ueli, and Stefan Wolf. “Information-theoretic key agreement: From weak to strong secrecy for

free”. International Conference on the Theory and Applications of Cryptographic Techniques. Springer,

Berlin, Heidelberg, 2000. 21

[59] CsiszÃąr, Imre. “Almost independence and secrecy capacity”. Problemy Peredachi Informatsii 32.1

(1996): 48-57. 21

BIBLIOGRAPHY 122

[60] Arimoto, Suguru. “An algorithm for computing the capacity of arbitrary discrete memoryless channels”.

IEEE Transactions on Information Theory 18.1 (1972): 14-20. 21

[61] Blahut, Richard. “Computation of channel capacity and rate-distortion functions”. IEEE transactions

on Information Theory 18.4 (1972): 460-473. 21

[62] Cynthia, Dwork. “Differential privacy”. Automata, languages and programming (2006): 1-12. 14

[63] Pathak, Manas A., and Bhiksha Raj. “Large margin Gaussian mixture models with differential privacy”.

IEEE Transactions on dependable and secure computing 9.4 (2012): 463-469. 15

[64] Pathak, Manas, Shantanu Rane, and Bhiksha Raj. “Multiparty differential privacy via aggregation of

locally trained classifiers”. Advances in Neural Information Processing Systems. 2010. 15

[65] Shokri, Reza, and Vitaly Shmatikov. “Privacy-preserving deep learning”. Proceedings of the 22nd ACM

SIGSAC conference on computer and communications security. ACM, 2015. 15

[66] Abadi, Martin, et al. “Deep learning with differential privacy”. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. ACM, 2016. 15

[67] Phan, NhatHai, et al. “Differential privacy preservation for deep auto-encoders: an application of human

behavior prediction”. Thirtieth AAAI Conference on Artificial Intelligence. 2016. 15

[68] Mesaros, Annamaria, et al. “DCASE 2017 challenge setup: Tasks, datasets and baseline system”.

DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes and Events. 2017. 56, 58, 59

[69] Geiger, Jurgen T., Bjorn Schuller, and Gerhard Rigoll. “Large-scale audio feature extraction and SVM

for acoustic scene classification”. 2013 IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics. IEEE, 2013. 56

[70] Zhang, Zixing, et al. “Learning audio sequence representations for acoustic event classification”. arXiv

preprint arXiv:1707.08729 (2017). 56

[71] Eyben, Florian, Martin Wollmer, and Bjorn Schuller. “Opensmile: the munich versatile and fast open-

source audio feature extractor”. Proceedings of the 18th ACM international conference on Multimedia.

ACM, 2010. 56

[72] Bunn, Paul, and Rafail Ostrovsky. “Secure two-party k-means clustering”. Proceedings of the 14th ACM

conference on Computer and communications security. ACM, 2007. 12, 13

BIBLIOGRAPHY 123

[73] Aggarwal, Charu C., and S. Yu Philip, eds. “Privacy-preserving data mining: models and algorithms”.

Springer Science & Business Media, 2008. 12

[74] Riazi, M. Sadegh, et al. “Chameleon: A hybrid secure computation framework for machine learning

applications”. Proceedings of the 2018 on Asia Conference on Computer and Communications Security.

ACM, 2018. 12

[75] Hastings, Marcella, et al. “SoK: General Purpose Compilers for Secure Multi-Party Computation”.

IEEE, 2019. 12

[76] Regev, Oded. “The learning with errors problem”. Invited survey in CCC 7 (2010). 30

[77] Gentry, Craig, Amit Sahai, and Brent Waters. “Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based”. Annual Cryptology Conference. Springer,

Berlin, Heidelberg, 2013. 30

[78] Peter Sykacek and Stephen J. Roberts. “Bayesian time series classification”. In Advances in Neural

Information Processing Systems, pp. 937-944. 2002. 86

[79] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth, and Gerhard Thonhauser. “Improving time series

classification using Hidden Markov Models”. In Hybrid Intelligent Systems (HIS), 2012 12th International

Conference on, pp. 502-507. IEEE, 2012 86

[80] Karan Sikka, Abhinav Dhall, and Marian Bartlett. “Exemplar hidden markov models for classification

of facial expressions in videos”. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pp. 18-25. 2015 86

[81] Minyoung Kim. “Semi-supervised learning of hidden conditional random fields for time-series classifi-

cation”. Neurocomputing 119 (2013): 339-349. 86

[82] Myriam Abramson. “Sequence classification with neural conditional random fields”. In Machine Learning

and Applications (ICMLA), 2015 IEEE 14th International Conference on, pp. 799-804. IEEE, 2015. 86

[83] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. “Convolutional neural

networks for time series classification”. Journal of Systems Engineering and Electronics 28, no. 1 (2017):

162-169. 86

[84] Nima Hatami, Yann Gavet, and Johan Debayle. “Classification of time-series images using deep con-

volutional neural networks”. In Tenth International Conference on Machine Vision (ICMV 2017), vol.

10696, p. 106960Y. International Society for Optics and Photonics, 2018. 86

BIBLIOGRAPHY 124

[85] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. “Lstm fully convolutional

networks for time series classification”. IEEE Access 6 (2018): 1662-1669. 86

[86] Yang Guo, Zhenyu Wu, and Yang Ji. “A Hybrid Deep Representation Learning Model for Time Se-

ries Classification and Prediction”. In Big Data Computing and Communications (BIGCOM), 2017 3rd

International Conference on, pp. 226-231. IEEE, 2017. 86

[87] Stefan Ruping. “Svm kernels for time series analysis”. In Klinkenberg, R., Ruping, S., Fick, A., Henze,

N., Herzog, C., Molitor, R., and Schroder, O., editors, LLWA 01 - Tagungsband der GI-Workshop-Woche

Lernen - Lehren - Wissen - Adaptivitat, Forschungsberichte des Fachbereichs Informatik der Universitat

Dortmund, pages 43-50, Dortmund, Germany. 2001. 86

[88] Ginés Rubio, Héctor Pomares, Luis J. Herrera and Ignacio Rojas. “Kernel Methods Applied to Time

Series Forecasting”. Conference Proceedings in Computational and Ambient Intelligence. 2007. 86

[89] Marco Cuturi and Arnaud Doucet. “Autoregressive Kernels For Time Series”. arXiv:1101.0673. 2011.

86

[90] Karl Mikalsen, Filippo Bianchi, Cristina Soguero-Ruiz and Robert Jenssen. “Time series cluster kernel

for learning similarities between multivariate time series with missing data”. Pattern Recognition 76,

569-581. 2018. 86

[91] Huanhuan Chen, Fengzhen Tang, Peter Tino, and Xin Yao. “Model-based kernel for efficient time series

analysis”. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery

and data mining (KDD ’13). 2013. 86

[92] Walter Rudin. “Fourier analysis on groups”. Courier Dover Publications, 2017. 87

[93] Alexander M. Akhmetshin and I. V. Lyuboshenko. “The reconstruction of signals and images from the

noisy Fourier transform phase by means of the generalized difference principle”. In Pattern Recognition,

1996., Proceedings of the 13th International Conference on, vol. 2, pp. 370-375. IEEE, 1996. 87

[94] Hiroshi Shimodaira, Ken-ichi Noma, Mitsuru Nakai, and Shigeki Sagayama. “Dynamic time-alignment

kernel in support vector machine”. In Advances in neural information processing systems, pp. 921-928.

2002 87

[95] Marco Cuturi, Jean-Philippe Vert, Oystein Birkenes and Tomoko Matsui. “A Kernel for Time Series

Based on Global Alignments”. IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP ’07). 2007. 87

BIBLIOGRAPHY 125

[96] Alan V. Oppenheim. “Discrete-time signal processing”. Pearson Education India, 1999. 87, 88

[97] Gabriel Wachman, Roni Khardon, Pavlos Protopapas, and Charles R. Alcock. “Kernels for Periodic

Time Series Arising in Astronomy”. In Proceedings of the European Conference on Machine Learning

and Knowledge Discovery in Databases: Part II (ECML PKDD ’09), 2009. 87

[98] Charles Van Loan. “Computational frameworks for the fast Fourier transform”. Vol. 10. Siam, 1992. 88

[99] Yang, Jiyan, Vikas Sindhwani, Quanfu Fan, Haim Avron, and Michael W. Mahoney. “Random laplace

feature maps for semigroup kernels on histograms”. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 971-978. 2014 88

[100] Avrim Blum. “Random projection, margins, kernels, and feature-selection”. In Proceedings of the 2005

international conference on Subspace, Latent Structure and Feature Selection (SLSFS’05). 2005. 88, 93

[101] Purushottam Kar and Harish Karnick. “Random feature maps for dot product kernels”. In Artificial

Intelligence and Statistics, pp. 583-591. 2012 88

[102] Ninh Pham and Rasmus Pagh. “Fast and scalable polynomial kernels via explicit feature maps”. In Pro-

ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,

pp. 239-247. ACM, 2013. 88

[103] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen and

Gustavo Batista. “The UCR Time Series Classification Archive”. 2015. URL www.cs.ucr.edu/~eamonn/

time_series_data/ xi, 90, 92

[104] David Cox and Nicolas Pinto. “Beyond simple features: A large-scale feature search approach to un-

constrained face recognition”. Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011

IEEE International Conference on. IEEE, 2011. 93

[105] Riazi, M. Sadegh, et al. “Sub-Linear Privacy-Preserving Near-Neighbor Search with Untrusted Server

on Large-Scale Datasets”. arXiv preprint arXiv:1612.01835 (2016). 35, 39

[106] Boldyreva, Alexandra, et al. “Order-preserving symmetric encryption”. Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2009.

38

[107] Boldyreva, Alexandra, Nathan Chenette, and Adam OâĂŹNeill. “Order-preserving encryption revis-

ited: Improved security analysis and alternative solutions”. Annual Cryptology Conference. Springer,

Berlin, Heidelberg, 2011. 38

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

BIBLIOGRAPHY 126

[108] Naveed, Muhammad, Seny Kamara, and Charles V. Wright. “Inference attacks on property-preserving

encrypted databases”. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-

cations Security. ACM, 2015. 38

[109] Schaefer, Rafael F., et al., eds. “Information Theoretic Security and Privacy of Information Systems.

Cambridge University Press, 2017. 21

[110] Jacques, Laurent, et al. “Robust 1-bit compressive sensing via binary stable embeddings of sparse

vectors”. IEEE Transactions on Information Theory 59.4 (2013): 2082-2102. 85

	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Overview
	Motivation
	Thesis Statement
	Summary of Contributions
	Thesis Organization

	Privacy Preserving Technologies
	Cryptographic Solutions
	Homomorphic Encryption
	Secure Two-Party Computation

	Information Theoretic Privacy
	Differential Privacy

	An Information Theoretical Approach to Limit Leakage in Comparisons
	Privacy Leakage Measurements
	Preliminaries
	Information Secrecy
	Comparison of Transformed Messages

	Limited Leakage Transformations
	General Assumptions
	Controlling information leakage in data comparison
	Designing a Limited Leakage Transformation
	The case k = 2
	Leaking conditions

	Other Metrics
	Mahalanobis Distance
	Manhattan Distance
	Cosine Distance

	Comparison with other methods
	Contributions

	 Limited Computation. About the utility of the information leakage.
	Limited Distance Estimation
	General Observation
	Hamming Distance between Hashes
	Modular Distance between Hashes
	Related Work and Contributions

	Private Distance-based Machine Learning
	Use by Substitution
	Hashing to Compute Kernels
	A hash function to estimate kernels
	Connection with Modular Hash
	Empirical Evaluation

	Related Work and Contributions

	Applications
	Speech Signal Protection
	Introduction
	Speaker Authentication Basics
	Cancelable Biometrics
	Limited Leakage Transformation as TFT
	Empirical evaluation
	Conclusion

	Private Image Retrieval
	Introduction
	Limited Leakage Transformation for Retrieval
	Conclusions

	Two-party Computation for Distance Inference
	Introduction
	Somewhat Third Trusted Party
	Enhancing Privacy with Cryptography
	Conclusions

	Conclusions
	Thesis Conclusions
	Summary of Results
	Discussion

	Future Work
	Multiparty Formulation
	Transforming Non-vector objects
	Signal Reconstruction using Keys

	Random Convolutional Features
	Introduction
	Methods
	Random Convolutional Features
	Theoretical Results

	Experiments
	Datasets
	Results using Nonlinear SVM with Cross-correlation kernel
	Results using Linear SVM with Random Features

	Conclusions

	Proofs
	Proof Theorem 4.2.1
	Proof Theorem 4.3.1
	Proof Theorem 4.3.2
	Proof Theorem 4.3.3
	Proof Theorem 4.3.4
	Proof Theorem 4.3.5
	Proof Theorem 5.2.1
	Proof Theorem 5.2.2
	Proof Theorem 5.3.1
	Proof Theorem 5.3.2

	Bibliography

