Carnegie Mellon University
Browse

Deep Ultraviolet Light Emitters Based on (Al,Ga)N/GaN Semiconductor Heterostructures

Download (4.85 MB)
thesis
posted on 2017-08-01, 00:00 authored by Yu-Han Liang

Deep ultraviolet (UV) light sources are useful in a number of applications that include sterilization, medical diagnostics, as well as chemical and biological identification. However, state-of-the-art deep UV light-emitting diodes and lasers made from semiconductors still suffer from low external quantum efficiency and low output powers. These limitations make them costly and ineffective in a wide range of applications. Deep UV sources such as lasers that currently exist are prohibitively bulky, complicated, and expensive. This is typically because they are constituted of an assemblage of two to three other lasers in tandem to facilitate sequential harmonic generation that ultimately results in the desired deep UV wavelength. For semiconductor-based deep UV sources, the most challenging difficulty has been finding ways to optimally dope the (Al,Ga)N/GaN heterostructures essential for UV-C light sources. It has proven to be very difficult to achieve high free carrier concentrations and low resistivities in high-aluminum-containing III-nitrides. As a result, p-type doped aluminum-free III-nitrides are employed as the p-type contact layers in UV light-emitting diode structures. However, because of impedance-mismatch issues, light extraction from the device and consequently the overall external quantum efficiency is drastically reduced. This problem is compounded with high losses and low gain when one tries to make UV nitride lasers. In this thesis, we provide a robust and reproducible approach to resolving most of these challenges. By using a liquid-metal-enabled growth mode in a plasma-assisted molecular beam epitaxy process, we show that highly-doped aluminum containing III-nitride films can be achieved. This growth mode is driven by kinetics. Using this approach, we have been able to achieve extremely high p-type and n-type doping in (Al,Ga)N films with high aluminum content. By incorporating a very high density of Mg atoms in (Al,Ga)N films, we have been able to show, by temperature-dependent photoluminescence, that the activation energy of the acceptors is substantially lower, thus allowing a higher hole concentration than usual to be available for conduction. It is believed that the lower activation energy is a result of an impurity band tail induced by the high Mg concentration. The successful p-type doping of high aluminum-content (Al,Ga)N has allowed us to demonstrate operation of deep ultraviolet LEDs emitting at 274 nm. This achievement paves the way for making lasers that emit in the UV-C region of the spectrum. In this thesis, we performed preliminary work on using our structures to make UV-C lasers based on photonic crystal nanocavity structures. The nanocavity laser structures show that the threshold optical pumping power necessary to reach lasing is much lower than in conventional edge-emitting lasers. Furthermore, the photonic crystal nanocavity structure has a small mode volume and does not need mirrors for optical feedback. These advantages significantly reduce material loss and eliminate mirror loss. This structure therefore potentially opens the door to achieving efficient and compact lasers in the UV-C region of the spectrum.

History

Date

2017-08-01

Degree Type

  • Dissertation

Department

  • Materials Science and Engineering

Degree Name

  • Doctor of Philosophy (PhD)

Advisor(s)

Elias Towe

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC