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Abstract

Powerful Machine Learning (ML) models trained on large, annotated datasets have
driven impressive advances in fields including natural language processing and com-
puter vision. In turn, such developments have led to impactful applications of [MLl in
areas such as healthcare, e-commerce, and predictive maintenance. However, obtain-
ing annotated datasets at the scale required for training high capacity models is
frequently a bottleneck for promising applications of [MIl In this thesis, I study alter-
native pathways for acquiring domain knowledge and develop methodologies to enable
learning from weak supervision, i.e., imperfect and indirect forms of supervision. I
cover three forms of weak supervision: pairwise linkage feedback, programmatic weak
supervision, and paired multi-modal data. These forms of information are often easy
to obtain at scale, and the methods I develop reduce—and in some cases eliminate—the
need for pointillistic ground truth annotations.

I begin by studying the utility of pairwise supervision. I introduce a new con-
strained clustering method which uses small amounts of pairwise constraints to simul-
taneously learn a kernel and cluster data. The method outperforms related approaches
on a large and diverse group of publicly available datasets. Next, I introduce imper-
fect pairwise supervision to programmatic weak supervision label models. I show
empirically that just one source of weak pairwise feedback can lead to significantly
improved downstream performance.

I then further the study of programmatic data labeling methods by introducing
approaches that model the distribution of inputs in concert with weak labels. T first
introduce a framework for joint learning of a label and end model on the basis of
observed weak labels, showing improvements over prior work in terms of end model
performance on downstream test sets. Next, I introduce a method that fuses gener-
ative adversarial networks and programmatic weak supervision label models to the
benefit of both, measured by label model performance and data generation quality.

In the last part of this thesis, I tackle a central challenge in programmatic weak
supervision: the need for experts to provide labeling rules. First, I introduce an
interactive learning framework that aids users in discovering weak supervision sources
to capture subject matter experts’ knowledge of the application domain in an efficient
fashion. I then study the opportunity of dispensing with labeling functions altogether
by learning from unstructured natural language descriptions directly. In particular,
I study how biomedical text paired with images can be exploited for self-supervised
vision—language processing, yielding data-efficient representations and enabling zero-
shot classification, without requiring experts to define rules on the text or images.

Together, these works provide novel methodologies and frameworks to encode and
use expert domain knowledge more efficiently in [MI] models, reducing the bottleneck
created by the need for manual ground truth annotations.
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Chapter 1

Introduction

Most recent breakthroughs in [ML] have been achieved by data-hungry deep learning
models standing on the shoulders of giant datasets. In computer vision, large-scale
manually annotated datasets such as ImageNET [76] have been core to the devel-
opment of novel deep learning approaches [151] [241} [117], and deep learning models
pretrained on large labeled datasets have driven advances in many related vision
problems [138]. In healthcare, recent studies provide convincing evidence that large
datasets combined with modern deep learning methods can enable advanced decision
support and personalized medicine [149, |210]. For example, deep learning methods fit
to hundreds of thousands of annotated training examples have enabled at or above hu-
man expert level performance in detecting arrhythmia on Electrocardiogram (ECG])
data [115] and in skin cancer image classification [87].

But, a reliance on large amounts of annotated data can hamper the continued
proliferation and advancement of [MLl in new domains and applications. The scala-
bility of the data labeling process, as well as the attainable quality and relevance of
the collected labels, have become key limiting factors for many applications of [MI]
Labels for the concepts of interest do not arise naturally in most applications, and
the common process of collecting labels by having annotators manually inspect and
annotate individual samples is expensive and time consuming. Furthermore, manual
labeling tasks can be quite cumbersome, e.g. labeling anatomically-resolved abnor-
malities in Computed Tomography (CTJ) scans requires either performing pixel-level
annotations, or sorting abnormalities into a hierarchy of anatomical regions [230,
88]. Moreover, the cost of manual annotation can be exacerbated by factors such as
required expert knowledge, data privacy, and constantly shifting problem settings.
These issues also plague techniques such as crowdsourcing that aim to scale up the
labeling process through low-cost labonf]

The temporal and monetary cost to labeling data spans across data types and

IT strongly believe that ethical issues of crowdsourcing (e.g. highlighted in [105]), in particular
the lack of labor laws, need to be mentioned when crowdsourcing is discussed as solution to the
labeled data bottleneck.



application domains, impacting organizations from the largest tech companies to
healthcare and government institutions. The popular COCO dataset[168] for large-
scale object detection, segmentation, and captioning of images took more than 20,000
annotator hours and was annotated over a period of two years. Using primitive tools
by current standards, it took a period of 5 years to create an[ECGldatabase labeled for
abnormalities of cardiac rhythm [191]. And even with modern tools, it took 4 doctors,
almost 3 months to annotate 15, 000 short [ECGlrecords using the Label ECG tool [80].
Such costs substantially impede the broader adoption of beneficial applications of [MI]
in practice.

The data annotation bottleneck has motivated multiple research directions that
aim to improve how we obtain labels to train [MI] models, or to reduce the amount
of labels needed. Crowdsourcing systems aim to scale data labeling by distributing
the workload to (networked) workers. Semi-supervised learning methods make use
of unlabeled data by propagating information from labeled samples to unlabeled
samples to reduce the need for large labeled datasets. Transfer learning applies
encoded knowledge from one task to another, aiming to reduce the amount of labels
needed in the target application. Related concepts to transfer learning are zero-shot,
one-shot, and few-shot learning, which use (learned) prior knowledge to predict new
targets while seeing few or no examples of them. Self-supervised learning uses pretext
tasks on unlabeled data to learn representations that generalize well to downstream
tasks, leading to lower labeled data requirements. Finally, active learning performs
queries to a user to collect labels in an efficient manner, by having an algorithm
guide which samples should be labeled. Of late, the active learning community has
developed new ideas and approaches to reduce required labeling efforts even further
and to scale the labeling process, e.g. by incorporating richer forms of feedback
such as information regarding feature importance [82, 217, [235| 213, [64], or learning
from comparisons [206, 277, 276]. All of the aforementioned learning paradigms
are important and promising steps for reducing the reliance on large labeled datasets.
However, none of them fundamentally address the drawbacks of the process of manual
data annotation. As in active learning, labeling data is still predominantly pointillistic
in nature, meaning that each human query response annotates a single instance (or,
as in 206, [277, [276], pairs of instances). The labeling effort is optimized for a human
annotator’s effort, but the labeling step does not become easier, does not scale, and
if a problem definition changes, data often has to be relabeled from scratch.

To use domain knowledge efficiently, [MI] pipelines should be able to consume and
learn from a variety of sources of information. At times, some forms of knowledge
such as domain heuristics or constraints may be much cheaper and feasible to obtain
than labeled data. We should thus enable subject matter experts to use these sources
to train and improve their models. Furthermore, it may frequently be the case that
this information is easier to obtain at scale, such as when experts are able to formulate
heuristics that automatically assign approximate labels to data, or when meta data
can be used to automatically derive such approximations. Collecting annotated data



at scale, even if labels are approximate, is promising as research has shown that
the scale of data can overcome some noise in the label space [222, 247]. Finally,
adequate solutions to the labeled data bottleneck will not just help us train models
cheaper and faster, but will also lead to more flexible model development iterations
and deployment across the board, even in applications where manual data labeling is
currently the norm.

This thesis posits that weak supervision provides alternative pathways
for acquiring domain knowledge upon which scalable learning mechanisms
can be built to train [MLI models quickly and efficiently. In the following
chapters, I propose novel methodologies for the use and acquisition of a va-
riety of forms of weak supervision signals, and show that the methods lead
to improved data exploration, improved modeling of unobserved ground
truth, and to drastic reduction of user effort.

Weak supervision and learning from weak labels are umbrella terms that refer
to learning with partial, indirect, or imprecise signals about an unobserved ground
truth variable (see e.g. [295]). The forms of weak supervision studied in the literature
are diverse. For example, in object detection and object localization, the term weak
supervision has been used to describe settings where binary labels are available to
indicate the absence/presence of object instances in an image while their exact loca-
tions are unavailable [54]. In programmatic weak supervision, also referred to as data
programming, external sources of imperfect labels are aggregated into a pseudola-
bel to train a model [222]. Prior work has shown that weak supervision provides a
promising avenue for reducing the need for humans to hand label large datasets [226],
121] |113] [275] |138], 222}, (74}, [183], 73|, [154], and that weak supervision can reduce man-
ual labeling efforts for a wide range of data types such as time series, images, and
unstructured text [102J7[54} 138, [92].

Three forms of weak label information appear in this thesis. The first is pairwise
information about unobserved group membership. This information is considered a
weak label since the known relations about some pairs of points in a dataset reveal
samples that should or should not belong to the same group, but the knowledge does
not reveal the specific labels. For example, we may be assigning classes to emails and
know that two messages x; and xo are highly likely to be of the same class as they
were received from the same sender with the same subject, but this information does
not allow us to infer which class that is. In clustering, this setting is referred to as
constrained clustering or semi-supervised clustering [259, |16, |147][23]. As explained
in Chapter [2, this pairwise linkage information can at times be easier to obtain than
labels for individual samples.

The second form of weak label information that this thesis focuses on comes
in the form of wariables that provide a direct but imperfect view of the underlying
latent variable. This is to say that such a source of weak labels can be used to infer
approximate class labels for all or a subset of one’s unlabeled dataset. If one has

2References to my work are highlighted in blue.



access to multiple such weak supervision sources, the chief objective is to combine
them in an intelligent way in order to obtain a good estimate of the unobserved
latent class variable. A prominent framework for learning from this type of weak
supervision is Data Programming [222], which introduced the synthesis of weak
supervision sources created by experts for the programmatic creation of labeled data.
In Data Programming, experts create multiple so called [LEs, each of which imperfectly
annotates subsets of data. A factor graph is then defined to model the observed
outputs of the LFs and to produce an estimate of the unobserved ground truth.
Finally, this label estimate is used to train a classifier—also called end model, or
downstream model-using a noise-aware loss function. [DP]is a fascinating paradigm
to study. The use of multiple [LEs not only provides a scalable framework for creating
large labeled datasets, but it can also be viewed as a vehicle to incorporate high level,
conceptual feedback into the data labeling process.

The third weak supervision setting that appears in this thesis concerns paired
multi-modal data with shared latent entities. For example, we may be interested in
predicting clinically relevant findings from radiographic images. In a fully supervised
setting, one would have access to image annotations describing the clinically relevant
findings in an image, and possibly the image region they correspond to. Instead, in the
weakly supervised setting with paired modalities, one has access to radiology images
and associated semi-structured text reports written by radiologists. Now, clinically
relevant findings have to be learned only on the basis of knowing which report de-
scribes which image, without having the findings annotated in either modality. Other
common settings where this form of weak supervision for two modalities arises are
images with text captions crawled from the world wide web, or audio recordings of
speeches and their text transcripts. Note that this problem setting has also been de-
scribed as multi-modal self-supervised learning and is closely related to other machine
learning areas such as multi-view clustering and visual grounding.

1.1 Organizational Structure

Chapter [2, Learning with Pairwise Supervision In Chapter [2| I begin by
studying the utility of indirect supervision through pairs and its application to clus-
tering [23]. The problem setting is known as constrained clustering, and here label
information is assumed to be available in the form of so called must-link and cannot-
link pairs for some small amount of data, without knowledge of the ground truth
cluster labels. These pairs are known as pairwise constraints. Using such pairwise
constraints for data partitioning can improve results considerably since the observed
constraints can be used to learn an underlying distance metric and parameters of a
clustering algorithm. This is an attractive proposition as pairwise constraints can
sometimes be obtained from meta-data. For example, in protein function prediction
tasks one can use knowledge about functional links between proteins [86]. My interest
in this form of weak supervision and constrained clustering algorithms stemmed from
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experiences working with subject matter experts in counter human trafficking (83
196, 129, 24] and illicit online trade, who at times were comfortable expressing rela-
tions between data points, but were hesitant to make decisions about absolute group
membership. In this work, I study the impact of the common practice of relaxing
pairwise constraints in clustering objectives, where the constraints that provide infor-
mation group membership (must-link, cannot-link) are relaxed to a continuous space
where they inform relative distances (must be close, must be distant). 1 introduce
a constrained kernel k-means algorithm [23] in which one learns a kernel without
relaxing the pairwise constraints, and conduct experiments on over 140 datasets to
demonstrate that the proposed approach outperforms related algorithms.

In the second part of Chapter 2] I fuse weak supervision in the form of pairwise
labels and weak supervision in the form of variables that imperfectly annotate subsets
of data. In particular, I focus on programmatic weak supervision, also known as data
programming [222], in which users define multiple sources of weak supervision—called
[LEFS to programmatically label a dataset. Here, I introduce pairwise LFs and show
that imperfect pairwise labels can be used to augment learning in label models that
traditionally only learn from partial, imperfect labels. The proposed technique fuses
both forms of weak supervision and improves the programmatic process of data label-
ing by increasing the types of weak supervision the model uses to produce estimates
of the unobserved ground truth variable. I empirically demonstrate the utility of
learning from standard as well as pairwise and show that just one source of
weak pairwise feedback can significantly improve downstream test set metrics.

Chapter [3, Label Models for Programmatic Weak Supervision I continue
the study of novel programmatic data labeling models, focusing on how strong induc-
tive biases can help to model the data distribution and weak labels simultaneously.
First, I present work on end-to-end learning in programmatic weak supervision. Cur-
rent state-of-the-art data programming [222 221] proceeds in two steps: a first step
in which a label model is learned only on the basis of observed weak supervision votes,
and a second step in which an end model is learned on the training examples and
associated estimates of the unobserved ground truth obtained via the label model of
the first step. I present work on an end-to-end approach for directly learning the end
model by maximizing its agreement with probabilistic labels generated by a repa-
rameterized, differentiable label model |36]. Experiments on five benchmark datasets
show improved performance over prior work in terms of end model performance on
downstream test sets, as well as in terms of improved robustness to dependencies
among weak supervision sources.

In the second part of Chapter [3] I study the fusion of a Generative Adversarial
Network (GAN]) and programmatic weak supervision and propose a Weakly Super-
vised GAN (WSGAN) [26]. As noted in the previous paragraph, label models for
programmatic weak supervision currently only model the outputs of [LFs, but not the
unlabeled data distribution. Thus, with a focus on image data, I study how estimates



of the latent class variables may be improved by directly modeling discrete latent
variables in the input data that align well with the signals encoded in the weak su-
pervision sources, and furthermore show that this process leads to improved modeling
of p(x), which in turn can he used for data augmentation via synthetic samples and
pseudolabels.

Chapter (4|, Interactivity and Multi-Modal Learning Obtaining and structur-
ing domain knowledge in forms that can be consumed by weak supervision learning
paradigms is not straightforward. In this chapter, I study what can be viewed as two
extremes on the spectrum of user involvement in order to efficiently harvest domain
knowledge. First, I present work on supporting subject matter experts in finding
and defining sources of weak supervision via an interactive method [25]. A practical
issue with learning from user-generated [LFs in data programming is that [LFs are not
always straightforward to design, and considerable user effort is needed to develop
them. Their creation requires creativity, foresight, and domain expertise from those
who hand-craft them, a process which can be tedious and subjective. Thus, I study
how to aid users in discovering by introducing an interactive learning framework
to systematically capture subject matter experts’ knowledge of the application do-
main in an efficient and effective fashion. I introduce an algorithm that suggests [LFs
and iteratively queries a user for feedback about the suggestions [25]. Experiments
show that this method rapidly uncovers useful [LEg that lead to improved training
data ground truth estimates and end model performance on held-out test sets.

Finally, I study how unstructured natural language descriptions, such as doctors
notes, can be exploited in multi-modal representation learning. Prior work has studied
training of image classifiers in the medical domain by exploiting pairs of images and
unstructured text to defining rules on the text documents to obtain imperfect labels
and then using frameworks such as data programming to estimate the unobserved
label and to learn an end model on the paired images |132, 85, 92, |88]. This is a
good avenue when weak supervision sources can be defined with high accuracy and
good coverage, and when the amount of classes and tasks that are targeted is limited.
However, if one can develop methods to learn from the natural language descriptions
directly, by exploiting knowledge about multi-modal relationships, the number of
concepts that can be learned are not limited by annotation hours, and no expert time
needs to be used to define weak supervision sources. Thus, with a focus on radiology
images and reports, I study learning from paired image-text data directly [27]. Instead
of asking experts to find and define rules on text, the methodology jointly learns image
and text representations for zero-shot and few-shot classification, relying solely on the
basis of the weak knowledge that stems from knowing which pairs of images and text
documents go together.



1.2 Related Work

In this section, I cover related work concerning the three forms of weak supervision
that appear in this thesis document. First, I discuss related pairwise weak supervision
work, next I cover research in programmatic weak supervision, after which I introduce
related work work in the area of paired multi-modal data. I close the chapter by
discussing connections of the work presented in this thesis to the popular co-training
[29] semi-supervised learning paradigm.

1.2.1 Pairwise Weak Labels

Pairwise Weak Supervision in Clustering

Clustering with weak pairwise labels—also frequently referred to as pairwise con-
straints—is an important knowledge discovery tool, and pairwise labels in this set-
ting enable learning of kernels or distance metrics to improve clustering performance.
This type of weak supervision is provided in the form of must-link (ML) and cannot-
link (CL) constraints, which indicate same or different cluster membership of pairs
of samples. The field of research which uses small amounts of such weak label in-
formation is often referred to as either Semi-supervised Clustering or Constrained
Clustering [258], 259, |16, 147, |18, 21]. Constrained Clustering algorithms generally
belong to constraint-based and/or distance-based approaches, where the former do
not include learning of an underlying metric. While not the focus of this document,
Constrained Clustering has also been studied under the availability of cluster-level
constraints [69], for scenarios where constraints are obtained from different sources
[12], and in settings where small sets of cluster label information are available [90, 68|
172].

In constraint-based algorithms, a constraint sensitive assignment of samples to
clusters is performed, in order to reduce violations of known constraints with the
goal of learning a partitioning function that does well on unobserved constraints. For
example, in a constrained k-means algorithm, a constraint-sensitive assignment of
samples to clusters may lead to better cluster centers, and therefore to better data
partitioning (as in e.g. [208]). The literature often differentiates between hard and
soft versions of constraint imposition, where the latter allow for some violations of
know constraints while the former does not.

Purely distance-based algorithms such as Mahalanobis Metric Learning for Clus-
tering (MMC) [274] and Information-Theoretic Metric Learning (ITML) |71] sepa-
rate metric learning from the clustering step. MMC learns a Mahalanobis metric
by minimizing the sum of squared distances between similar pairs under the con-
straint that the sum over dissimilar pairs is kept above some constant. ITML learns
a Mahalanobis distance metric that is close to a given initial one, and uses slack vari-
ables to keep distances between similar pairs within some margin while maintaining
a greater margin between dissimilar pairs. While some authors refer to pairwise con-
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straints as similar/dissimilar points, these pairs are generally assumed to stem from
the same/different cluster.

The exclusion of unlabeled data from the metric learning step motivated the intro-
duction of joint metric learning and clustering via pairwise constraints. Seminal work
are the Hidden Markov Random Field (HMRF) k-means |18] and Metric Pairwise
Constrained k-means (MPC-Kmeans) [21] algorithms which jointly learn a metric
and cluster assignment via pairwise constraints. HMRF k-means can be adapted to
learn a variety of distortion measures, including Bregman divergences. MPC-Kmeans,
which is closely related to HMRF k-means, learns a cluster-specific Mahalanobis dis-
tance which allows for clusters to lie in different subspaces. This concept of learning
cluster-specific metrics was later also suggested for use in HMRF k-means [17].

Joint clustering and metric learning formulations based on or similar to HMRF
k-means iteratively adapt a metric or kernel according to a cluster loss as well as
scaled penalties for violating the constraints (e.g. |17, 278]). Adapting the pairwise
metric to reduce cluster loss may allow constraint information to be propagated to
good initial cluster assignments. But it could also reinforce false cluster assignments.
The inclusion of the cluster loss in pairwise metric learning also means that careful
measures need to be taken to avoid trivial solutions. For example, [278] aim to avoid
degenerate solutions by adding a constraint to the optimization problem such that
the sum of distances of all samples to a random point is greater than some constant.

Researchers have also studied kernel learning approaches to constraint clustering,
in both parametric and nonparametric ways. [278| derive an adaptive semi-supervised
kernel k-means algorithm (Adaptive-SS-Kernel-KMeans) inspired by HMRF k-means.
It learns kernel parameters such as the scale of the Gaussian kernel. In [122], the
authors propose a nonparametric approach to learn a kernel matrix using pairwise
constraints. The optimization problem is set to learn a kernel matrix that is consis-
tent with known constraints while simultaneously being consistent with an assumed
known similarity function. [5] introduce a semi-supervised kernel mean shift cluster-
ing (SKMS) algorithm. For the kernel learning step, SKMS updates an initial kernel
matrix to meet specified target distance values to make pairs of samples with ML/CL
constraints similar/dissimilar. Like ITML, SKMS uses slack variables during this step
to relax the exact distance requirement.

The use of pairwise constraints to learn improved embeddings for clustering of
large datasets with deep neural networks has also been explored. [125] design a
loss function to train neural networks using pairwise constraints, and [126] devise a
method to perform transfer learning on unknown classes and datasets using pairwise
constraints and neural networks. [91] propose to learn an autoencoder and decoder
using pairwise constraints to obtain an embedding for non-centroid based clustering
by optimizing a representation loss, a reconstruction loss, and the pairwise loss. These
deep learning based approaches usually require large datasets to yield reliable models
as well as a domain-specific design of an appropriate network architecture that fits a
given problem setting and modality:.



Pairwise Supervision in Active Learning

Learning with pairwise supervision has also been explored in active learning settings,
often with pairwise comparisons/rankings. For example, [206] study how to learn
via relative feedback. The authors learn ranking functions for each attribute and
subsequently build a generative model over the joint space of ranking outputs. [277]
consider an active dual supervision classification problem with algorithms that query
oracles for noisy labels and pairwise comparisons. For the latter, the feedback is
provided in terms of a pairwise ranking of the likelihood of being positive instead
of an absolute label assignment. The algorithm can leverage both types of oracles,
direct label assignment and pairwise comparisons. This active learning scheme can
be useful in application areas where pairwise comparisons are easier to obtain. The
comparison oracle is used to rank data points in order to create sets within which
to obtain absolute labels. [276] study active learning in a regression scenario with
ordinal (or comparison) information. The authors provide theoretical guarantees and
introduce an algorithm for this scenario.

1.2.2 Weak Supervision as Imperfect Labels at Scale

Different from weak labels that inform pairwise relations discussed in the previous
section, weak supervision has also been explored in the form of variables that are direct
but imperfect observations of the latent ground truth variables [187] [226| 121} |113],
222, e.g. we have samples z € R? with an unobserved class variable y € {—1,1} and
for some or all of the samples we can access a variable A\(x) € {—1, 1} which provides
an imperfect view of y at better than random accuracy. Prior work as studied the
general problem of learning from labels that are imperfect [181} (198} 293], e.g. because
the label was corrupted by an adversary. The focus of weak supervision research in
this direction often differs in the motivation from adversarial settings, as imperfect
labels are collected deliberately because the mechanism of obtaining the labels scales
to large amounts of data, as for example in [159, [187]. One prominent example of a
paradigm for obtaining noisy training data at scale is Distant Supervision [187) 226],
which uses existing knowledge bases with known relations to collect training data
consisting of noisy examples about these relations. Another popular weak supervision
framework that uses multiple such imperfect sources of labels is programmatic weak
supervision, also referred to as Data Programming (DP)) [222], an approach that
intelligently combines multiple user defined heuristics to produce an estimate of the
unobserved true class label. In [DP] subject matter experts specify multiple so called
Labeling Functions (LEFS) that imperfectly annotate the data. These[LFdare functions
that encode domain knowledge, such as domain heuristics or wrappers on external
knowledge bases. are assumed to capture partial knowledge about an unobserved
ground truth variable at better than random accuracy. As such, [DP|has strong ties to
previous paradigms including distant supervision [187, 226, crowdsourcing [72, 223
141} 162, 290], and general heuristic and rule-based labeling of data [110, 98]. The core
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idea behind [DP] is to model the training data creation as a process via a graphical
model, where the true label is a latent variable which generates the observed, noisy
labels that the [LES provide. The chief technical challenge here is to learn how to
combine the weak sources of labels into a high quality estimate of the latent ground
truth. An end model, sometimes also called downstream classifier, is then trained on
the estimate of the latent ground truth via a noise-aware loss function. [222] show
that this classifier can generalize beyond the label estimate provided by its teacher
(the label model), a phenomenon that has also been explored in crowdsourcing [108].
A review of and label models can be found in [289, [288]. Existing work shows
that expert designed weak supervision sources are possible for a variety of domains
and data types such as in medicine [92, [85, 88]. For example, in [92] experts crated
labeling functions for Magnetic Resonance Imaging sequence data which included
shape features as well as complex semantic objects such as anatomical segmentation
masks. [102] shows how diagnostic models of abnormal heartbeats can be trained via
human designed heuristics based on electrocardiogram data. In this thesis, I study
the introduction of weak pairwise feedback into data programming in Section
learning the label model and downstream model jointly, in an end-to-end manner|36].
I also study a fusion of Generative Adversarial Networks and programmatic weak
supervision|20)].

In addition to providing the labeling functions, in the data programming frame-
work users can also induce dependencies between labeling functions, such as that one
‘reinforces’ another. In this context, [10] propose a structure estimation method to
identify the generative model’s dependency structure so that the user does not have
to specify it. Similarly, [255] introduce a robust PCA-based algorithm for dependency
structure estimation. [35] investigated the pitfalls of learning dependency structures
and find that errors due to modeling the structure can be substantial, even when
when the connections that are induced are correct.

Additional related work has studied the multi-task data programming setting
[221], handling of multi-resolution sources [233], addressing latent subsets in the data
[252], interactive learning of weak supervision sources [25], [LFs with noisy continuous
scores [39], weak supervision for neural networks in information retrieval 74} 286,
285], LF generation for image data [63], exploiting small amounts of labels as in semi-
supervised learning [42, |185] [186], fast model iteration in data programming via the
use of pre-trained embeddings [43], LF generation through affinity functions [63], the
evaluation of automated LF creation [227], and label model extensions to structured
prediction settings [23§].

Finally, as mentioned above, we have to note that aggregating multiple imprecise
labels is also a core problem studied in the crowdsourcing literature, as modeling of
crowd workers [72, 223} 141} 62} 290]. Common approaches model worker performance
and the unknown label jointly 72} 62, 290] using expectation maximization (EM) or
similar approaches. Some of the main differences of modeling crowd workers compared
to modeling direct weak supervision sources are that errors by crowd workers are
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usually assumed to be random, and that task assignment to workers is not always
fixed but can be optimized for.

The interactive programmatic weak supervision framework that I introduce in
Chapter [ relies on template-like structures of [LFsl Prior work has emphasized that
[LFY defined by experts frequently have a recurring structure in which elements are
swapped to change the higher level concept a function corresponds to [254, 253,
11]. As an example, in tasks involving text documents, [LES often follow a repet-
itive structure in which key terms or phrases and syntactical relationships change,
e.g. mentions of specific words [254, 55, 255]. Prior work relies on this observation to
create heuristic generators [254], LF templates [11], and domain-specific primitives
[253]. In particular, in a semi-supervised data programming setting, |254] propose a
system for automatic generation of labeling functions without user interaction, by us-
ing a small set of labeled data. The authors motivate their system stating that users
frequently perform repetitive steps such as guessing optimal numerical thresholds and
developing informative text patterns.

Active Learning and Programmatic Weak Supervision Active strategies for
weak supervision sources have largely focused on combinations of data programming
with traditional active learning on data points. In [197], a pool of samples is created
on which disagree, and active learning strategies are then applied to obtain
labels for some of the samples. In [55], samples where [LFd abstain or disagree most
are selected and presented to users in order to inspire the creation of new [LEFs The
authors explore two strategies: presenting samples with maximal labeling function
disagreement and samples where labeling functions abstain most. The authors find
that such strategies outperform random selection of samples. One disadvantage in
this setting is that it is unclear how to analyze which sample can inspire the next best
labeling function as there is generally no explicit connection between a sample shown
to a user and to the particular labeling function it may lead to. In [114], natural
language explanations provided during text labeling are used to generate heuristics.
The proposed system uses a semantic parser to convert explanations into logical forms,
which represent labeling functions.

1.2.3 Weak Supervision as Paired Multi-modal Data

Two tasks that are closely related are weakly supervised cross-modal alignment and
multi-modal self-supervised representation learning. In both cases, the learning sig-
nal comes from the knowledge of samples across the different modalities go together,
e.g. a radiology image accompanied by a text report describing the clinically rele-
vant findings in the image. Weakly supervised cross-modal alignment refers to the
task of learning to match entities (and possibly their modifiers) across two or more
modalities in this data, without having access to annotations for entities and their
correspondence. Multi-modal self-supervised learning refers to the task of jointly
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learning representations for the modalities that can be used for solving downstream
tasks via zero-shot learning or fine-tuning.

Section studies a common vision-language case where one has access to pairs
of images and textual descriptions, with a particular focus on applications in health-
care. A variety of self-supervised approaches have been proposed towards jointly
learning visual and textual representations of paired data without supervision, such
as frameworks using contrastive objectives |111} |164} 215], approaches based on joint
transformer architectures [160} 163, 179, 245|, self-supervised Vision Language Pro-
cessing (VLP]) with word-region alignment and language grounding [50], and text
prediction tasks to learn image features [78]. For example, [215] use a contrastive loss
over embeddings of text and image pairs to train a model on large data collected from
the internet (~400M pairs) enabling zero-shot transfer of the model to downstream
tasks. Some of the proposed approaches utilise a single architecture, usually a trans-
former, to learn a representation, following encoders for the individual modalities |50,
163| 245]. Another common theme is the use of use cross-modal attention mechanisms
to improve the aggregation of image regions in convolutional architectures 2} 65, 111].
[13] investigate how explicit modeling of the temporal structure in the paired data
can improve representations and downstream performance of the models in static as
well as temporal tasks.

A number of different objectives have been explored for representation learning
in VLP, including the prediction of words in image captions [13§], predicting phrase
n-grams |159], predicting of entire captions [78], global contrastive objectives defined
on the embeddings of the entire image and text instances [292], and combinations of
global and local contrastive terms [128| [194], where local means that objectives are
defined over text fragments (words or phrases) and image regions.

As mentioned at the beginning of this section, a task that is closely related to
instance representation learning is the alignment of entities across modalities. In[VLP
this is commonly referred to as phrase grounding, but also known as visual grounding,
phrase localization, local alignment, or word-region alignment. The goal here is to
connect natural language descriptions to local image regions. In a supervised learning
setting such as in [184] [193], this problem requires expensive manual annotation for
region—phrase correspondence. Thus, settings for visual grounding have been explored
in which cross-modal pairs are the only form of supervision that is available [89, [111}
175] 1264], i.e. the supervision signal is the knowledge of which caption belongs to
which image. Much of the general domain prior work on phrase grounding relies on
off-the-shelf object-detection networks [50L 65, 111}, [264) 284, 294] such as Faster R-
CNN [225] which are pretrained on large labeled datasets to extract region candidates
from images. This considerably simplifies the problem of matching regions to phrases
as the set of possible regions to match can be assumed to be known, a luxury that is
often unavailable in domain specific contexts.
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1.2.4 Connections to Co-training

Co-training [29] is a well-established semi-supervised learning paradigm that operates
in scenarios where two independent feature sets (views) are given. FEach view is
assumed to have a small amount of labeled data available. In an iterative process,
two models are first trained separately within each view. For a set of randomly drawn
unlabeled samples, the models then label the most confident ones to create additional
training data. The unlabeled set is replenished, and new models are trained in each
view with the newly updated labeled set.

Since co-training operates on two views, it resembles some of the scenarios studied
in this thesis. In programmatic weak supervision, the use of a set of [[Fd in addition
to a set of features can be seen as having additional views. A first difference is that
programmatic weak supervision does not assume access to any labeled data. Fur-
thermore, [LFd are assumed to operate on a diverse set of additional information, not
necessarily related to the feature set, and each LF can therefore be seen as a different
view of the data. Hence, in most applied scenarios of programmatic weak supervision
a set of LFs will correspond to multiple views of the data. Finally, as [222] note,
dependencies between the LFs/views can be explicitly modeled and learned in pro-
grammatic weak supervision, which is not the case in co-training where dependencies
have been observed to cause issues [152].

In Section 4.2 I study self-supervised vision-language processing for paired image
and text data. The section proposes self-supervised learning methodology to pretrain
a joint image-text model on biomedical data. The image and text models, as well as
their alignment, are evaluated across a broad range of downstream tasks. The setup of
having paired multi-modal data studied in Section 4.2 also resembles the co-training
[29] setup. However, many differences separate the two approaches and their assump-
tions about the problem setting. In contrast to co-training, in Section [4.2] access to
labels is not assumed. The joint image-text model is pretrained without any labels at
any stage, and the models can be used in zero-shot scenarios at test time. However,
some labeled data may be used to fine tune the joint model or the models for individ-
ual modalities. Additionally, while the focus of co-training is classification, the focus
of the joint image-text model work in Section [4.2] is model-pretraining for a diverse
set of downstream tasks, including phrase grounding, segmentation, and classification.
Furthermore, the work in Section does not assume that the two available views
are conditionally independent given a label, which is a core assumption that enables
co-training to work [29, 152]. Co-training aims to exploit conditional independence in
two feature sets in order to obtain more training data. The independence assumption
allows the co-training algorithm to annotate unlabeled examples similarly to draw-
ing labeled data at random [29, [152]. In contrast, the multi-modal self-supervised
learning approach of Section follows a contrastive learning paradigm and aims
to freely learn associations between the feature sets of known true pairs through a
normalization term for which negative pairs are sampled at random. Thus, the data
distribution for work such as studied in Section [4.2] is required to not contain domi-
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nant latent attributes that occur by themselves (e.g. medical imaging exams where
images and reports show “no abnormality”) in order avoid excessive false negatives in
the random samplingﬂ Therefore, such approaches are further meant to be employed
in problem settings with diverse sets of latent attributes (e.g. a large number of
co-occurring diseases). Co-training, in comparison, can still perform well even in the
presence of a large class-imbalance. Despite these differences, for specific downstream
classification tasks in a multi-modal self-supervised learning setting, the co-training
paradigm may still present an opportunity to improve models further, by employing
co-training during the fine-tuning step.

3In practice, if such an issue exists, smart filtering and mining of negatives may mitigate it. For
example, a high percentage of text reports in radiology that contain ‘no finding’ can be recognized
by using simple regular expressions.
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Chapter 2

Learning with Pairwise Supervision

In this chapter, I first study how to learn to partition data when a small amount of
pairwise annotations are available, and how it is essential to understand the infor-
mation that the available pairwise links encode. I then explore the use of imperfect
pairwise information as a novel feedback mechanism for improving latent label esti-
mates in programmatic weak supervision.

Data annotations concerning group membership of pairs of samples are frequently
referred to as pairwise constraints in related work. In particular, a relation about two
samples belonging to the same group is referred to as a must-link constraint, while
a relation stating that two samples belong to different groups is called a cannot-link
constraint. This pairwise linkage information can be straightforward to obtain in
many applications, and is at times easier to obtain than labels for individual samples.
There are a variety of reasons that lead to these scenarios. Experts may feel comfort-
able expressing which samples should belong to the same group, but are hesitant to
assign absolute labels.For example, in my personal experience researching counter sex
trafficking applications that use escort advertisement data |83, |196| 129, 24], domain
experts inspecting the data would frequently express that cases were highly similar,
but were hesitant to assign a discrete label that an advertisement was positive for
trafficking. In other cases, pairwise constraints arise naturally as linkages between
objects, providing an obvious way to encode meta-knowledge. For example, for email
spam detection we may not know which messages are spam or not, but we may know
which messages share the same sender and similar subjects and are therefore exceed-
ingly likely to share the same label. In the literature, spatial or temporal proximity
of samples has been used to induce pairwise linkage constraints, as for example in the
analysis of spectral information from planetary observations [260], in video segmen-
tation and speaker identification [14], or for face clustering in videos [270]. Another
example is the creation of pairwise constraints from knowledge about functional links
between proteins for protein function prediction tasks [86].

For some approaches, such as the work I present in the second part of this chapter,
pairwise linkage information may be assumed to be imperfect. In such cases, a scalable
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approach to creating noisy pairwise feedback is to use locally accurate similarity
functions. These functions provide ways to find small numbers of similar samples of
the same class with good accuracy. In text classification for example, using cosine
similarity on term frequency—inverse document frequency (tf-idf) vectors is known
to routinely yield a good approach for finding nearest neighbors of the same class.
Such metrics can be used to gather high quality pairwise information with little
noise, e.g. by constructing Mutual k-Nearest Neighbors (MENN]) graphs using the
user-supplied functions. [MEKNN| approaches have been successfully used in various
domains, including in single-cell RNA sequencing [112].

2.1 Constrained Clustering and Multiple Kernel
Learning without Pairwise Constraint Relax-
ation

This section is based on the work presented in

Boecking, Benedikt, Vincent Jeanselme, and Artur Dubrawski. “Constrained
clustering and multiple kernel learning without pairwise constraint relaxation”.
In: Advances in Data Analysis and Classification (June 2022)

Clustering plays an important role in [MI] applications and systems such as for
anomaly detection, dimensionality reduction, and network analysis |[15]. Clustering is
also frequently used as a data exploration tool to find patterns that may be validated
to have meaning or interpretation by domain experts. However, clustering algorithm
are entirely unsupervised and there are few established ways to incorporate induc-
tive biases or domain knowledge into the algorithms to guide the data partitioning
towards the latent concepts of interest that a user wants to partition. In many cases,
a user may not know apriori what the classes or clusters in a dataset are and how
many clusters should be found. Rather, the user wants a system to aid in discovering
and modeling groups for them and may be willing to provide some limited amount of
information to shape the discovery towards their mental model of what does and does
not belong together. An important but sometimes neglected aspect of clustering is
the impact of the underlying notion of similarity, e.g. an implicit assumption that the
Euclidean distance is a good metric when applying the k-means algorithm. Cluster-
ing is an inherently under-specified problem where the notion of a correct grouping
depends on its context. Thus, it is often unclear how to choose an appropriate simi-
larity measure for a clustering task. While a user of a clustering algorithm may have
an intuitive understanding of which instances should belong to the same clusters, it
is generally difficult to map this intuition onto a metric or a feature set that would
reflect such intuition well.

To this end, clustering under pairwise constraints is a knowledge discovery tool
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that enables the learning of appropriate kernels or distance metrics to improve clus-
tering performance. In this part of thesis, I introduce a new constrained clustering
algorithm that jointly clusters data and learns a kernel in accordance with the avail-
able pairwise constraints. To generalize well, the method is designed to maximize
constraint satisfaction without relaxing pairwise constraints to a continuous domain
where they inform distances. I show that the proposed method outperforms existing
approaches on a large and diverse group of publicly available datasets.

A number of algorithms have been developed that can simultaneously adapt the
underlying notion of similarity or distance while clustering the data. The pairwise
linkage information is usually available in the form of constraints—one set of must-link
pairs and one set of cannot-link pairs of data instances—and the resulting problem is
generally referred to as constrained clustering or semi-supervised clustering [259] [16]
[147]. Since true clusters are unknown apriori in many practical scenarios, leveraging
such feedback can be intuitive and convenient, for example in assessing inter-patient
similarity [262], or in information retrieval [56].

When pairwise linkage constraints are available, one not only desires a grouping
of data that minimizes violations of known constraints, but a model that generalizes
well to constraints beyond the observed ones. This is evident in existing work on
constrained clustering with metric or kernel learning (e.g. |17, |153]), where perfor-
mance improvement is measured via predicted cluster membership on data for which
constraints are not known upfront. To obtain objective functions that are easier to
optimize, formulations of constrained clustering with joint metric or kernel learning
(e.g. |17, 21, 280]) relax pairwise linkage constraints to a continuous space, where the
constraints then inform distances. The goal of learning a better metric or kernel is
then formulated as making must-link pairs nearby and cannot-link pairs distant ac-
cording to the resulting metric, which is a proxy to learning a clustering model that
encourages the must-link pairs to belong to the same cluster and cannot-link pairs
to different clusters. However, in their original form when constraints were obtained,
the constraints only ever informed cluster membership, and not relative distances be-
tween samples. The relaxation of the membership constraints to distance constraints
is only an approximation to the information the constraints encode. This relaxation
can lead to over-specified constraints, e.g. a must-link constraint for samples that
naturally lie on opposite ends of a cluster under a sensible metric.

To uncover patterns in data that generalize well to unseen pairwise constraints, I
introduce a constrained clustering algorithm that jointly learns a cluster model and
kernel by maximizing the number of satisfied training constraints-without having to
relax pairwise constraints to a continuous domain. To this end, the known pairwise
constraint information is used to: (1) improve cluster initialization (2) learn a kernel
by measuring constraint satisfaction when it is used for unconstrained clustering. The
proposed method belongs to the category of soft-constrained clustering algorithms,
which allow for some amount of violation of known constraints.

The simple motivating idea behind this work is to use constraints to estimate
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how well a kernel uncovers the structure underlying known constraints when used
for clustering. I demonstrate how to learn a kernel from a set of bases by using a
kernel k-means algorithm and sparse [MKIl The choice of kernel learning for the
proposed method is deliberate. The kernel trick leads to the underlying clustering
algorithm implicitly operating in some (possibly highly dimensional) feature space,
allowing discovery of nonlinear cluster shapes. Furthermore, kernel methods can
readily handle a variety of data types such as distributions [212], time series [60], trees
[58], or graphs [257], and application specific kernel families have been developed such
as for object recognition [232]. Additionally, [MKIlnaturally allows the use of multiple
views and transformations of the same data since kernels can be applied to varying
views or feature sets. Prior research has shown the benefits of [MKI] over picking a
kernel via cross-validation as well as benefits of sparse [MKT] formulations [100, 246].

Experiments are conducted on 146 publicly available benchmark datasets [204] and
demonstrate that the proposed approach performs better than popular alternatives
on a large variety of data. The section also shows empirically that several existing
approaches frequently converge to sub-optimal metrics, i.e. by using the proposed
method one can find a better solution using the same type of distance metric and
the same training data. The results demonstrate that relaxing pairwise constraint
labels to distance information in a continuous space can frequently yield sub-optimal
pairwise metrics. Further, the experiments demonstrate that the proposed algorithm
can scale well to large datasets, which is not the case for many alternative methods.
Code for the proposed method is open-sourced to ensure that all results can be readily
reproducedE]. Note that from hereon, the term ‘pairwise metric’ is used as a generic
term for distance, similarity, or dissimilarity function.

2.1.1 Methodology

We write vectors & in bold and matrices X in bold capital letters. We are given a
dataset X € R"™? of n samples and a number of pairs of samples x;, z; known to
be in either the same cluster (ML constraint, (z;, ;) € M), or in different clusters
(CL constraint, (x;,x;) € C). These pairwise constraints may be weighted with w;;
to reflect uncertainty about the relationship. The goal is to guide the clustering in a
way that minimizes constraint violations. Importantly, we want the cluster model to
generalize to unseen constraints.

A Multiple Kernel Learning Algorithm

I now introduce a constrained clustering algorithm termed KernelCSC, which learns
a linear combination kernel. The overall objective of this algorithm is to find a kernel
which leads to an unconstrained clustering that maximizes satisfaction of known
pairwise constraints. Pseudo code can be found in Algorithm [I} At each iteration of

1Code available at github.com/autonlab/constrained-clustering,
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the algorithm, we obtain a candidate kernel K parameterized by a vector 3. Using
K, we cluster the data via kernel k-means, and evaluate the resulting clusters S as a
function of satisfied pairwise constraints such that the reward function is:

A 1
R(S) =Ml (( Yo wgllli=1+ Y willl # lj}) : (2.1)

z;,x;)EM (x5,25)eC

where S is is the proposed clustering, and [; is the cluster label assigned to sample ¢
in S. As common in the related semi-supervised clustering literature, we multiply a
pairwise constraint by a weight w;;, if provided.

Linear combination kernel: The paradigm is used to define the ker-
nel matrix K. For now, assume that we have means to obtain a candidate pa-
rameter vector (3 defining the kernel during each iteration of Algorithm [I] Let
g = {Gi})_|,G; € R"" G, = 0Vi € {1,...,p} be a set of p Kernel matrices.
Given B € R, we can create a linear combination kernel K = 3"* | 5,G;. Note that
the analysis and experiments will be constrained to linear combination kernels, but
that nonlinear combination kernels can be used as well.

Kernel k-means: Once K is defined, the unconstrained kernel k-means clus-
tering step partitions data into k disjoint sets S = {S1, S, ..., Sy} for the simplified

objective:
k

argmin tr(K) — Z M, (2.2)

{Sc}le c=1 |SC|
where S, is a set containing all elements assigned to cluster ¢ and ¢r(K) denotes the
trace of the Gram matrix K. To make good use of known constraints, centroids are
initialized using the farthest first scheme [153]. This serves to provide better initial
cluster assignments and more stable clusters for similar kernels across iterations.

Optimizing B: Whether the proposed algorithm (pseudocode shown in Algo-
rithm [1)) performs well depends on an effective acquisition function, which is respon-
sible for identifying promising values of 8. One can view steps 5-8 of Algorithm [1] as
a function f of B. That is, f(B) constructs the kernel K, performs kernel k-means,
and returns the reward of the resulting partition via Eq. . Since this involves a
clustering step, f cannot be differentiated and may be expensive to evaluate. Thus,
we require an effective gradient-free optimization procedure to find good candidates
for 3. One important empirical observation is that the best 3 is highly likely to be
sparse. This is because the base kernels are constructed via heuristics which are not
guaranteed to lead to reasonable clustering results themselves, and therefore dense
B generally lead to bad groupings. We will therefore constrain the search space to
sparse candidates D = {3 : B8 € [0,1]7,|8]|o < c}.

A naive way of optimizing 3 is to sample uniformly over D in each iteration
of the algorithm. A more sophisticated approach is to use Sequential Model Based
Optimization (SMBOQJ) principles such as introduced in [130]. At each iteration, we fit
a model g to the history H = {(B1, f(B1)), - -, (Bi—1, f(Bi-1))} of previously explored
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Algorithm 1: Constraint Satisfaction Clustering

Input : G ={Gy,...,G,}: base kernel matrices; k: number of clusters;
M., C: must-link and cannot link constraint sets; W: weights of
pairwise constraints; a: acquisition function

Output: S’best’ Bbest’ ybest

C\yr= ConnectedComponents(M);

H = O;

while stopping criterion not met do

B <« argmaxgep a(f|H) ;

K + Z?:l IBlGZ7

Sinit < FarthestFirst(Cy, M, C, K);

S KernelKMeans( K, Sinit, k);

~

y < R(S);
H=HU(B,vy);

best best Qbest.
; /3 ’ S )

© 00 N o oA~ W N+

10 update y
11 end

B values. The model g represents the prior belief about the true function f over the
domain and is used as an approximation to find promising candidate values. We
optimize the Upper Confidence Bound [243| over the domain of sparse vectors to
obtain the next candidate:

a(B[H) = ar%g)axu(ﬁ!%) + ko (BIH) (2.3)

where we obtain the posterior mean p(8|H) and standard deviation o(8|H) from
g and optimize by drawing values uniformly over D and taking the best sample.
That is, we fit a regressor g to H and then obtain p and o from the regressor for
samples in D to find the sample maximizing the acquisition function. [SMBQI is
well suited to applications such as the one presented here, in which optimizing g
is less computationally expensive than optimizing f directly. Random Forest (RF)
regression or Gaussian Process are common choices for g.

Complexity and Scalability

Assuming a negligible cost to the gradient free optimization which generates 3 candi-
dates, the proposed method requires O(pn?) storage and O(n?(dp + t)) computation
for creating kernels and running the algorithm, with n samples in d dimensions, p base
kernels, and ¢ optimization iterations. The algorithm can be scaled to larger datasets
by approximating the feature map for kernel functions, e.g. by using the Nystrom
method [97], leading to O(gn) memory and O(n(¢’p + t)) computation, where ¢ is
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the rank of the approximation. It has been shown that the use of Nystrom approxi-
mations for kernel k-means is theoretically sound, practically useful, and scalable to
large data sets [265]. Results showing the consistency of such an approximation and
feasible runtime on a large dataset are provided in Section[2.1.2] In addition, for large
datasets, one may choose to down-sample data for which no constraints are known,
to further reduce training complexity.

Optional Constrained Clustering Step using a Fixed Kernel

Once Algorithm [I| has terminated, a user may choose to perform a final constrained
clustering with a fixed kernel, rather than an unconstrained clustering. While op-
tional, this can be done to satisfy more training constraints if such behavior is desir-

able in a particular application. We define the objective function of this constrained
kernel k-means by adding the following penalty term g(K,{S.}%_,) to Eq. (2.2):

g(K {SH_) = > willl = 1) (Ki — 2K;; + Kj;)
(xi,ﬁj)ec
+ > wylll # 1) (Dyer — Kii + 2K — Kjj)
(z4,z5)EM

(2.4)

where D0, = max ({K“ —2K;; + ij}zjzl) is the largest distance in the feature
space. Pairwise constraint violation costs are scaled by distances in feature space
to obtain penalties that are of similar magnitude to the distances that are observed
between samples and cluster centers. This allows outliers to violate constraints. Cen-
ters are again initialized using the farthest-first algorithm and clusters are learned
via an iterative EM-like algorithm with a greedy approach to handle constraint de-
pendencies as in [1§]. Note that, as in related work such as HMRF k-means [1§]
and MPC-Kmeans [21], this soft constrained formulation of kernel k-means does not
guarantee the satisfaction of all training constraints.

2.1.2 Experiments
Datasets and Algorithms

The experiments make use of the Penn Machine Learning Benchmarks database
(PMLB) [204] to comprehensively evaluate the proposed approach on a large number
of publicly available benchmark problems covering a wide range of applicationf]. The
analysis presented in this work is limited to all labeled datasets in PMLB that con-
tain at least 100 samples, resulting in a collection of 146 datasets. With regard to the
frameworks available in the vast semi-supervised clustering literature, this chapter
shows comparisons to related algorithms considering their scalability and represen-
tativeness. Further, to allow for a fair comparison, the analysis is constrained to

’Data: https://github.com/EpistasisLab/penn-ml-benchmarks
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Figure 2.1: Ranks of algorithms on all 146 datasets, based on mean [ARIl. Shading
indicates significant difference at @ = 0.05 normal confidence intervals. Ties are
resolved by assigning the minimum rank.

algorithms where the number of clusters k is assumed to be given. In addition to
k-means, the following algorithms are evaluated:

COP-Kmeans : a hard-constrained k-means algorithm aiming to resolve all
constraint violations.

LCVQE : a soft constrained k-means which does not terminate if constraints
are violated.

SSK-Kmeans : a constrained graph clustering algorithm; cross-validation is
used to choose an RBF kernel to create the input affinity matrix.

HMRF k-means and MPC-Kmeans : semi-supervised clustering algo-
rithms that also perform joint metric learning.

ITML and MMC [274]: metric learning algorithms. For both, LCVQE is used
to partition the data with the learned metricf]

Implementation Details

The bases used in the proposed KernelCSC algorithm are the Radial Basis Function
(RBF), Laplace, Polynomial, Sigmoid, and Linear kernels. Each kernel is computed
on the raw data as well as on standardized data. For the parameters of each kernel,
the following standard heuristics are adopted to create grids of reasonable values.
For the width parameter of the RBF kernel, the median of all pairwise FEuclidean

3A range of alternatives were evaluated in order to establish difficult baselines. A final LCVQE
partitioning provided the best performance compared to other options such as k-means or COP-
Kmeans partitioning.
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distances is estimated and multiplied by various scaling factors. Similarly, for the
Laplacian kernel multiples of the inverse of the approximate median Manahattan
distance are used. For Sigmoid and Polynomial kernels, the approximate median of
the inner product is used. Polynomial kernels are computed for degrees of 2 and 3.
Furthermore, to avoid numerical issues, each kernel matrix in the set of base kernels
is scaled by a positive scalar. To optimize 3, a random forest is used as the regressor
(the model g), and x = 1.0. Note that values in a wide range around x = 1.0 worked
well, across variety of datasets. For a fair comparison without fine-tuning, the sparsity
parameter c is set to a fixed low value of 5 for all datasets.

Experimental Setup and Results

The experiments follow conventions established in related work. Algorithms are ap-
plied to the full data, but training constraints are only available between samples in
a small train set, while performance is measured only on samples belonging to a test
set. Training constraints are sampled uniformly at random from the binary adja-
cency matrix of points belonging to the training set. All algorithms are trained and
evaluated on the exact same sets of constraints and test points. All algorithms are
compared across a range of evaluation metrics including Normalized Mutual Infor-
mation, Adjusted Mutual Information, Adjusted Rand Index, Fowlkes—Mallows Index,
and F-score. In the main part of this thesis, I illustrate test set performance using
[ARIl scores only, but note that the relative performance differences and overall con-
clusions were consistent when other evaluation metrics were used. Additional Figures
using other evaluation metrics are provided in Appendix

Fixed Number of Training Constraints

The following procedure is repeated 10 times for each dataset: a stratified random
split of the data is created based on the true cluster label, designating 25% as a
training set. 10% of all possible pairs (up to a maximum number of 5000 pairs) are
randomly selected from the training data to obtain known constraints. Constraints
are augmented by transitive and entailed constraints. Wherever algorithms consider
weights for constraints, unit weights are assigned. For the KernelCSC method, the
maximum number of optimization iterations is set to 1000.

The scatter plots in Fig. summarize the mean test set across all datasets,
showing that the proposed method outperforms other algorithms on a large number
of datasets. Fig. displays a summary of the ranks that each algorithm achieves
on all datasets on the basis of the mean [ARIl over random trials. The proposed
algorithm places first for 37.7% of the datasets, and at least second in 53.4%. For
the top 3 ranks, this figure also displays the percentage of datasets for which the
difference in mean [ARIl to all lower ranked algorithms is significant, calculated via
normal confidence intervals over the random runs at o = 0.05. MMC achieves the
second-most top ranks, placing first in 17.1% of the datasets, and at least second
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Figure 2.2: The proposed algorithm (CSC) was adapted to learn a diagonal Maha-
lanobis metric instead of a linear combination kernel. The bars summarize ranks
achieved over all 146 datasets using mean [ARI with methods using Mahalanobis met-
ric. The results indicate that the performance improvements also observed in the
[MKTl version stem from better generalization of learned pairwise metrics by measur-
ing constraint satisfaction.

in 21.9%, closely followed by ITML, which obtains more significant top results than
MMC and more second places. Note that—as far as tested on the datasets considered
here—increasing the size of the training data and/or increasing the number of known
constraints in the training fold did not affect the results in a way that would change
the overall conclusions. When the number of optimization iterations of the proposed
Kernel CSC algorithm is set to 1000, random parameter optimization works as well
as the proposed strategy.

An alternative to the [MKI] based version of the algorithm proposed in this work
is to learn a Mahalanobis distance in conjunction with k-means. There are several
disadvantages to an approach based on learning a Mahalanobis metric leading the the
choice of the kernel learning version being the preferred approach, the main concern
being that gradient free optimization becomes does not scale well to high dimensional
datasets. However, to show that the improved clustering performance does not just
stem from non-linearities introduced by using kernels or the particular bases that
were chosen, but rather from better generalization of the learned similarity function,
I adapt the CSC approach to also learn a Mahalanobis distance. Instead of a linear
combination kernel, the algorithm then learns a diagonal projection matrix to trans-
form the data and perform clustering via k-means instead of kernel k-means. The
vector which parameterizes this Mahalanobis distance is again learned via[SMBO but
without the sparsity restriction used for [MKTl Fig. provides a relative comparison
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Figure 2.3: Percentage of times over all datasets each algorithm is ranked first on
the test set (y-axis), vs. the number of pairwise training constraints (x-axis) used in
training. The ranks were established on test-sets using mean [ARI over 10 random
trials.

to methods from the literature that also learn a Mahalanobis metric, showing that the
proposed approach outperforms them on a large number of datasets when learning a
Mahalanobis metric. Since the same training data and metrics are used, Fig.[2.2)indi-
cates that related methods frequently converge to sub-optimal Mahalanobis metrics
which do not generalize as well to unseen constraints. In the experiments of this work,
the proposed methods of learning a kernel (KernelCSC) outperformed the alternative
of learning a Mahalanobis metric (MahalanobisCSC) on 63.7% of the datasets.

To provide another baseline, KernelCSC is compared to an alternative approach
of choosing one kernel from the set of base kernels via cross-validation. The objective
here remains the same (Equation , but kernel learning is replaced with simply
picking one base kernel. The results showed that [MKI] using a simple linear combi-
nation kernel learning approach can indeed boost performance, giving a higher mean
[ARI on 69.2% of datasets.

Increasing Training Set Size

To study how relative test set performance evolves as more training constraints be-
come available, training constraints are randomly drawn from a train partition in a
range from 50 to 1000 pairs, in increments of 50. Again, these experiments are re-
peated 10 times, and 75% of each dataset is held out for testing. Training constraints
are augmented by transitive and entailed constraints. Due to the large number of ex-
periments conducted, the maximum number of optimization iterations of KernelCSC
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Figure 2.4: A scatter plot comparing the [AR]l performance of KernelCSC (x-axis) to
its scalable implementation using kernel approximations (y-axis), based on test set
performance.

is set to 100. Fig.[2.3summarizes the performance of all algorithms by the percentage
of datasets where each places first, showing that KernelCSC outperforms all others,
regardless of the number of known constraints. The experiments also reveal that
Kernel CSC achieves good relative performance even with a smaller number of opti-
mization iterations. Finally, once the metric is learned, the optional soft constraint
clustering step does not significantly impact measured performance on the test sets
compared to using the learned kernel with an unconstrained kernel k-means to obtain
the final partition.

Scalability to Large Datasets

This section shows that the proposed KernelCSC method can scale well to large
datasets, and that the required approximations to scale the method do not decrease
performance considerably. Fig.|2.4]shows that an implementation of Kernel CSC using
Nystrom approximations of each kernels’ feature map produces results very similar
to the exact implementation. One of the datasets contained in the PMLB benchmark
database is the large kddcup dataset, which contains 494020 points with 23 clusters.
Kernel CSC can cluster this dataset using the approximate KernelCSC without any
multi-processing (Intel Xeon Gold 6152 CPU), with 1000 optimization iterations and
5000 known constraints in ~ 396 minutes. 62 base kernels were used, and each of the
kernels was approximated with 150 components.
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2.1.3 Discussion
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Figure 2.5: Mean test-set performance (ARI)) of the proposed method (y-axes) against
considered alternatives (x-axes), over all 146 datasets. When the proposed Kernel CSC
method performs better, points lie above the diagonal. Size and shading of each point
indicate the diversity of dataset characteristics.

This section introduced a new algorithm for constrained clustering with kernel
or metric learning. It uses discrete pairwise membership constraints to guide learn-
ing. I conducted experiments on 146 datasets, demonstrating superior performance
of the proposed approach compared to popular alternatives. The results highlight-
ing the importance of generalization to unseen constraints in designing constrained
clustering algorithms. When pairwise constraints only indicate same or different
cluster membership, a relaxation to an encoding of distances—while convenient for
optimization—may lead to numerous constraints being over-specified.

The experiments show that the proposed method typically prevails over popular
alternatives on a wide variety of data. An experiment into the evolution of mean test
[ART per number of known training constraints shows the superior performance even
if a small number of constraints are known, after only a few kernel learning iterations.
The proposed approach relies on [MKI] to learn a kernel and can find good solutions
despite relying on a gradient-free optimization. Further, the small number of base
kernels which are created automatically for each dataset based on common heuristics
appear to work well out of the box for a large variety of datasets.

The proposed approach can learn a kernel without relaxing pairwise constraints,
and the experiments suggest that the frequently superior performance is the result
of optimizing for a pairwise metric that—when used for clustering—is expected to gen-
eralize well to unseen pairwise constraints. In one set of experiments (Fig. ,
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a diagonal Mahalanobis metric is learned in a similar vein to the proposed kerbel
learbning method, by swapping the kernel matrix and kernel k-means with a simple
k-means used on a learned projection of the data. This approach is not expected to
work well out of the box for data with a large number of features, since the function
domain becomes more difficult to optimize with gradient-free algorithms. Nonethe-
less, on a large number of datasets the approach outperforms related methods that
also learn Mahalanobis metrics. This experiment highlights that related approaches
frequently converge to sub-optimal metrics when constraints are obtained from the
true underlying clusters.

There are several core issues that lead to some methods being outperformed by the
proposed approach. First, many related methods are formulated to adapt a pairwise
metric to decrease the distance between ML pairs and to increase distance between
CL pairs. This relaxation of linkage information to distance information needs to be
considered carefully. It is important to observe that the pairwise linkage constraints
that guide learning generally do not encode how similar or dissimilar the pairs are but
merely inform cluster membership. It is possible that algorithms overfit to pairwise
constraint information when they are relaxed to a continuous space, even when slack
variables are used. Second, objective functions in constrained clustering with joint
metric learning often combine a clustering loss— e.g. cluster variance |18, |21, 278,
153]-and constraint violation cost of relaxed pairwise constraints. One issue is that
the cluster variance minimization is performed indiscriminately for all data points in
a cluster, including ones that violate constraints, which may reinforce sub-optimal
solutions especially during early iterations. Further, this aspect of the objective can
be decreased by simply shrinking the distances between all points, which necessitates
additional steps to avoid trivial solutions. Finally, due to the cluster assignment of a
sample being a function of the cluster loss and penalty terms that depend on known
constraints, the cluster assignment of a point with known constraints can be different
from the assignment of an equivalent point without known constraints.

The proposed Sequential Model Based Optimization strategy finds good solutions
quickly. Experiments also revealed that a random parameter search over the sparse
constrained space provides a good baseline, arriving at good solutions within hun-
dreds of iterations. This strategy is especially useful for smaller datasets where the
evaluation of the objective function is cheap, while is well suited to very large
datasets where fewer function evaluations are desired.

Advantages of the proposed method are that—due to the use of MEKI}-it is straight-
forward to incorporate data from multiple views, and that it naturally extends to
problem settings where data is not available in a simple tabular form such as in time
series, or distributions. In addition, the proposed method scales gracefully to handling
large datasets.

The proposed algorithm has several limitations in its present form. Keeping a
number of Gram matrices or kernel approximations in memory may in practice re-
quire substantial amount of these resources. Further, its reliance on gradient-free
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optimization limits the number of bases in or dimensionality of the data for
Mahalanobis metric learning that can be handled comfortably. Promising adapta-
tions of this approach include learning nonlinear combination kernels, exploring al-
ternatives to the currently used gradient free optimization, and evaluating utility of
the approach in semi-supervised multi-view settings.

2.2 Imperfect Pairwise Feedback for Programmatic
Weak Supervision

This section is an extension of the work presented in

Benedikt Boecking and Artur Dubrawski. “Pairwise Feedback for Data Pro-
gramming”. In: NeurIPS Workshop on Learning with Rich Experience (LIRE)
(2019)

In this part of the thesis, I propose the use of imperfect pairwise feedback—such
as same or different class membership—to improve the estimation of true class labels
in the programmatic creation of labeled datasets. Recall that [DP] uses multiple ex-
pert defined [LEs-functions that imperfectly label subsets of the data—to estimate an
unobserved ground truth variable. While [DP] can take dependencies between LFs
into account, it does not operate on any feedback about possible relations between
samples. The appeal of incorporating pairwise feedback between samples into [DP is
that it ties together evidence of [LFd across samples. As such, even samples which do
not receive many or any direct weak labels from [LFS can benefit from information
that has been acquired for its associated weak pairs. To this end, I propose method-
ology for jointly learning a label model for data labeling with noisy pairwise labels in
addition to the standard labeling functions (LFs).

2.2.1 Methodology

Problem Setup

As in the standard problem setting [222], users provide an unlabeled training set
X = {x;}", with unobserved ground truth Y € {1,...,C}". Users also provide m
labeling functions A = A(x) € {0,1,...,C}™, where 0 means that the LF abstained
from labeling for any class, i.e. it did not cast a label vote. Let A € {0, 1,...,C}"™*™
be the corresponding matrix representation of LF's applied to the data.

Now, we will assume that users can write weak pairwise feedback functions
which output an undirected, sparse graph A. In the simplest case, users only write
functions that indicate that pairs i,j are likely of the same class (4;; = 1) and
abstain otherwise (A4;; = 0), resulting in a symmetric matrix A € {0,1}"*". In some
cases, users may also be able to gather reliable information about pairs 7,7 which
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are unlikely to be of the same class (4;; = —1), resulting in a symmetric matrix
A € {—1,0,1}"". Finally, it may be possible to obtain functions outputting values
that indicate a strength of belief that some pairs belong to the same or different class.
In this work, I constrain the analysis to the use of noisy pairwise feedback that is
available as a discrete signal, i.e. a function outputs that two samples are of the same
or different class rather than a probability thereof, as this is the most intuitive and
reliable form of pairwise feedback that users can provide.

We could model the joint distribution using a factor graph and use A to define
factors among pairs of y. Unfortunately, the pairwise dependencies between the
unobserved true label make factorization and marginalization very expensive, even for
small n. I therefore explore a simple heuristic approach which aims to first summarize
the dependencies of each sample 7 as a function of the observed LF votes .

A Heuristic Approach: Neighborhood Evidence

I now introduce a model in which we first aggregate pairwise evidence via each LF's
into a variable I term Neighborhood Evidence (NEI). Let

A= (1{A=1},...,1{x = C}) € {0,1}™¢

be the one-hot representation of the LF votes provided by the m LF's for C classes.
Let A € {0, 1}"™*¢ be its tensor representation over all samples. Additionally, users
also provide p pairwise labeling functions. For one of these pairwise functions indexed
by a, let A* € {—1,0,1}™ ™ be its sparse output indicating if samples i and j likely
belong to the same (Af; = 1) or different (Af; = —1) class. An output of 0 again
indicates that the pairwise LF abstained from casting a vote. We will assume that
the pairwise relationships encoded by the nonzero entries of each A, while imperfect,
are better than chance.

First, we define two intermediate variables. Let I;. = X 3" | 1{A; ;. # 0} denote
the propensity of LF j to vote for class ¢, i.e. the empirical probability that LF
j outputs label c. Next, let ¢ = @ > ory A?’k/_\k,., ¢ € R™*C representing the
fractional LF votes among sample ’s neighbors encoded in A%. The variable is
then defined as an indicator variable B € {0, 1}™™*¢ as follows

B = g > lic}

As such, B, ; casts a vote for label c if the fraction of sample i’s neighbors’ LF j votes
for ¢ is greater than the propensity of LF j for ¢. With this variable, one can use the
standard accuracy and propensity factors to define a label model. The LF accuracies
are modeled via factor

P (N, Y) £ 1{Ay; = i}
and the labeling propensity by factor

or5P (A, Y) £ 1{A;; # 0}
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For notational simplicity, we will ignore propensity factors in the model below and
assume only one source of pairwise labels. Naively, we can define the following la-
belmodel in which we treat the [NE] variable as another independent set of labeling
functions:

m

p(Y, A, Bl0,7) £Z, exp ZZ (0;075°(A,Y) +7;075°(B,Y))). (2.5)

=1 j=1

Now, we know that there should be a direct relationship between the expected accu-
racy of an LF A.; and the corresponding [NE] variable B. ;. We can encode this in the
model by defining a prior over the accuracy parameters 6, :

p(0,7) ~exp (—(0—7)"S71 (0 —7)), (2.6)

where ¥ = diag(c?,...,0?) for a o chosen by the user. To fit this model to data, the
negative log marginal posterior can be maximized via Gradient Descent and Gibbs
sampling’]

2.2.2 Experiments

I begin with experiments on synthetic data in order to have full control over the
precision and recall of the LFs. I then use three real-world datasets to show improve-
ments in performance on real data and to demonstrate the ease with which same-class
pairwise feedback can be generated in practice.

Synthetic data

Same-class feedback I simulate a multi-class classification task with ¢ = 10 classes
and generate two weak labeling functions per class. For each weak labeling function,
false positives (fp) and false negatives (fn) are exchanged with the true label at random
to achieve a target recall and precision. Given a target mean recall and precision, the
specific recall and precision for one run of an experiment are drawn randomly from a
truncated normal distribution. Throughout the experiments, the target recall of each
labeling function is fixed at 0.5 and the target precision is incremented from 0.5 to
0.9. To create pairwise feedback, same-class information A; ; = 1 is generated by first
specifying a target count of pairs and a target accuracy and then randomly create
fp and true positive (tp) pairs. To provide a point of reference for the quality of the
simulated pairwise feedback one can consider that for a dataset with ¢ classes and
even class balance, the default accuracy of a pairwise matrix indicating same-class
membership will be ~ 1/c.

This process of simulating labeling functions and weak pairwise feedback is re-
peated ten times, results are presented based on the mean accuracy achieved by

4For details, see: Section 20.3.3.1 of [148] or Section 19.5.2 of [195]
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Figure 2.7: Increase in accuracy of MAP estimate for the latent class variable Y
achieved by data programming with pairwise feedback, compared to a model without
pairwise feedback, on synthetic data. Results shown for 1k and 5k pairs. The increase
in accuracy is indicated by the contours.

the estimate YM Ap. Figure shows the accuracy of ?M Ap produced by a basic
data programming model with independent labeling functions on the simulated task
as the precision of the underlying labeling functions increases. The contour plot in
Figure E shows the accuracy of Yy ap when 5000 pairs of same-class feedback of
varying accuracy are added to the model. Figure shows the increase in Yaap
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Y achieved by data programming with same-class and different-class pairwise
feedback, compared to a model without pairwise feedback, on synthetic data. Re-
sults shown for 10k pairs. The increase in accuracy is indicated by the contours.

accuracy gained by using this weak pairwise feedback. Figure reveals that even
a small number of 1000 pairs can lead to drastic improvements.

Same-class and different-class feedback Using the same approach as described
in the previous section, I also simulated the acquisition of different-class feedback
A;; = —1 in addition to same-class feedback. To this end, I randomly sampled
unique pairs from the data and then corrupted the ground-truth pairs to achieve
desired noise levels of pairwise feedback. Results for an experiment with 10, 000 pairs
are shown in Figure Comparing Figure to Figure [2.7] it appears that a
higher pairwise accuracy is needed to achieve consistent improvements when pairwise
feedback contains both same and different class feedback, as the negative feedback in
this setting is naturally less informative.

Benchmark Datasets

Datasets [ conduct experiments with three benchmark datasets. I use a subset
of the Amazon Review Dataﬂ to create a binary sentiment classification task,
aggregating all categories with more than 100k reviews from which 200k reviews are
sampled and split into 160k training points and 40k test points. I also use the IMDB
Movie Review Sentiment datasetﬂ which has 25k training samples and 25k test

Shttps://nijianmo.github.io/amazon/index.html
Shttps://ai.stanford.edu/~amaas/data/sentiment/
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Coverage of all .
Dataset Weak Source Type | Accuracy possible pairs #pairs
Amazon Text MKNN 0.830 4.572e¢ — 06 58519
IMDB Text MKNN 0.763 7.266e — 05 22704
Newsgroups Text MKNN 0.880 2.375e — 3 7466
Newsgroups Emails 0.917 2.956e — 3 9293

Table 2.1: Weak pairwise source stats for the Amazon, IMBD, and Newsgroups
datasets. For MKNN, pairwise LF's are created by computing mutual k-nearest neigh-
bors based on cosine similarity over tf-idf embeddings.

samples and presents another binary sentiment classification task. Finally, I also
create a subsetﬂ of the popular 20 Newsgroups text classification datasetﬁ with ¢ =5
classes with roughly even class balance, resulting in 2508 training samples and 1669
test samples from the official test split. For all three datasets, labeling functions are
created manually, prior to the experiments, based on user-defined heuristics that look
for mentions of specific words.

Weak Pairwise Sources For all three datasets, a weak pairwise matrix is created
using an [MKNN] heuristic computed based on text similarities. A term frequency - in-
verse document frequency (tf—idf)ﬂ embedding is created, and the 5 nearest neighbors
for all documents are computed using cosine similarity. Using this nearest neigh-
bor graph, pairs of documents 4,5 are created that are MKNN| and assign a label
A2 =1

For the Newsgroups dataset, I also create pairs using meta-data. I use a regular
expression to extract the first email address mentioned in each document. Using the
extracted email addresses, I create pairs of documents 7, j containing the same email
address and assign a label Aj ; = 1. The assumption is that the first email address in
a document identifies the author, and that documents by a unique author are more
likely to belong to the same topic. This results in a pairwise matrix A! covering
about 0.12% of all possible pairs, see Table 2.1 Note that both of these sources of

pairwise feed back only create same-class pairs.

Results I compare the model to a basic[DPlmodel [222], assuming conditionally
independent [LFs Table[2.2]shows how including the pairwise weak sources via the [NE]
label model changes the estimate of the ground truth obtained for the training data.
On all datasets, the accuracy across the entire dataset, including samples where LF's

"topics: alt.atheism, talk.religion.misc, talk.politics.misc, comp.windows.x, sci.space

8As available at:
https://scikit-learn.org/stable/datasets/index.html#newsgroups-dataset

YWith a minimum document frequency cutoff at 0.001.

10 is among the 5 nearest neighbors of j, and j is among the 5 nearest neighbors of i.
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Accuracy

Accuracy

Dataset Approach (covered) (all samples) Coverage
Amazon DP 0.882 4+ 0.000 | 0.634 £ 0.000 0.550
NE 0.849 +0.002 | 0.646 £ 0.001 0.619
IMDB DP 0.775 4+ 0.001 | 0.663 £ 0.001 0.518
NE 0.749 £ 0.001 | 0.693 £ 0.001 0.757
Newsgroups DP 0.862 4+ 0.002 | 0.567 £ 0.001 0.582
NE Mail | 0.834 £ 0.003 | 0.647 +0.002 | 00.750
NE MKNN | 0.759 £ 0.003 | 0.689 + 0.002 | 00.892
NE both | 0.761 £0.003 | 0.701 £ 0.003 | 00.913

Table 2.2: Label model transductive performance on the training dataset, averaged
over ten trials. The coverage column the fraction of the dataset where at least one
LF votes. (covered) indicates that the metric is only computed on samples with at
least one LF vote.

abstain, increases with the use of the label model, in large part due to the increase
in coverage. When the accuracy of the estimate is only computed based on covered
samples (i.e. samples with at least one weak labels from an LF or the variable),
it slightly decreases compared to the accuracy of the estimate derived with the basic
[DPllabel model. Now, the important question is if the increase in coverage translates
into improvements in downstream test-set accuracy. As a downstream classifier, I use
tf-idf features as input to an Multilayer Perceptron (MLP]), and fit the model using
Adam with dropout (0.2). Table shows the test set accuracy of the downstream
classifier. On all three datasets, and across all pairwise sources, the downstream test
set accuracy improves with the use of the [NE] label model.

Finally, I conducted ablations which showed that parameter prior which encour-
ages the LF accuracy parameter # and the [NE|l parameter v to remain close was not
essential to achieving good results.

2.2.3 Discussion

Noisy pairwise feedback is a valuable resource for programmatic weak supervision
as it ties evidence of the sample-wise weak votes together, across different samples
of a dataset. The experiments in this section demonstrate that just one imperfect
pairwise function can lead to improved downstream performance. The [NE] variable
heuristic that I introduced aggregates the pairwise dependencies between samples
as a function of the observed weak labels, allowing learning of the label model to
scale to large datasets. The experiments on real data demonstrate that, for common
classification tasks, pairwise feedback can be collected with ease, at scale, and with
sufficient accuracy.
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Dataset ‘ Approach ‘ Accuracy

Amazon DP 0.718 £0.018
NE 0.750 £ 0.013

IMBD DP 0.786 £ 0.015
NE 0.800 £ 0.007

Newsgroups DP 0.704 4+ 0.026
NE Mail | 0.751 £0.014

NE MKNN | 0.711 £ 0.016

NE Both | 0.721 +£0.019

Table 2.3: Downstream test set performance averaged over ten trials.

A limitation of the current formulation of the[NEllabel model is that it is not robust
to ‘bad’ pairwise sources with random accuracy or worse. Thus, future work may
investigate a model that composes the weight of the [NE] variable into two components:
an overall accuracy of the pairwise weak source a, and the accuracy of the LF that
each [NEl entry aggregates.
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Chapter 3

Label Models for Programmatic
Weak Supervision

In programmatic weak supervision, the weak sources of labels capture imperfect,
partial knowledge about the unobserved ground truth at better than random accuracy,
and their votes are combined by a label model to derive an estimate of the unobserved
ground truth. This information bottleneck allows us to obtain a good teacher with
low complexity (the label model), from which the student (the end model) can-given
a sufficiently sized dataset—learn to generalize beyond the knowledge that the weak
sources of labels capture. The standard [DP][220, 221] paradigm proceeds in two steps:
a first where a label model py(y, A) estimates the unobserved ground-truth y only on
the basis of the votes cast by LFs A, and a second in which an end model f(z) is
trained to predict the estimate of the unobserved ground truth § = py(y|A) based on
the features x. The quality of the teacher thus depends on how well the label model
aggregates the LF votes. In current [DP] approaches, the teacher’s complexity in how
votes are aggregated is kept extremely low, as each LF is only associate with one
global accuracy parameter. Furthermore, the label model parameters are estimated
only on the basis of the LF outputs, ignoring the unlabeled data distribution.

In this Chapter, I will continue the study of novel programmatic weak supervision
methods and investigate how carefully designed inductive biases enable us to design
approaches that model not just LF vote patterns A(x) but also the distribution of
inputs x in concert, in order to obtain an improved estimate of the unobserved ground
truth . First, I will introduce an end-to-end modeling approach for joint learning of
a label and end model, showing improved performance over prior work in terms of end
model performance on downstream test sets. Next, I study how Generative Adversar-
ial Networks (GANS) enable improved modeling of pseudolabels derived from weak
supervision sources, while simultaneously improving data generation of the genera-
tive models and enabling downstream data augmentation via weakly labeled synthetic
samples. In both sections, I again consider weak supervision in the form of multi-
ple direct but imperfect labels for subsets of data, supplied in the form of LFs that

37



subject matter experts create.

3.1 End-to-end Modeling with Labeling Functions

This Section is based work with my collaborator and mentee Salva Riihling
Cachay, presented in

Salva Riihling Cachay, Boecking, Benedikt, and Artur Dubrawski. “End-to-
End Weak Supervision”. In: Thirty-fifth Conference on Neural Information
Processing Systems (NeurIPS). 2021

The main task for learning from multiple sources of weak supervision is to recover
the sources’ accuracies in order to estimate the latent true label, without access to
ground truth data. In prior work [222, 221} 93], this is achieved by first learning a gen-
erative Probabilistic Graphical Model (PGM]) over the weak supervision sources and
the latent true label to estimate probabilistic labels, which are then used in the second
step to train a downstream model (also referred to as end model) via a noise-aware
loss function. The existing PGMlbased approaches maximize the likelihood of the
observed LF votes under the label model, marginalizing over the latent ground truth.
As such, the methods not take the patterns in the features or the predictions of the
downstream model into account. Furthermore, while label models only based on LF
votes are straightforward, the approaches and the associated theoretical analyses [222]
221}, 93] make assumptions that may not hold in practice, such as the availability of a
well-specified generative model structure (i.e. that the dependencies and correlations
between the weak sources have been correctly specified), that LF errors are randomly
distributed across samples, and that the latent label is independent of the features
given the weak labels (i.e. only the joint distribution between the sources and labels
needs to be modeled). The benefits of jointly optimizing a downstream model and a
label model of imperfect labels have been recognized in multiple end-to-end methods
that have been proposed for the crowdsourcing problem setting [223, 108, 267, |144],
3, 228, 37| where such methods have outperformed approaches that first model the
latent ground truth only based on the crowd worker votes. Related work also exists in
natural language processing, where [263] introduced deep probabilistic logic (DPL),
a framework that uses virtual evidence as prior belief over latent labels and their
inter-dependencies, and learns an end model jointly with the label model.

This section introduces WeaSEL, a Weakly Supervised End-to-end Learner ap-
proach for training neural networks with multiple sources of weak supervision. WeaSEL
is based on 1) reparameterizing previous PGM based posteriors with a neural en-
coder network that produces accuracy scores for each weak supervision source; and
2) training the encoder and downstream model with the same target loss, using the
other model’s predictions as targets, to maximize the agreement between both mod-
els. The proposed method needs no labeled training data, and does not assume
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sample-independent source accuracies. Experiments show that it is not susceptible
to highly correlated LFs. In addition, the proposed approach can learn from multiple
probabilistic sources of weak supervision. The contributions are as follows:

e A flexible, end-to-end method for learning classifiers from multiple sources of
weak supervision is introduced.

e Experiments demonstrate that the method is naturally robust to adversarial
sources as well as highly correlated weak supervision sources.

e An open-source, end-to-end system for arbitrary PyTorch downstream mod-
els is released that will allow practitioners to take advantage of the proposed

approachﬂ.

e The method outperforms state-of-the-art latent label modeling approaches on
4 out of 5 benchmark datasets by as much as 6.1 F1 points, and achieves state-
of-the-art performance on a crowdsourcing dataset against methods specifically
designed for this setting.

3.1.1 Methodology

This section presents a flexible base algorithm called WeaSEL for learning from multiple
[LFS, which can be extended to probabilistic sources and other network architectures

(Section [3.1.3). See Algorithm [2| for pseudocode.

'https://github.com/autonlab/weasel
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Figure 3.1: For a task with unobserved ground truth labels y, given m sources of
weak supervision ); and training features X, WeaSEL trains a downstream model
f by maximizing the agreement of its predictions y; with probabilistic labels y, =
Py(y = ¢| A) generated by a weighted combination of LF votes with sample-dependent
accuracy scores ¢ produced by an encoder network e.

39


https://github.com/autonlab/weasel

Algorithm 2: WeaSEL: The proposed Weakly Supervised End-to-end Learn-
ing algorithm for learning from multiple weak supervision sources.

Input : batch size n, networks e, f, inverse temperatures 7y, 7o,
noise-aware loss function L, class balance P(y).
Output: downstream network f(-)
1 for sampled minibatch {z® = (x® A®)}2_ do

2 for allk € {1,...,n} do
3 # Produce accuracy scores for all weak sources
4 0 (2¥)) = softmax (e(z*)7)
5 # Generate probabilistic labels
6 define s®) as s = g(z(NHTXY
7 Y = Py(y| A®) = softmax (s¥ry) ® P(y)
# Downstream model forward pass
k
9 g = f(x®)
10 end
11 = & ke (yf , stop-grad <y§ )>)
12 Lo=1%0, <ye , stop-grad (yﬁ)))
13 update e to minimize L., and f to minimize L
14 end

Problem Setup

Let (x,y) ~ D be the data generating distribution, where the unobserved labels
belong to one of C classes: y € Y = {1,...,C}. Asin [222], users provide an unlabeled
training set X = {x;},, and m labeling functions A = X(x) € {0, 1,...,C}™, where
0 means that an LF abstained from voting for a class. We write

=(I{x=1},..., 1{x=C}) € {0, 1}m><C

for the one-hot representation of the LF votes provided by the m LFs for C' classes.
The goal is to train a downstream model f : X — ) with a noise-aware loss L(yy, y.)
that uses the downstream model’s predictions yy = f(x) and probabilistic labels y.
generated by an encoder model e that has access to LF votes, A, and features, x.
Note that prior work restricts the probabilistic labels to only being estimated from
the LFs.

Posterior Reparameterization

Previous[PGM] based approaches assume that the joint distribution p(X, y) of the LFs
and the latent true label can be modeled as a Markov Random Field (MRF) with
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optional pairwise dependencies between weak supervision sources [222, 220, 221, |93,
42]. These models are parameterized by a set of LF accuracy and intra-LF correla-
tion parameters, and in some cases by additional parameters to model LF and class
label propensity. Note however, that the aforementioned models ignore features x
when modeling the latent labels and therefore disregard that LFs may differ in their
accuracy across samples and data slices.

In this work, these assumptions are relaxed, and the latent label is viewed as an
aggregation of the LF votes that is a function of the entire set of LF votes and features,
on a sample-by-sample basis. That is, we model the probability of a particular sample
x having the class label ¢ € Y as

Py(y = c| A) = softmax (s), P(y = ¢), (3.1)
s=0(Ax)"Ac R, (3.2)

where (X, x) € R™ weighs the LF votes on a sample-by-sample basis and the softmax
for class ¢ on s is defined as
T _
softmax (s), = gxp (OO, )71 = C}) :
ijl exp (0(A, x)T1{x = j})

While the class balance P(y) is not used in the experiments, it is frequently assumed
to be known in prior work 221}, 93| 42|, and can be estimated from a small validation
set, or from unlabeled data as described in [221]. This formulation can be seen as a
reparameterization of the posterior of the pairwise Markov Random Field (MREF)s in
[220, 221}, 93], where 0 corresponds to the LF accuracies that in prior work were fixed
across the dataset and were solely learned via LF agreement and disagreement signals,
ignoring informative features. Appendix further motivates this formulation and
expands upon the aforementioned connection.

Neural Encoder

Based on the setup introduced in the previous section and captured in Eq. ,
the goal is to estimate latent labels by means of learning sample-dependent accuracy
scores O(, x), which this work proposes to parameterize by a neural encoder e. This
network takes as input the features x and the corresponding LF outputs A(x) for a
data point, and outputs unnormalized scores e(\, x) € R™. Specifically, define

O(A,x) = T2 - softmax (e(X, x)11) , (3.3)

where 75 is a constant factor that scales the final softmax transformation in relation
to the number of [LF'd m, and is equivalent to an inverse temperature for the output
softmax in Eq. . It is motivated by the fact that most [LFs are sparse in practice.
When the number of [LFs is large, without scaling this leads to small accuracy magni-
tudes (since, without scaling, the accuracies after the softmax sum up to one)ﬂ. 71 18

2In the main experiments of this Section 75 = \/m.
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an inverse temperature hyperparameter that controls the smoothness of the predicted
accuracy scores: the lower 7, the less emphasis is given to a small number of LFs —
as 71 — 0, the model aggregates according to the equal weighted vote.

Training the Encoder

The key question now is how to train e, i.e. how can we learn an accurate mapping
of the sample-by-sample accuracies, given that we do not observe any labels?

First, note that initializing e with random weights will lead to latent label esti-
mates close to an equal weighted vote, which acts as a reasonable baseline for label
models in data programming (and crowdsourcing), since in expectation votes of [LFs
are assumed to better than random guesses. Upon initialization, Py(y| X, x) will
therefore provide a better than random initial guess for the unobserved true labels
y. Further, in most practical cases, features, latent label, and labeling function ag-
gregations are intrinsically correlated due to the design decisions made by the users
defining the features and[LFd Thus, one can jointly optimize e and [ by maximizing
their agreement with respect to the target downstream loss L in an end-to-end manner.
The natural classification loss is the cross-entropy, but in order to encode the desire
to maximize the agreement of the two separate models that predict based on different
views of the data, it is adapted in the following formP} The loss is symmetrized in
order to compute the gradient of both models using the other model’s predictions
as targets. To that end, it is crucial to detach targets (the second argument of L)
from the computation graph (sometimes regerred to as a stop-grad operation), i.e.
to treat them as though they were ground truth labels. This choice is supported by
the synthetic experiments and ablations. This operation has also been shown to be
crucial in siamese, non-contrastive, self-supervised learning, both empirically [106, 49]
and theoretically [250]. By minimizing both L(y.,ys) and L(yy,y.) simultaneously to
jointly learn the network parameters for e and the downstream model f, we learn the
accuracies of the noisy sources A that best explain the patterns observed in the data,
and vice versa the feature-based predictions that are best explained by aggregations of
LF voting patterns.

WeaSEL Design Choices

Note that it is necessary to encode the inductive bias that the unobserved ground
truth label y is a (normalized) linear combination of LF votes — weighted by sample-
and feature-dependent accuracy scores. Otherwise, if the encoder network directly
predicts Py(y| A, x) instead of the accuracies (X, x), the pair of networks e, f have no
incentive to output the desired latent label, without observed labels, and do not start
with a reasonable first guess of y. Of course, this two-player cooperation with strong
inductive biases can still lead to degenerate solutions. However, empirically it is

3This holds for any asymmetric loss, while for symmetric losses this is not needed.
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Table 3.1: The final test F1 performance of various multi-source weak supervision
methods over seven runs, using different random seeds, are averaged out + standard
deviation. The top two performance scores are highlighted as First, Second. Triplet-
median [42] is not listed, as it only converged for IMDB with 12 LFs (F1 = 73.04+0.22),
and Spouse (F1 = 48.7 4+ 1.0). The downstream model is the same for all methods.
For Sup. (Val. set), and Majority vote it is trained on the hard labels induced by the
labeled validation set and the majority vote of the LFs, respectively. For the rest it is
trained on the probabilistic labels estimated by the respective state-of-the-art latent
label model. For reference, the Ground truth performance of the same downstream
model trained on the true training labels (which are unused by all other models, and
not available for Spouse) is also reported.

Model ‘ Spouse (9 LFs) ProfTeacher (99 LFs) IMDB (136 LFs) IMDB (12 LFs) Amazon (175 LFs)
Ground truth - 90.65 & 0.29 86.72 & 0.40 86.72 + 0.40 92.93 +0.68
Sup. (Val. set) 204£0.2 73.34 £0.00 68.76 & 0.00 68.76 4 0.00 84.18 4 0.00
Snorkel 48.79 + 2.69 85.12 +£0.54 82.22 £+ 0.18 74.45 £ 0.58 80.54 + 0.41
Triplet 45.88 + 3.64 74.43 +10.59 75.36 +1.92 73.15+0.95 75.44 + 3.21
Triplet-Mean 49.94 + 1.47 82.58 £ 0.32 79.03 £ 0.26 73.18 £0.23 79.44 £ 0.68
Majority vote 40.67 £ 2.01 85.44 + 0.37 80.86 £+ 0.28 74.13 +£0.31 84.20 £+ 0.52
WeaSEL 51.98 & 1.60 86.98 + 0.45 82.10 + 0.45 77.22 £ 1.02 86.60 + 0.71

observed that the simple WeaSEL model is 1) competitive and frequently outperforms
state-of-the-art [PGMlbased and crowdsourcing models (see Tables and ; and
2) is robust against LF correlations and able to recover the performance of a fully
supervised model on a synthetic example, while all related models break in this setting

(see Section and Appendix [B.6)).

3.1.2 Experiments

Datasets As in related work on label models for weak supervision [222, 221, 93,
42, for simplicity the focus here is on the binary classification case with unobserved
ground truth labels y € {—1,1}. See Table for details about dataset sizes and
the number of LFs used. An experiment on a multi-class, crowdsourcing dataset (see
Section is also reported. The proposed WeaSEL end-to-end system for learning a
downstream model from multiple weak supervision sources is evaluated on previously
used benchmark datasets in weak supervision work [220, 25, 42]. Specifically, test set
performance on the following classification datasets is evaluated:

e The IMDB movie review dataset |182] contains movie reviews to be classified
into positive and negative sentiment. Two separate experiments are conducted,
where in one the same 12 labeling functions are used as in [42], and for the other
136 text-pattern based LFs are created manually. More details on the LFs can
be found in Section [B.3l

e A subset of the Amazon review dataset |118], where the task is to classify
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product reviews into positive and negative sentiment.

e The BiasBios biographies dataset [8] is used to distinguish between binary cate-
gories of frequently occurring occupations. The same task of professor vs teacher
classification is used as in [25].

e Finally, the highly unbalanced Spouse dataset (90% negative class labels) is
used, where the task is to identify mentions of spouse relationships among a set
of news articles from the Signal Media Dataset [57].

For the Spouse dataset, the same data split and LFs as in [93] are used, while a small
subset of the test set is used as a validation set for the other datasets. This is common
practice in related work [220, [221} |93} |25] for tuning hyperparameters, and allows for
a fair comparison of models.

Benchmarking Weak Supervision Label Models

To evaluate the proposed system, it is benchmarked against state-of-the-art systems
that aggregate multiple weak supervision sources for classification problems, without
any labeled training data. The proposed approach is compared to the following
systems: 1) Snorkel, a popular system proposed in 220} [221]; 2) Triplet, exploits a
closed-form solution for binary classification under certain assumptions [93]; and 3)
Triplet-mean and Triplet-median [42], which are follow-up methods based on Triplet
with the aim of making the method more robust.

The held-out test set performance of WeaSEL’s downstream model f is reported.
Note that, in many settings it is often not possible to apply the encoder model to
make predictions at test time, since the LFs usually do not cover all data points
(e.g. in Spouse only 25.8% of training samples get at least one LF vote), and can be
difficult to apply to new samples (e.g. when the LFs are crowdsourced annotations).
In contrast, the downstream model is expected to generalize to arbitrary unseen data
points.

In the experiments, the proposed WeaSEL model performs well, with four out of
five top scores, and a lift of 6.1 F1 points over the next best label model-based
method in the Amazon dataset. The results are summarized in Table B.1l Since the
proposed model is based on a neural network, the large relative lift in performance
on the Amazon review dataset may be due to it being the largest dataset in the
experiments. To obtain the comparisons shown in Table [3.1], Snorkel is run over six
different label model hyperparameter configurations, and the downstream model is
trained on the labels estimated by the label model with the best validation [AUC|
score. The results of the Triplet-median approach are not reported in Table since
the method only converged for the two tasks with a very small number of labeling
functions. Training the downstream model on the hard labels induced by a majority
vote leads to competitive performance, better than the triplet methods in four out of
five datasets. This baseline is not reported in previous papers (only the raw majority
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Table 3.2: Test accuracy scores on the crowd-sourced, multi-class LabelMe image
classification dataset.

Model Accuracy
Majority vote 79.23 £0.5
MBEM [144] 76.84 + 0.4

DoctorNet [108]  81.31 £0.4
CrowdLayer [228] 82.83 £0.4

AggNet [3] 84.35 4 0.4
MaxMIG [37] 85.45 + 1.0
Snorkel+CE 82.89 £ 0.7
WeaSEL+CE 82.46 + 0.8
Snorkel4+MIG 85.15£0.8
WeaSEL+MIG 86.36 =+ 0.3

vote is usually reported, without training a classifier). The proposed model, WeaSEL,
on the other hand consistently improves over the majority vote baseline (which in
Table[B.1], in the Appendix, can be seen to lead to similar performance as an untrained
encoder network, e, that is left at its random initialization).

Crowdsourced Labels

Data programming and crowdsourcing methods have been rarely compared against
each other, even though the problem setup is quite similar. Indeed, end-to-end sys-
tems specifically for crowdsourcing have been proposed [223, 144, 228, |37]. These
methods follow crowdsourcing-specific assumptions and modeling choices (e.g. in-
dependent crowdworkers, a confusion matrix model for each worker, and in general
build upon [72]). Still, since crowdworkers can be seen as a specific type of label-
ing functions, the performance of general WS methods on crowdsourcing datasets
is of interest. The proposed WeaSEL method is therefore evaluated on the multi-
class LabelMe image classification dataset, which has previously been used in related
crowdsourcing work [228]|37]. The results are reported in Table , and more details
on this experiment can be found in Section Note that the evaluation procedure
in [37] reports the best test set performance for all models, while this work follows
the standard practice of reporting results obtained by tuning based on a small val-
idation set — as in the main experiments. The proposed model, WeaSEL, is able to
outperform Snorkel as well as multiple state-of-the-art methods that were specifically
designed for crowdsourcing (including several end-to-end approaches). Interestingly,
this is achieved by using the mutual information gain loss (MIG) function introduced
in [37], which significantly boosts performance of both Snorkel (the end-model, f,
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Figure 3.2: WeaSEL is significantly more robust against correlated adversarial (left)
or random (right) [LFS than prior work whose assumptions make them equivalent to
a Naive Bayes model. For subfigure (a), a fake adversarial LF is duplicated up to ten
times, and the proposed end-to-end system is robust against the adversarial LF, while
other systems quickly degrade in performance (over ten random seeds). In (b), one LF
is set to be the true labels y* and a random LF is then duplicated 2, 5, ..., 2000 times.
The test AUC performance curve is shown as a function of the epochs, averaged out
over the different number of duplicates (and five random seeds). WeaSEL consistently
recovers the test performance of the supervised end-model f trained directly on the
true labels y*, whose end performance (AUC = 0.967) is shown in red.

trained on the MIG loss with respect to soft labels generated by the first Snorkel
label model step) and WeaSEL compared to its version that uses the cross-entropy
(CE) loss. This is evidence that the MIG loss is a great choice for the special case
of crowdsourcing, due to its strong assumptions common to crowdsourcing which are
much less likely to hold for general LFs. This is reflected in the ablations too, where
using the MIG loss consistently leads to worse performance on the multi-source weak
supervision datasets.

Robustness to Adversarial LFs and LF correlations

Users will sometimes generate sources they mistakenly think are accurate. This also
encompasses the ‘Spammer’ crowdworker-type studied in the crowdsourcing litera-
ture. Therefore, it is desirable to build models that are robust against such sources.
The proposed system, which is trained by maximizing the agreement between an ag-
gregation of the sources and the downstream model’s predictions, should be able to
ignore the adversarial sources. Fig. shows that the proposed system does not
degrade in its initial performance, even after duplicating an adversarial LF ten times.
Prior latent label models, on the other hand, rapidly degrade, given that they often
assume the weak label sources to be conditionally independent given the latent label,
equivalent to a Naive Bayes generative model. Note that the popular open-source im-
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plementation of [220, 221] does not support user-provided LF dependencies modeling,
while [93, 42| did not converge in the experiments when modeling dependencies, and
as such it was not possible to test the performance when the correlation dependencies
between the duplicates are provided (which in practice, of course, are not known).

A synthetic experiment inspired by [37] is also conducted, where one LF is set to
the true labels of the ProfTeacher dataset, i.e. A\; = y*, while another LF simply votes
according to a coin flip, i.e. Ay ~ P(y). This latter LF is then simply duplicated,
ie. A3 =--- = )\, = Ag. Under this setting, the proposed WeaSEL model is able to
consistently recover the fully supervised performance of the same downstream model
directly trained on the true labels y*, even when the random LF' is duplicated up to
2000 times (m = 2001). The Snorkel and triplet methods, on the other hand, were
unable to recover the true label (AUC ~ 0.5). Importantly, the design choices for
WeaSEL are to a large extent key in order to recover the true labels in a stable manner
as in Fig.[3.2bl Various other choices either collapse similarly to the baselines, are not
able to fully recover the supervised performance, or lead to unstable test performance
curves, see Fig. More details about the experimental design and an extensive
discussion, ablation, and figures based on the synthetic experiment can be found in

Section [B.6l

Implementation Details

Here, I provide a high-level overview over the used encoder architecture, the LF sets,
and the features. More details, especially hyperparameter and architecture details,
are provided in Section [B.3] All downstream models are trained with the (binary)
cross-entropy loss, and the proposed model is trained with a symmetric cross-entropy
loss which detaches targets from the computational graph.

Encoder network The encoder network e does not need to follow a specific
neural network architecture and a simple [MLP| is therefore used in the benchmark
experiments.

Features for the encoder A big advantage of the proposed model is that it is
able to take into account the features x for generating the sample-by-sample source
accuracies. For all datasets, as input to the encoder model the LF votes are therefore
concatenated with the same features that are used by the downstream model (for
Spouse, smaller embeddings are used than the ones given to the downstream Long

Short-term Memory Networks (LSTM))).

Weak supervision sources For the Spouse dataset, and the IMDB variant
with 12 LFs, the same LFs are used as in [93] 42] respectively. The remaining three
LF sets were selected manually prior to the experiments. These LFs are all pattern-
and regex-based heuristics, while the Spouse experiments also contain LFs that are
distant supervision sources based on DBPedia.
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Table 3.3: Dataset details, where training, validation and test set sizes are Nyqqin, Nyais
Niest respectively, and f denotes the downstream model type. The total coverage Cov.
of all LFs is also reported, which refers to the percentage of training samples which
are labeled by at least one LF. For IMDB, two different sets of labeling functions of
sizes 12 and 136 were used.

Dataset  #LFs Nygin  Cov. (in %) Nyat  Niest f

Spouse 9 22,254 25.8 2811 2701 LSTM
BiasBios 99 12,294 81.8 250 12,044 MLP
IMDB 12 25k 88.0 250 24,750 MLP
IMDB 136 25k 83.1 250 24,750 MLP
Amazon 175 160k 65.5 500 39,500 MLP

Ablation Studies

Here, the strength of the WeaSEL model design decisions is demonstrated via extensive
ablations. The ablations are conducted on four datasets (all but the Spouse dataset),
for twenty configurations of WeaSEL, and with different encoder architectures, hyper-
parameters, and loss functions. The tabular results and a more detailed discussion
than in the following can be found in Section [B.4]

The ablations show that ignoring the features when modeling the sample-dependent
accuracies, i.e. O(X,x) = 0(\), usually underperforms by up to 1.2 F1 points. A more
drastic drop in performance, up to 4.9 points, occurs when the encoder network is lin-
ear, i.e. without hidden layers, as in [37]. It also proves helpful to scale the softmax
in Eq. by y/m via the inverse temperature parameter 7. Further, while the
MIG loss proved important for WeaSEL to achieve state-of-the-art performance on the
crowdsourcing dataset (with a similar lift in performance observable for Snorkel using
MIG for downstream model training), this does not hold for the weakly supervised
datasets, indicating that the assumptions encoded in the MIG loss are indeed a good
choice for crowdsourcing, but not for general weakly supervised settings.

Furthermore, the ablations show that it is important to restrict the LF accuracy
predictions to a positive interval (e.g. (0, 1), with the sigmoid function being a
good alternative to the softmax). In contrast, using ReLU and tanh underperforms.
The sigmoid function encodes the inductive bias that LFs are assumed to be better
than random, and furthermore may stabilize learning by influencing the scale of the
gradients.

Additionally, the choice of using the symmetric cross-entropy loss with stop-grad
applied to the targets is crucial for the performance of WeaSEL. Not detaching the
targets from the computation graph, or using the standard cross-entropy (without
stop-grad on the target) leads to significantly worse scores and unstable training
dynamics. Losses that already are symmetric (e.g. L1 or Squared Hellinger loss)
neither need to be symmetrized nor use stop-grad. While the L1 loss consistently
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underperforms, the Squared Hellinger loss leads to better performance on two of the
four datasets.

However, only the symmetric cross-entropy loss with stop-grad on the targets is
shown to be robust and able to recover the true labels in the synthetic experiment
in Section Thus, to complement the above ablation on real datasets, extensive
ablations are run on this synthetic setup in Section [B.6] This synthetic ablation
provides strong support for the proposed design of WeaSEL. Indeed, many choices for
WeaSEL that perform well enough on the real datasets, such as ignoring features in
the encoder, 5 = 1, sigmoid parameterized accuracies, and all other losses that were
evaluated, lead to significantly worse performance and less robust learning on the
synthetic adversarial setups.

3.1.3 Discussion

This section introduced WeaSEL, an approach for end-to-end learning of neural net-
work models for classification from multiple [LEF that streamlines prior latent variable
models. The proposed approach was evaluated on several benchmark datasets where
downstream models outperform state-of-the-art data programming approaches in four
out of five cases, while remaining highly competitive on the remaining task, and also
outperforming several state-of-the-art crowdsourcing methods on a crowdsourcing
task. The experiments further demonstrated that the WeaSEL approach can be more
robust to dependencies between [LEFd as well as to adversarial labeling scenarios. The
proposed method works with discrete and probabilistic and can utilize various
neural network designs for probabilistic label generation. It can simplify the process
of developing effective machine learning models using weak supervision as the primary
source of training signal, and help adoption of this form of learning in a wide range
of practical applications.

Practical Aspects and Limitations

On why it works & degenerate solutions Overall, WeaSEL avoids trivial overfit-
ting and degenerate solutions by hard-coding the encoder generated labels as a (nor-
malized) linear combination of the m LF outputs, weighted by m sample-dependent
accuracy scores. This design choice also ensures that the randomly initialized e will
lead the downstream model f that is trained on soft labels generated by the random
encoder, to obtain performance similar to when f is trained on majority vote labels.
In fact, the random-encoder-WeaSEL variant itself often outperforms other baselines,
and triplet methods in particular (see Section [B.2).

Empirically, degenerate solutions were only observed when training for too many
epochs. Early-stopping on a small validation set ensures that a good final solution is
returned, and should be done whenever such a set exists or is easy to create. When
no validation set is available, choosing the temperature hyperparameter in Eq.
such that 71 < 1/3 was observed to avoid degenerating solutions on all datasets. This
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can be explained by the fact that a lower inverse temperature forces the encoder-
predicted label to always depend on multiple LF votes when available, rather than a
single one (which happens when the softmax in Eq. becomes a max as 71 — 00).
This makes it harder for the encoder to overfit to individual LFs. The ablations
indicate that this temperature parameter setting comes at a small cost in terms of
loss in downstream performance, compared to when using a validation set for early
stopping. Thus, when no validation set is available, lowering 7 is advised.

Complex downstream models The experiments show that WeaSEL achieves com-
petitive or state-of-the-art performance on all datasets that were evaluated, for a given
set of LFs. In practice, however, this LF set needs to first be defined by users. This
can be done via an iterative process, where the feedback is sourced from the quality
of the probabilistic labels generated by the label model. A limitation of the proposed
approach is that each such iteration would require training the downstream model,
f. When f is slow to train, this may slow down the LF development cycle and lead
to unnecessary energy consumption. A practical solution to this can be to a) do the
iteration cycle with a less complex downstream model; or b) use the fast to train
PGM-based label models to choose a good LF set, and then move to WeaSEL in order
to achieve better downstream performance.

Extensions

Probabilistic labeling functions The proposed approach can support labeling
functions that output continuous scores instead of discrete labels as in [39]. In partic-
ular, this includes probabilistic sources that output a distribution over the potential
class labels. This can be encoded in the proposed model by changing the one-hot
representation of the base model to a continuous representation A € [0, 1]™*¢.

Modeling structure explicitly While a simple [MLDP]is used as the encoder e in
the benchmark experiments, the formulation is flexible to support arbitrarily complex
networks. In particular, the approach can naturally model dependencies among weak
sources via edges in a Graph Neural Network (GNN), where each LF is represented by
a node that is given the LF outputs as features. Furthermore, while the proposed base
model outputs accuracy parameters of the sources, it is straightforward to augment A
with additional sufficient statistics, e.g. the fixing or priority dependencies presented
in [222] |35] which encode that one source fixes (i.e. should be given priority over) the
other whenever both vote.
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3.2 (Generative Modeling Helps Weak Supervision
(and Vice Versa)

This Section is based on work presented in:

Boecking, Benedikt, Nicholas Roberts, Willie Neiswanger, Stefano Ermon,
Frederic Sala, and Artur Dubrawski. “Generative Modeling Helps Weak Su-
pervision (and Vice Versa)”. In: International Conference on Learning Repre-
sentations (ICLR). 2023

In this Section, I study the fusion of programmatic weak supervision with a Gen-
erative Adversarial Network (GAN)[101], and provide theoretical justification moti-
vating this fusion. The methodology proposed in this Section captures discrete latent
variables in the data alongside the weak supervision derived label estimate. Align-
ment of the two allows for better modeling of sample-dependent accuracies of the
weak supervision sources, improving the estimate of unobserved labels. It is the first
approach to enable data augmentation through weakly supervised synthetic images
and pseudolabels.

Generative models enable learning data distributions which can benefit down-
stream tasks, e.g. via data augmentation or representation learning, in particular
when learning latent factors of variation , . Intuitively, generative mod-
eling and programmatic weak supervision should complement each other, as each can
be thought of as a different approach to extracting structure from unlabeled data.
However, to date there is no simple way to combine them.

Fusing generative models with weak supervision holds substantial promise. For
example, it could yield large reductions in data acquisition costs for training complex
models. Programmatic weak supervision replaces the need for manual annotations by

Figure 3.3: Class-conditional image generation by the proposed WSGAN based on a
weakly supervised subset of CIFAR10 containing 30k samples. Here, WSGAN uses a
StyleGAN2 base architecture for its networks. The sampled discrete code in each row re-
mains fixed.
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applying user designed sources of weak supervision in the form of Labeling Functions
(LES) to unlabeled data, producing weak labels that are combined into a pseudolabel
for each sample. This leaves the majority of the acquisition budget to be spent on
unlabeled data, and here generative modeling can reduce the number of real-world
samples that need to be collected. Similarly, information about the data distribution
contained in weak label sources may improve generative models, reducing the need to
acquire large volumes of samples to increase generative performance and disentangle
discrete structure. Additionally, pseudolabels may allow for class-conditional sample
generation without access to ground truth, enabling more targeted data augmenta-
tion.

The main technical challenge is to build an interface between the core models
used in the two approaches. For example, [101], which I focus on in this work,
have at least a generator and a discriminator, and frequently additional auxiliary
models, such as those that learn to disentangle latent factors of variation [47]. In
weak supervision, the label model is the main focus, which aggregates the [LFS into
an estimate of the unobserved ground truth. It is necessary to develop an interface
that correctly aligns the structures learned from the unlabeled data by the various
components.

This section introduces weakly-supervised GAN (WSGAN), a simple but powerful
fusion of weak supervision and GANs visualized in Fig.[3.4] This work also provides a
theoretical justification that motivates the fusion of the techniques and the expected
gains. The proposed WSGAN approach is related to the unsupervised InfoGAN
[47] generative model, and also inspired by encoder-based label models as introduced
in the previous Section [36]. These techniques expose structure in the data, and
WSGAN ensures alignment between the resulting variables by learning projections
between them. The proposed method offers a number of benefits, including:

e Improved weak supervision: WSGAN’s label model obtains better-quality
pseudolabels, yielding consistent improvements in pseudolabel accuracy up to
6% over established programmatic weak supervision techniques such as Snorkel
[220].

e Improved generative modeling: Weak supervision provides information
about unobserved labels which can be used to obtain better disentangled la-
tent variables, thus improving the model’s generative performance. Over 6
datasets, WSGAN improves image generation by an average of 5.8 FID points
versus InfoGAN. Architecture ablations show that the proposed approach can
be integrated into state-of-the-art GAN architectures such as StyleGAN [143]
(see Fig. [3.3), achieving state-of-the-art image generation quality.

e Data augmentation via synthetic samples: WSGAN can generate samples
and corresponding label estimates for use in data augmentation (e.g. Fig. ,
providing improvements of downstream classifier accuracy of up to 3.9% in
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the experiments. The trained WSGAN can produce label estimates even for
samples, real or fake, that have no weak supervision signal available.

3.2.1 Background

Programmatic Weak Supervision Weak supervision methods using multiple
sources of imperfect and partial labels [222, 220, |36], often referred to as programmatic
weak supervision, seek to replace manual labeling for the construction of large labeled
datasets, by using sources of weak labels defined by users. The technical challenge is
to combine the source votes into a high-quality pseudolabel via a label model. This
requires estimating the errors and dependencies between sources and using them to
compute a posterior label distribution. Prior work has considered various choices for
the label model, most of which only take the weak source outputs into account. In-
stead, the label model presented in this section produces sample dependent accuracy
estimates for the weak sources based on the features of the data, similar to the work
introduced in the previous Section [306].

The main focus of this section is on applications of weak supervision to image
data. On images, imperfect labels are often obtained from domain specific primitives
and rules [254} 92|, rules defined on top of annotations by surrogate models [254, 46,
123], and rules defined on meta-data [162, 48| (133} 77, 25| or a second paired modality
such as text [138, 266| (132, 230, 85, [88]. Much of this work on images is motivated
by the availability of data sources that contain natural language descriptions or other
metadata for images. Such sources have been used in computer vision |162} 48 133,
77, 1138], medicine 266 (132, 230, 27], and video analysis [93].

Generative Models and Disentangled Representations Generative models
are used to model and sample from complex distributions. Among the most popular
such models are generative adversarial networks (GANs|) [101]. consist of a
generator and discriminator model that play a minimax game against each other. In
this work, we are particularly interested in prior work that aims to learn disentangled
representations [47, 169] that can align with class variables of interest. [47] introduce
InfoGAN, which learns interpretable latent codes. This is achieved by maximizing the
mutual information between a fixed small subset of the GAN’s input variables and
the generated observations. [94] present a unified formulation for class and content
disentanglement as well as a new approach for class-supervised content disentangle-
ment. [200] study semi-supervised high-resolution disentanglement learning for the
state-of-the-art StyleGAN architecture. A potential downside to modeling latent fac-
tors in generative models is a decrease in image quality of generated samples that
has been noted when disentanglement terms are added [33} |145]. This section builds
on the hypothesis that connecting discrete latent variables modeled by a GAN to the
label model should yield benefits for both weak supervision and generative modeling.

Prior work has studied how to integrate additional information into GAN training,
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Figure 3.4: The proposed WSGAN architecture models discrete latent variables in X via a
network @), while the generator G learns to fool the discriminator D with generated images
X. A label model L uses weights estimated by A to produce pseudolabels based on weak
supervision votes A. The WSGAN model aligns this pseudolabel with the discrete structure
learned by Q.

in particular ground truth class labels [188 234, [202, 203, 30, [249} 190, [180], also
considering noisy scenarios [139]. However, in the programmatic weak supervision
setting, having multiple noisy sources of imperfect labels that include abstains present
large hurdles to similar conditional modeling. Some prior work uses other weak
formats of supervision to aid specific aspects of generative modeling. For example,
[41] propose learning disentangled representation using user-provided ground-truth
pairs. Yet, prior work does not fuse programmatic weak supervision frameworks
and generative models, and so are limited to one-off techniques to solely improve
generative models.

Using GANs for Data Augmentation An exciting application of GANs is to
generate additional samples for supervised model training. The challenge is to pro-
duce sufficiently high-quality samples. For example, [1] use a conditional GAN to gen-
erate synthetic images of tomato plant leaves for a disease detection task. GANs for
data augmentation are also popular in medical imaging [279, [192, [127]. For example,
[127] use an InfoGAN-like model to learn cell-level representations in histopathology,
[192] augment radiology data, and [207] generate synthetic epileptic brain activities.
Data augmentation is also a potential application of the proposed WSGAN model;
in contrast to prior work, it seeks to use the weak supervision to produce improved-
quality samples and pseudolabels for downstream training.

3.2.2 Methodology

[ will first introduce the proposed weakly-supervised GAN (WSGAN) model, visu-
alized in Fig. and then provide theoretical justification for the model fusion.
Here, we work with n unlabeled samples X € X C R? drawn from a distribution
Dx. We want to achieve two goals with the samples X. First, in generative mod-
eling, we approximate Dx with a model that can be used to produce high-fidelity
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synthetic samples. Second, in supervised learning, we wish to use X to predict la-
bels Y € {1,2,...,C}, where (X,Y) is drawn from a distribution whose marginal
distribution is Dx. However, in the weak supervision setting, we do not observe Y.
Instead, we observe m labeling functions (LFs) A € {0,...,C}™™ that provide im-
perfect estimates of Y for a subset of the samples. These [LFd vote on a sample x; to
produce an estimate of the label \;(z;) € {1,...,C} or abstain (i.e. no vote) with 0.
The goal is to combine the m LF estimates into a pseudolabel Y that can be used
to train a supervised model [222]. While weak supervision and generative modeling
function over a number of domains, in this work I focus on images.

Proposed Method

To improve generative performance and the weak supervision-based pseudolabels, I
propose a model that consists of a number of components. Because the component
models should benefit each other, the architecture aims for the following charac-
teristics: (I) A generative model component that learns discrete latent factors of
variation from data and exposes these externally, (IT) a weak supervision label model
component that makes predictions of the unobserved label by aggregating the weak
supervision votes, using sample-dependent weights, (III) a set of interface models
that connect the components. The design choices are made to satisfy those goals.

GAN Architecture We will write G for the generator; its goal is to learn a map-
ping to the image space based on input consisting of samples 2z from a noise distribu-
tion pz(z) along with a set of latent factors of variation b ~ p(b), following the ideas
introduced in InfoGAN [47]. Because a classification setting is targeted, the analysis
is restricted to discrete b. The output of G are samples z; these are consumed by a
discriminative model D, which estimates the probability that a sample came from the
training distribution rather than . Furthermore, an auxiliary model @) is defined
which learns to map from a sample x to the discrete latent code b. Let us denote the

standard GAN objective by V(D,G), and the InfoGAN objective IV(D,G,Q) [47]:
minmax V(D,G) = By, log(D())] + Eavpioympin 081 — D(G(=, 1), (3.4)
minmax [V(D,G,Q) =V(D,G) + & Esupsinpe) [Hb, Q(G(2,0)))], (3.5)

where [ is an appropriate loss function, such as cross entropy, and « is a trade-off

parameter. Equation [3.5)aims to maximize the mutual information between generated

images and b, while G' continues to fool the discriminator D, leading to the discovery
of latent factors of variation.

Weak Supervision Label Model The purpose of the label model is to encode
relationships between the [LFs A and the unobserved label y, enabling us to produce
an informed estimate of y based on the LF outputs. In prior work, the model is often
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a factor graph [222, 221} 93| 288] with potentials ¢;(\;(z),y) and ¢;x(N;(x), Ai(2))
capturing the degree of agreement between a A; and y or correlations between \; and
Ar. Let us define the accuracy potentials ¢;(\;,y) £ 1{)\; = y} as in related work.
Each potential ¢; is associated with an accuracy parameter ¢;. Once estimates of 6;
are obtained, one can predict y from the LFs A via

exp(d_ie, 050;(Ni(x), k)
> gey P51 00N (2), 7))

This is a softmax over the weighted votes of all LF's, which derives from the factor
graph introduced in [222]. Note that related work only models the LF outputs to learn
6, ignoring any additional information in the features x. However, the structure in the
input data x is crucial to the fusion. For this reason, a modified label model predictor
is defined, in the spirit of the previous section of this thesis [36]. It generates local
accuracy parameters (sample-dependent parameters encoding how accurate each \;
is estimated to be) via an accuracy parameter encoder A(z) : R* — R, This variant
is given by:

Lg()\)k: , VkE{l,,C}

exp(D_in, A(@);0;(Ai(x), k)
> ey exp(Ooin, Alx);6; (N (), 9))

a softmax over the LF votes by class, weighted by the accuracy encoder output.
Note that, while A(z) allows for finer-grained adjustments of the label estimate Y,
the estimate is still anchored in the votes of LFs which represent strong domain
knowledge and are assumed to be better than random.

LA9<)\)k: VkE{l,...,C}, (36)

Learning the Label Model The technical challenge of weak supervision is to
learn the parameters of the label model (such as 6; above) without observing y.
Existing approaches find parameters under a label model that (i) best explain the LF
votes while (ii) satisfying conditionally independent relationships [222} 221}, 93]. The
features z are ignored; it is assumed that all information about y is present in the LF
outputs. Instead, the proposed approach promotes cooperation between the models
by ensuring that the best label model is the one which agrees with the discrete structure
that the GAN can learn, and vice versa. The intuition for this key notion is that,
as each of the generative and label models learn useful information from data, this
information can—if aligned correctly—be shared to help teach the other model. To
this end, note that in InfoGAN, the model () is only applied to generated samples as
the sampled variable b can be observed for generated images, but not for real images.
Nonetheless, () can be applied to the real-world samples to obtain a prediction of the
latent b. Crucially, in the weak supervision setting one also observes the LF outputs,
enabling us derive a label estimate for each real image L4, (\) = Y, which is used to
guide () on real data, and vice versa.
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Interface Models and Overall WSGAN Objective Here, I introduce the fol-
lowing interface models to map between the estimates of b and y. Let F : [0,1]¢ —
0,1]¢ and Fy : [0,1]¢ — [0,1]¢. An effective choice for Fy and Fy are linear models
with a softmax activation function. To achieve agreement between the latent struc-
ture discovered by the GAN’s auxiliary model () as well as by the label model Ly,
via the LFs, the following overall objective is introduced, ensuring that a mapping
exists between the latent structures on the real images in the training data:

o Qi g VDGO (37)
+ B Eopeny 1 [[(F1(Q(2)), La(N)) + UQ(x), Fa(La(N))];

where 3 is a trade-off parameter, and [ again denotes an appropriate loss function
such as the cross entropy. In the implementation, as common in related GAN work,
D, () and A share convolutional layers and distinct prediction heads are defined for
each. For L4, the obtained features are detached from the computation graph before
passing it to a small [MLPI followed by a sigmoid activation function. Thus, the

WSGAN method only adds a small number of additional parameters compared to a
basic [GANl or InfoGAN.

Improving Alignment Importantly, initializing the label model L, such that it
produces equal weights for all LF's results in a strong baseline estimate of Y, as users
build LFs to be better than random. Initializing L,4, in this way, it can act as a
teacher in the beginning and guide () towards the discrete structure encoded in the
LFs. Experiments revealed that adding a decaying penalty term that encourages equal
label model weights in early epochs—while not necessary to achieve good performance—
almost always improves latent label estimates. Let ¢ > 0 denote the current epoch.
I propose to add the following linearly decaying penalty term for an encoder A that
uses a sigmoid activation function: C'/(i x v+ 1)||A(z) — I x 0.5]|2, where 7 is a decay
parameter. In the experiments v = 1.5.

Augmenting the Weak Supervision Pipeline with Synthetic Data Given
a WSGAN model trained according to Eq. (3.7), images can be generated via G to
obtain unlabeled synthetic samples . To obtain pseudolabels for these images we
have at least one and sometimes two options. When can be applied to synthetic
images, we can obtain their votes A(Z) = A and apply the WSGAN label model
L A(S\). However, in many practical applications of weak supervision, some [LEd are
not applied to images directly, but rather to metadata or an auxiliary modality such as
text (cf. Section [3.2.1)). With WSGAN, one can obtain pseudolabels via § = F1(Q(Z))
for samples that have no LF votes, using the trained WSGAN components (Q and F7,
in essence transferring knowledge from () to the end model. Note that the quality of
these synthetic pseudolabels hinges on the performance of (), which can conceivably
improve with the supply of weakly supervised as well as entirely unlabeled data.
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Theoretical Justification

This section provides theoretical results that suggest that there is a provable benefit
to combining weak supervision and generative modeling. In particular, two theo-
retical claims are provided, justifying why weak supervision should help generative
modeling (and vice versa): (1) generative models help weak supervision via a gen-
eralization bound on downstream classification and (2) weak supervision improves a
multiplicative approximation bound on the loss for a conditional GAN trained using
the unobserved true labels—namely, we extend the theoretical setup and noisy chan-
nel model of the Robust Conditional GAN (RCGAN) [249]. Formal statements and
proofs of these claims can be found in Section [C.6

Claim (1) Assume that we have n; unlabeled real examples where the label model
fails to produce labels, i.e. all LF's abstain on these n; points. This is a typical issue in
weak supervision, as sources often only vote on a small proportion of points. We then
sample enough synthetic examples from the generative model such that we obtain
ng synthetic examples for which the label model does produce labels; this enables
training of a downstream classifier on synthetic examples alone with the following
generalization bound:

sup URD(f) —Rp(f)| <27+ M + BZG% + Bg\/gexp(—mof),

ferF ng

where R is the Rademacher complexity of the function class. The first two terms
are standard. The third term is the penalty due to generative model usage; any
generative model estimation result for total variation distance can be plugged in. For
example, for estimating a mixture of Gaussians, G = (4cgkd?/n1)'/? which depends
on the number of mixture components k£ and dimension d. The last term is the
penalty from weak supervision with m LFs whose accuracy is a better than chance;
this implies that generated samples can help weak supervision generalize when true
samples cannot.

Claim (2) Noisy labels from majority vote improve the multiplicative bound on
the RCGAN loss given in Theorem 2 of [249]. Let P and @ be two distributions over
X x{0,1} and let ﬁMV and CNQMV be the corresponding distributions with noisy labels
generated by majority vote over m LFs. Let d;(ﬁMV, @MV) be the RCGAN loss with
noisy labels generated by majority vote and let €, be the mean error of each of the
m LFs. Using majority vote with m > 0.5log(1/€\)/ (3 — 6)\)2 LFs, we obtain an
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Table 3.4: Datasets and labeling function (LF) characteristics used to evaluate the
proposed WSGAN. Acc denotes accuracy, and Coverage denotes the proportion of
samples where the LF does not abstain.

Dataset #Classes #LFs #Samples Mean LF Acc Min LF Acc Max LF Acc Mean Coverage LF Type

AwA2 -A 10 29 6726 0.504 0.053 0.850 0.104 Attribute heuristics
AwA2 -B 10 32 6726 0.548 0.116 0.783 0.131 Attribute heuristics
DomainNet 10 4 6369 0.493 0.416 0.684 1.000 Domain transfer
MNIST 10 29 30000 0.791 0.564 0.931 0.047 SSL, finetuning
FashionMNIST 10 23 30000 0.773 0.542 0.949 0.047 SSL, finetuning
GTSRB 43 100 22640 0.837 0.609 0.949 0.007 SSL, finetuning
CIFARI10-A 10 20 30000 0.773 0.624 0.896 0.061 Synthetic
CIFAR10-B 10 20 30000 0.736 0.531 0.912 0.042 SSL, finetuning

exponentially tighter multiplicative bound on the noiseless RCGAN loss:

o\ N\ 1
dr(Puv, Quv) < d(P,Q) < (1 — 2exp (—2m (% - €A> )) dr(Pav, Quv)

<(1- 26,\)71df(f’Mv, @MV)

This means that weak supervision can help an RCGAN more-accurately learn the
true joint distribution, even when the true labels are unobserved. The full analysis is

provided in Section [C.6]

3.2.3 Experiments

Experiments on multiple image datasets show that the proposed WSGAN approach
is able to take advantage of the discrete latent structure it discovers in the images,
leading to better performance compared to label models of prior work. The results
also indicate that weak supervision as used by WSGAN improves image generation
performance, as well as the quality of the auxiliary model which learns disentan-
gled discrete structure. In the spirit of democratizing Al, the aim of this work is
to keep the complexity of the experiments manageable, to ensure accessible repro-
ducibility. Therefore, the main experiments are conducted with a simple DCGAN
base architecture. As an ablation, I also adapt the state-of-the art StyleGAN2-
ADA [142] to WSGAN, showing that the proposed method can be integrated with
other GAN architectures to achieve state-of-the-art image generation and label model
performance. Additional experiments, baselines (e.g. comparing against naive com-
binations of weak supervision and generative modeling), and metrics are provided
in Appendix [C.4] and [C.5 Code for the WSGAN model is made available
at https://github.com/benbo/WSGAN-paper.

Setup

Datasets Table shows key characteristics of the datasets used in the experi-
ments, including information about the different LF sets. Experiments are conducted
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with the 3-channel color image datasets Animals with Attributes 2 (AwA2) [185],
DomainNet [209], the German Traffic Sign Recognition Benchmark (GTSRB) [244],
and CIFARI10 [150] as well as with the 1-channel gray-scale MNIST [156] and Fash-
ionMNIST [273] datasets. A variety of types of weak supervision sources are used for
these datasets (see Appendix for more dataset details). The LF types covered in
the present experiments are:

e Domain transfer: classifiers are trained on images in source domains (e.g. paint-
ings), and the trained classifiers are then applied to images in a target domain
(e.g. real images) to obtain weak labels. This LF type is used in the DomainNet
experiments, following [185].

e Attribute heuristics: are used in the AwA2 experiments. Attribute classifiers are
trained on some seen classes of animals. Given these weak attribute predictions,
the known attribute relations and a small amount of validation data are used
to train shallow decision trees to produce weak labels for a set of unseen classes
of animals.

e SSL-based: using image features learned on ImageNET with SimCLR, [45], shal-
low multilayer perceptron classifiers are fine-tuned on small sets of held-out data
to produce weak labels for the datasets.

e Synthetic: these simulated LFs, used in some of the CIFAR10 experiments, are
unipolar LFs based on the corrupted true class label. To this end, random
errors are introduced to the class label to achieve a sampled target accuracy
and propensity.

Models Two accuracy parameter versions of the proposed WSGAN model are stud-
ied: (1) WSGAN-Encoder, which uses an accuracy parameter encoder A(x), that takes
in the image x associated with a sample and outputs an accuracy weight vector to the
label model. (2) WSGAN-Vector, a baseline which learns a parameter vector used to
weigh LF votes in place of the encoder A.

For the main experiments, the base architecture of G, D follows a simple DC-
GAN [216]. All networks are trained from scratch and the same hyperparameter
settings are used in all experiments. For the architecture ablation, StyleGAN2-
ADA [142] is adapted to create StyleWSGAN. See Appendix for implementation
details and parameter settings.

WSGAN is compared to the following label model approaches: (I) Snorkel [222]
220]: a probabilistic graphical model that estimates LF parameters by maximizing
the marginal likelihood using observed LFs. (II) Dawid-Skene |72]: a model moti-
vated by the crowdsourcing setting. The model, fit using expectation maximization,
assumes that error statistics of sources are the same across classes and that errors
are equiprobable independent of the true class. (III) Snorkel MeTaL [221]: a Markov
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Table 3.5: Average posterior accuracy of various label models on training samples
with at least one LF vote. The best result are highlighted in blue and the second
best result in bold.

Dataset MV DawidSkene MeTal. FS Snorkel WSGAN-Vector WSGAN-Encoder
AwA2 - A 0.631 0.607 0.632 0.615 0.641 0.647 0.681
AwA2-B 0.623 0.548 0.582 0.602 0.605 0.645 0.699
DomainNet 0.614 0.658 0.487 0.635 0.499 0.661 0.643
MNIST 0.775  0.729 0.766 0.773 0.766 0.782 0.813
FashionMNIST 0.735 0.717 0.730 0.734 0.729 0.737 0.744
GTSRB 0.816 0.619 0.815 0.671 0.814 0.815 0.823
CIFAR10-A 0.827 0.850 0.806 0.800 0.807 0.850 0.874
CIFAR10-B 0.716  0.677 0.708 0.708 0.707 0.725 0.731

random field (MRF) model similar to Snorkel which uses a technique to complete
the inverse covariance matrix of the MRF during model fitting, and also allows for
modeling multi-task weak supervision. (IV) FlyingSquid (FS) [93]: based on a label
model similar to Snorkel, F'S provides a closed form solution by augmenting it to set
up a binary Ising model, enabling scalable model fitting. (V) Majority Vote (MV):
A standard scheme that uses the most popular LF output as the estimate of the true
label.

Evaluation Metrics As common in related work, label model performance is com-
pared based on the pseudolabel accuracy the models achieve on the training data,
since programmatic weak supervision operates in a transductive setting. Weighted F'1
and mean Average Precision are provided in Appendix[C.5 To compare the quality of
generated color images, the Fréchet Inception Distance (EIDI) is used, which has been
shown to be consistent with human judgments and to be more robust than related
measures [119], and which is used to measure performance current state-of-the-art
GAN approaches [142]. To show the improvement in alignment of the auxiliary model
()’s predictions of the discrete latent code b with the latent labels y, the Adjusted
Rand Index (ARI) between the two during training is tracked.

Results

Results comparing label model and image generation performance are discussed first,
before the use of WSGAN for augmentation of the downstream classifier with syn-
thetic samples are presented. Each experiment is repeated at least three times and
averaged results are reported in the tables.

Label Model Performance Table |3.5|shows a comparison of label model perfor-
mance based on the accuracy of the posterior on the training data, without the use
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Table 3.6: Color image generation quality measured by average Fréchet Inception
Distance (FID), using DCGAN base architectures. The best scores for each dataset
are highlighted in blue.

Dataset InfoGAN WSGAN-V  WSGAN-E
AwA2 - A 41.62 36.74 34.71
AwA2 - B 41.62 36.79 34.52
DomainNet 53.98 50.16 44.35
GTSRB 69.67 75.27 73.96
CIFAR10-A 28.93 25.70 22.71
CIFAR10-B 33.50 26.17 24.41

of any labeled data or validation sets. WSGAN-encoder largely outperforms alter-
native label models, while the simpler WSGAN-vector model performs competitively
as well. These results hold according to additional evaluation metrics provided in
Appendix . Results with standard deviations over 5 random runs are provided in
the Appendix in Table [C.6] indicating that many differences are significant.

Discrete Latent Code Comparison Figure [3.5]shows the evolving [ARIl between
the ground truth and the auxiliary model @)’s prediction of the latent code on real
data during model training. The figures show a large improvement in ()’s ability to
uncover the unobserved class label structure when comparing WSGAN to InfoGAN,
which is expected as WSGAN can take advantage of the weak signals encoded in LFs,
while InfoGAN is completely unsupervised.

Image Generation Performance Table 3.6/ compares [FID]of generated color im-
ages, suggesting that WSGAN models do take advantage of the weak supervision

AwWA2-A AwA2-B DomainNet MNIST
0.4 0.4 04
0.8 1
Z 02 | | i ST s e
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___________________________________ /
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0.6
0.4 0.4 0.4+
= |/ ] [ e e S
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Figure 3.5: [ARI between the unobserved class label 3 and the discrete code prediction
by the auxiliary model Q(z) on real image x, during training. Weak supervision allows
WSGAN to better uncover the latent class structure compared to an unsupervised
InfoGAN.
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Table 3.7: Increase in test accuracy when augmenting downstream classifier training
with 1,000 synthetic images and corresponding pseudolabels (PLs). Synthetic PLs
are obtained via F}(Q(Z)), LF PLs via L4z (A(2)).

Dataset Synthetic PLs LF PLs
AwA2 - A 0.88% 0.79%
AwA2 - B 2.40% 3.90%
DomainNet 2.31% 1.50%
MNIST 1.60% 1.71%
FashionMNIST  0.29% 0.34%
GTSRB 0.40% 0.02%

CIFAR10-A 0.04% -
CIFAR10-B 0.30% -

Speed limit 50 (0.42) Go straight (0.07) Hazard ahead (0.20)  Go straight (0.07) No overtaking (0.05)

o) i k1 &

Construction (0.56) Speed limit 70 (0.14) ~ Go right (0.06) Go right (0.06) Skid warning (0.06)
— v X

T OFS)

Figure 3.6: Images and pseudolabels generated by the proposed WSGAN (with a
simple DCGAN architecture) on the weakly supervised GTSRB dataset. WSGAN can
estimate labels even for images where no weak supervision sources provide information

(see end of Section [3.2.2)).

signal to improve (), thereby improving the quality of generated images compared to
an InfoGAN using the same base DCGAN architecture. WSGAN has a lower
only on the GTSRB dataset, likely due to GTSRB’s class imbalance and the dataset
difficulty (43 classes, j23k samples).

Synthetic Data Augmentation The change in test accuracy for a ResNet-18
end model is recorded when 1,000 synthetic WSGAN-encoder images 7 are added to
augment each dataset. While the increases are modest, the process is beneficial and
does not require additional human labeling or data collection efforts. Adding larger
amounts of synthetic samples did not lead to further increases, possibly due to the
limited image quality achieved by the basic DCGAN design explored in this section.
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Synthetic Images with Labeling Function Votes The last column in Table[3.7]
displays test accuracy increases by applying LFs A to synthetic images . Pseudolabels
are obtained via L4(z)(A(Z)). A modest average increase of 1.38% is observed.

Synthetic Images with Synthetic Pseudolabels Pseudolabels can also be cre-
ated with F1(Q(%)), e.g. when LFs cannot be applied to synthetic images. With this,
the second column of Table|3.7/shows an average increase in test accuracy of 1%, and
up to 2.4%. Larger increases in accuracy by adding more generated images are not
observed. Figure [3.6]shows a small number of generated images along with synthetic
pseudolabel estimates. While Fy(Q(x)) could conceivably be used as a downstream
classifier, the choices of network architecture are constrained as it shares convolutional
layers with D.

Synthetic Data Quality Checks In addition to visually inspecting some gener-
ated samples and checking if conditionally generated samples reflect the target labels,
the class balance in the pseudolabels of synthetic images should be checked before
adding them to a downstream training set, as mode collapse in a trained GAN can
potentially be diagnosed this way.

Network Ablation — StyleWSGAN

Here, StyleWSGAN is applied to weakly supervised LSUN scene categories [283], and
to the CIFAR10-B dataset. The results demonstrate WSGAN’s complementarity with
other GAN architectures, and that the approach scales to higher resolution images.
Please see Section for implementation details and hyperparameter settings that
were used for the StyleGAN experiments. Dataset statistics for the two additional
datasets that were created for this ablation are shown in Table 3.8

LSUN scene categories To test the proposed WSGAN on higher resolution im-
ages with a StyleGAN base architecture, I create a balanced subset of the LSUN
scene categories dataset [283]. The dataset contains 10 classes (i.e. 10 different scene
categories) and images are center-cropped and resized to 256 by 256 pixels. An fixed
number of images is sampled from each of the 10 classes for a final dataset size of
1,212,270 images. As weak supervision sources, I create 30 SSL-based LFs by train-
ing classifiers on small amounts of held-out data using image features learned via
self-supervised learning, as described in Section [C.2.1]

StyleWSGAN achieves an average of 7.54 on this weakly supervised LSUN
scene category dataset. Some generated samples are visualized in Fig. 3.7 An un-
conditional StyleGAN2-ADA achieves an of 10.3 with the settings for 256 by 256
images set in [142], and an of 8.41 when these settings are changed to avoid path
length regularization and style mixing. Note that unconditional StyleGAN results on
LSUN images with lower scores reported in related work are generally obtained
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Figure 3.7: Synthetic images learned by StyleWSGAN on a weakly supervised subset
of the LSUN scene category dataset.

by training on a single LSUN scene or object category, rather than on multiple cat-
egories simultaneously, as in the experiments of this section, which results in a more
challenging setup.

CIFAR10 First, Figure [3.8 shows synthetic images by StyleWSGAN on the weakly
supervised CIFAR10-B dataset, which uses SSL-based LFs. These LFs are quite noisy,
with a mean LF accuracy of 0.736, which is reflected in the noisy class-conditional
samples that can be inspected in Figure On this dataset, StyleWSGAN achieves
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Table 3.8: Additional datasets used to evaluate StyleWSGAN. Acc denotes accuracy,
while Coverage denotes the number of samples where an LF does not abstain.

Dataset #Classes #LFs #Samples Mean LF Acc Min LF Acc Max LF Acc Mean Coverage LF Type
CIFARIO - low noise LFs 10 20 48,000 0.888 0.816 0.949 0.102 Synthetic
LSUN scene categories 10 30 1,212,270 0.736 0.624 0.873 0.098 SSL-based

a mean of 3.79 ( generated images are shown in Fig. [3.8), while also attaining
a high label model accuracy of 0.736 (compare this accuracy with the label model
results shown in Table . The unsupervised StyleGAN2-ADA, with the optimal,
tuned settings identified in [142], achieves an average of 3.85 on this subset. An
unsupervised StyleInfoGAN that I created arrived at a mean of 4.13.

An additional weakly supervised CIFAR10 with lower noise LF's is created to check
if such a setting can lead to results that are better than the state-of-the-art (SOTA)
unsupervised image generation quality on the full CIFAR10 dataset reported in |142].
For this experiment, I create LFs by randomly introducing errors and abstains to the
ground-truth vector. For each of these LFs, I set a minimum accuracy of 0.8 and a
maximum accuracy of 0.95 and create 20 LFs. This dataset contains 48000 samples,
has a mean LF accuracy of 0.888, and a mean coverage of 0.102 (meaning that an
LF on average abstains on ~ 89.8% of the dataset). For this dataset, StyleWSGAN
achieves an of 2.84, which is better than the SOTA unsupervised result reported
in [142] of 2.92 on the full 50k CIFAR10 samples, but shy of the performance of
the conditional StyleGAN [142] which uses projection discrimination and has access
to all ground-truth labels and achieves and of 2.42.

3.2.4 Discussion

This section studied the question of how to build an interface between two power-
ful techniques that operate in the absence of labeled data: generative modeling and
programmatic weak supervision. The proposed fusion of the two, a weakly super-
vised GAN (WSGAN), defines an interface that aligns structures discovered in its
constituent models. This leads to three improvements: first, better quality pseudola-
bels compared to weak supervision alone, boosting downstream performance. Second,
improvement in the quality of the generative model samples. Third, enabling data
augmentation using such samples, further improving downstream model performance
without additional burden on users.

Standard failure cases of GANs such as mode collapse still apply to the proposed
approach. However, the experiments conducted here did not indicate that WSGAN
is more susceptible to such failures than the approaches it was compared to. The
proposed approach leads to several exciting directions for future work, for example
the use of modalities other than images, exploiting for instance generative models
for graphs and time series. Further, motivated by the performance of WSGAN, the
underlying notion of interfaces between models to a variety of other pairs of models
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Figure 3.8: Synthetic images learned on the CIFAR10-B subset by StyleWSGAN,
which a version of the proposed WSGAN built on StyleGAN2-ADA rather than a
simple DCGAN as in the main experiments of this work.

is desirable. Limitations of the proposed approach include common GAN restrictions
such as the types of data that can be modeled as well as difficulties in finding the
right parameter settings to enable stable training, and furthermore known difficulties
of acquiring weak supervision sources of sufficient quality for image data.
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Chapter 4

Interactivity and Multi-Modal
Learning

Obtaining and structuring domain knowledge in forms that can be consumed by weak
supervision learning paradigms is not always straightforward, and popular frameworks
such as still require considerable user effort at this—frequently obscure-stage of
the application pipeline. In this Chapter, I study two extremes on the spectrum of
user involvement in order to efficiently harvest domain knowledge. First, I present
an interactive method for aiding users in discovering useful labeling functions. The
goal of this interactive learning framework is to systematically capture subject matter
experts’ knowledge of an application domain in an efficient and effective fashion, by
letting the experts adjudicate Labeling Function (LE]) candidates. As a contrast to
this user involvement, in the last Section I study a weak supervision setting in which
unstructured natural language descriptions accompanying image data are used to
train good encoders for downstream tasks, without users defining rules on top of the
text.

4.1 Interactive Weak Supervision

This Section is based on the work presented in:

Boecking, Benedikt, Willie Neiswanger, Eric Xing, and Artur Dubrawski. “In-
teractive Weak Supervision: Learning Useful Heuristics for Data Labeling”. In:
International Conference on Learning Representations (ICLR). 2021

In this part of the thesis, I develop the first framework for interactive weak super-
vision in which a method proposes heuristics and learns from user feedback given on
each proposed heuristic. The experiments demonstrate that only a small number of
feedback iterations are needed to train models that achieve highly competitive test set
performance without access to ground truth training labels. I conduct user studies,
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Figure 4.1: Interactive Weak Supervision (IWS) helps experts discover good labeling
functions (LFs).

which show that users are able to effectively provide feedback on heuristics and that
test set results track the performance of simulated oracles.

In data programming, each LF is an imperfect but reasonably accurate heuristic,
such as a pre-trained classifier or keyword lookup. For example, for the popular 20
newsgroups dataset, an LF to identify the class ‘sci.space’ may look for the token
‘launch’ in documents and would be correct about 70% of the time. While data
programming can be very effective when done right, experts may spend a significant
amount of time designing the weak supervision sources [254] and must often inspect
samples at random to generate ideas [55]. In the 20 newsgroups example, we may
randomly see a document mentioning ‘Salman Rushdie’ and realize that the name of a
famous atheist could be a good heuristic to identify posts in ‘alt.atheism’. While such
a heuristic seems obvious after the fact, we have to chance upon the right documents
to generate these ideas. In practice, coming up with effective LFs becomes difficult
after the first few. Substantial foresight [218] is required to create a new function that
applies to a non-negligible subset of given data, is novel, and adds predictive value.

I propose a new approach termed Interactive Weak Supervision (IWS) for training
supervised ML models with weak supervision through an interactive process, support-
ing domain experts in fast discovery of good [LFsl The method queries users in an
active fashion for feedback about candidate LFs, from which a model learns to iden-
tify LFs likely to have a good accuracy. This enables IWS to recommend LFs with
desired accuracy and coverage trade-offs. Upon completion, the approach produces a
final set of LFs. This set is used to create an estimate of the latent class label via an
unsupervised label model and train a final, weakly supervised end classifier using a
noise aware loss function on the estimated labels as in [222]. The approach relies on
the observation that many applications allow for heuristics of varying quality to be
generated at scale (similar to [254]), and that experts can provide good judgment by
identifying some LFs that have reasonable accuracy. The full pipeline of the proposed
IWS approachEL is illustrated in Fig. H The contributions are:

!Code is available at https://github.com/benbo/interactive-weak-supervision
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1. The first interactive method for weak supervision in which queries to be anno-
tated are not data points but labeling functions. This approach automates the
discovery of useful data labeling heuristics.

2. Experiments with real users on three classification tasks, using both text and
image datasets. Results support the modeling assumptions, demonstrate com-
petitive test set performance of the downstream end classifier, and show that
users can provide accurate feedback on automatically generated LFs.

3. IWS shows superior performance compared to standard active learning, i.e. it
achieves better test set performance with a smaller number of queries to users.
In text experiments with real users, IWS achieves a mean test set [AUC] after
200 LF annotations that requires at least three times as many active learning
iterations annotating data points. In addition, the average user response time
for LF queries was shorter than for the active learning queries on data points.

4.1.1 Methodology

I propose an interactive weak supervision (IWS) approach to assist experts in finding
good labeling functions (LFs) for training a classifier on datasets without ground truth
labels. T will first describe the general problem setting of learning to classify without
ground truth samples by modeling multiple weak supervision sources, as well as the
concept of LF families. I then dive into the details of the proposed IWS approach.
For brevity, I limit the scope of the end classifier to binary classification, but the
presented background and ideas do extend to the multi-class settings.

Preliminaries

Learning with Multiple Weak Supervision Sources Assume each data point
x € X has a latent class label y* € Y = {—1,1}. Given n unlabeled, i.i.d. datapoints
X = {z;},, the goal is to train an end classifier f : X — ) such that f(z) = y*.
In data programming [222, 220], a user provides m LFs {\;}7L,, where \; : X —
YU{0}. An LF ), noisily labels the data with \;(z) € Y or abstains with A;(x) = 0.
The corresponding LF output matrix is A € {—1,0,1}"*™, where A;; = \;(z;).
In this work, it is assumed that each LF \; has the same accuracy for each class,
a; = P(\j(z) = y*|\;(z) # 0), where accuracy is defined on items where j does not
abstain. Further, we denote by [; = P(\;(z) # 0) the LF propensity (sometimes
called LF coverage), i.e. the frequency at which LF j does not abstain.

In data programming, an unsupervised label model py(Y, A) produces probabilistic
estimates of the latent class labels Y* = {y}" | using the observed LF outputs A
by modeling the LF accuracies, propensities, and possibly their dependencies. A
number of label model approaches exist in the crowd-sourcing [72, 290] and the weak
supervision literature [220]. In this paper, a factor graph is used to obtain probabilistic
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labels, as proposed in [222220]. The factor graph models the LF accuracies via factor
Ae(A,Y) £ 1{A;; = y;} and labeling propensity by factor ¢F¢*(A,Y) £ 1{A;; # 0},
and for simplicity assumes LF's are independent conditional on Y. The label model

is defined as
po(Y,A) £ Z; ' exp (Z 0" pi(As, yg) : (4.1)
i=1

where Zj is a normalizing constant and ¢;(A;, y;) defined to be the concatenation of
the factors for all LFs j = 1,...,m for sample . # is learned by minimizing the
negative log marginal likelihood given the observed A. Finally, following [222] an end
classifier f is trained using probabilistic labels py(Y|A).

Labeling Function Families We will define LF families as sets of LFs that are
interpretable by experts, described by functions z, : X +— {—1,0,1}, for parameters
¢ € . An example are shallow decision trees z, parameterized by variables and
splitting rules ¢ [254], or a function z, defining a regular expression for two words
where ¢ parameterizes the word choices from a vocabulary and the target label.
Given such an LF family, one can generate a large set of p candidate heuristics
L = {\j(x) = 2¢,(x)}}_,, where ¢; € ®, e.g. by sampling from ® and pruning
low coverage candidates. These families often arise naturally in the form of LFs
with repetitive structure that experts write from scratch, where template variables—
such as keywords—can be sampled from the unlabeled data to create candidates.
For text, one can find n-grams within a document frequency range to generate key
term lookups, fill placeholders in regular expressions, or generate shallow decision
trees (222 254} [255]. For time series, one can create a large set of LFs based on
motifs [167] or graphs of temporal constraints [109]. For images, one can create a
library of pre-trained object detectors as in [46], or in some applications combine
primitives of geometric properties of the images [254].

An LF family has to be chosen with domain expert input. Compared to standard
data programming, the burden of creating LFs from scratch is shifted to choosing
an appropriate LF family and then judging recommended candidates. I argue that
domain experts often have the foresight to choose an LF family such that a sufficiently
sized subset of LF's is predictive of the latent class label. Such LF families may not
exist for all data types and classification tasks. But when they exist they offer the
opportunity to quickly build large, labeled datasets. Once created, it is reasonable to
expect that the same LF generation procedure can be reused for similar classification
tasks without additional effort (e.g. a single LF family procedure is used for all text
datasets in the experiments in the following Section).
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Interactive Weak Supervision

Instead of having users provide m good weak supervision sources up front, this work
aims to assist users in discovering them. Successful applications of data program-
ming have established that human experts are able to construct accurate LFs from
scratch. This work leverages the assumption that human experts can also judge these
properties when presented with pre-generated LFs of the same form.

Suppose again that we have an unlabeled dataset X = {x;} ,, and that the goal
is to train an end classifier f without access to labels Y* = {yf}! ;. Assume also
that we defined a large pool of p candidate LFs £ = {\;(z)}_; from an LF family
(following Sec. [£.1.1)), of varying accuracy and coverage. In IWS, the goal is to identify
an optimal subset of LFs £* C L to pass to the label model in Eq. (4.1)). Below,
I will quantify how £* depends on certain properties of LFs. While one can observe
some of these properties—such as coverage, agreement, and conflicts—an important
property that cannot be observed is the accuracy of each LF.

The goal will thus be to infer quantities related to the latent accuracies a; € [0, 1]
of LFs \; € L, given a small amount expert feedback. To do this, I define an
expert-feedback model, which can be used to infer LF accuracies given a set of
user feedback. To efficiently train this model, the IWS procedure sequentially chooses
an LF \; € £ and shows a description of A; to an expert, who provides binary feedback
about A;. This work follows ideas from active learning for sequential decision making
under uncertainty, in which a probabilistic model guides data collection to efficiently
infer quantities of interest within 7" iterations. After a sequence of feedback iterations,
the expert-feedback model is used to provide an estimate L C L of the optimal subset
L*. The label model then uses £ to produce a probabilistic estimate of Y*, which is
used to train the end classifier f. The full IWS procedure is illustrated in Fig.
and described in detail below.

Expert-Feedback Model We will first define a generative model of human expert
feedback about LF's, given the latent LF accuracies. This model will form the basis for
an online procedure that selects a sequence of LFs to show to human experts. We will
task experts to classify LFs as either useful or not useful u; € {0,1}, corresponding
to their belief that LF \; is predictive of Y™ at better than random accuracy for the
samples where \; does not abstain. Note that prior data programming work [222,
221}, [85, [231] assumes and demonstrates that experts are able to use their domain
knowledge to make this judgment when creating LFs from scratch. The generative
process for this feedback and the latent LF accuracies is modeled as, for j =1,...,¢:

u; ~ Bernoulli(v;), v; = hy();), w ~ Prior(:) (4.2)

where v; can be viewed as the average probability that a human will label a given
LF \; as u; = 1, and h,();) is a parameterized function (such as a neural network),
mapping each LF \; to v;. Finally, to model the connection between accuracy o;
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and v;, we assume that v; = g(«;), where g : [0, 1] — [0, 1] is a monotonic increasing
function mapping unknown LF accuracy «; to v;.

After t queries of user feedback on LFs, we have produced a query dataset Q); =
{(Aj,u)}oz,. Given @y, unknown quantities in the above model-which are used to
choose the next LF A; to query-are inferred by constructing an acquisition function
¢ - L — R and optimizing it over A € L.

Acquisition Strategy and Final Set of LFs To derive an online procedure for
the user queries about LFs, we need to define the properties of the ideal subset of
generated LFs £* C £ which we want to select. Prior data programming work of
[222, 221}, 220] with label models as in Eq. does not provide an explicit analysis
of ideal metrics of LF sets and their trade-offs to help define this set. This work
provides the following theorem, which will motivate the definition for £*.

Theorem 4.1.1. Assume a binary classification setting, m independent labeling func-
tions with accuracy a; € [0,1] and labeling propensity l; € [0,1]. For a label model as

m Fq. (.) with given label model parameters g R2m, and for any 1 € {1,...,n},
(07, 65" (205 — 1)1,)?
P =y}) > 1 —exp | ——=-
(% = ;) ( SO

where 0O are the m weights of ¢, and §; € {—1,1} is the label model estimate for
Yi-

Proof. The proof is given in Appendix [D.1] O

This theorem indicates that one can rank LFs according to (2c; —1)I; where o, [,
are the unknown accuracy and observed coverage of LF j, respectively. Additional
analysis is provided in Appendix The analysis further suggests the importance
of obtaining LFs with an accuracy gap above chance. Intuitively, we do not want
to add excessive noise by including LF's too close to random. Below, let us assume
that the final set of LFs is sufficient to accurately learn label model parameters é,
and leave analysis of the influence of additional LF properties on learning 6 to future
work.

To define the ideal final subset of LFs, three scenarios are distinguished: (A) there
are no restrictions on the size of the final set and any LF can be included, (B) the
final set is limited in size (e.g. due to computational considerations) but any LF can
be included, (C) only LFs inspected and validated by experts may be included, e.g.
due to security or legal considerations.

For each of these scenarios, at each step ¢t we will maximize an acquisition function
over the set of candidate LFs, i.e. compute \; = argmax,c,\q, , ©i(A\). We then query
a human expert to obtain (\;, u;) and update the query dataset Q; = Q;—1U{( A, us)}.
After a sequence of T queries we return an estimate of £*, denoted by L. The
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corresponding LF output matrix A comprised of all \; € ﬁ, is then used to produce
an estimate Y of the true class labels via the label model Py(Y'|A). Finally, a noise-
aware discriminative end classifier f is trained on (X,Y).

Scenario (A): Unbounded LF Set In the absence of restrictions on the final
set of LFs, the analysis in Appendix [D.]] indicates that the ideal subset of LFs £*
includes all those with accuracy greater than a gap above chance, i.e. a; > r > 0.5.
Thus, let us define the optimal subset in this scenario as

E*:{)\jEEIOéj>’f’}. (43)

This is a variation of the task of active Level Set Estimation (LSEl), where the goal
is to identify all elements in a superlevel set of £ |287, 103, 32]. Thus, at each step
t we will use the straddle acquisition function [32] for [LSE] defined for a candidate
A\j € L\ Qi—1 to score LF's highest that are unknown and near the boundary threshold
7

PP () = 1.96 0(Qe-1) — |j(Qu-1) — 71 (4.4)

where

Uj(Qtfl) = \/Var[p(aﬂQt,l)]

is the standard deviation and

ﬂj(@tfl) = ]E[p(ozj |Qi—1)]

the mean of the posterior LF accuracy. The end of Section describes how to
perform approximate inference of p(a;|@Q;—1) via an ensemble model. After a sequence
of T" queries IWS returns the following estimate of £*:

L={NeL: Q) >r}. (4.5)

Let us denote the algorithm for scenario (A) by IWS-LSE-a. See Algorithm (3| for
pseudocode describing this full IWS-LSE-a procedure. In the experiments following
this section r = 0.7, though an ablation study shows that IWS-LSE works well for
a range of thresholds r > 0.5 (Appendix [£.1.2] Figure [4.6). Note that the [LSEl
acquisition function aims to reduce uncertainty around r, and therefore tends to
explore LFs that cover on parts of Y that the model is still uncertain about.

Scenario (B): Bounded LF Set If the final set is restricted in size to m LFs, e.g.
due to computational considerations when learning the label model in Eq. , one
needs to take the trade-off of LF accuracy and LF coverage into account. Let [; be the
observed empirical coverage of LF' \;. We want to identify LFs with accuracy above
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r and rank them according to their accuracy-coverage trade-off, thus the analysis in
the appendix suggests the optimal subset is

L= argmax 3 (11{aj>r}(2 sa; —1)# l}) . (4.6)

DCL|Dl=m "o

Since the LF accuracy-coverage trade-off only comes into effect if o; > r, this yields
the same acquisition function 5 in Eq. (4.4)), and the final set is then selected as

L= {\; € D : argmax Z (L @)y (2% i (Qr) — 1) * Zj)},

DCLIDl=m "=

which corresponds to a simple thresholding and sorting operation. We will denote
the algorithm for scenario (B) by IWS-LSE-ac.

Scenario (C): Validated LF Set Finally, in some application scenarios, only LFs
inspected and validated by experts should be used to estimate Y*, e.g. due to security
or legal considerations. An LF j is validated if it is shown to an expert who then
responds with u; = 1. This leads to an active search problem [96] where the aim is
to identify a maximum number of validated LFs (i.e. v = 1) in £ given a budget of
T user queries, i.e. to compute

Lig = argmax Z u;, L={)\eQp:u=1}. (4.7)

DCLIDI=T \"oh

As in [96] [135], we will use a one-step look ahead active search acquisition function
defined for a candidate A\; € £\Q;_; to be the posterior probability that the usefulness
label u; is positive, i.e. p*3(\;) = 11;(Q;—1). The algorithm for scenario (C) is denoted
by IWS-AS.

Algorithm 3: Interactive Weak Supervision (IWS-LSE-a).
Input: L: set of LFs, T: max iterations.

1 Qo+ T

2 fort=1,2,...,7T do

3 At 4= argmaxyep o, , Pr(A) > Eq.
4 u < ExpertQuery(;)

5 Qr + Q1 U{( A\, up)}

6 end

7 L {\ €L Ep(oy|Qr)] > r} > Eq.
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Approximate Inference Details [ will now describe how to use the expert-
feedback model in Eq. to infer p(a;|Q:), a quantity used in the acquisition
functions and final set estimates. Recall that we defined a generative model of hu-
man feedback u; on query LF \; with latent variables v; and w. We assumed a
connection between v; and the latent LF accuracy «a; via a monotonic increasing
function «; = ¢g( Similar to existing work on high dimensional uncertainty es-
timation - We can use an ensemble {h_w}2_, of s neural networks h, with
parameters w to predlct u; given input A;. To perform this prediction, we need a
feature representation 7(\;) for LFs that is general and works for any data type and
task. To create these features, we will use the LF output over the unlabeled dataset
() = (Aj(z1),..., Aj(z,)). We will then project 75();) to d’ dimensions using
PCA for a final feature representation 7(J\;), which is given as input to each h.. The
neural network ensemble can now learn functions i : RY — [0, 1], which map from
LF features 7(\;) to v; = p(u; = 1|Q;). This yields an ensemble of estimates for v;,
and through ¢!, of ;. These are treated as approximate samples from p(a;|Q;),
and used to form sample-estimates used in the acquisition functions.

4.1.2 Experiments

Amazon IMDB 1.0 Bias Bios: journalist or photographer
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Figure 4.2: Mean test set AUC vs. number of iterations for end classifiers trained on
probabilistic labels. IWS-LSE and IWS-AS are compared to active learning, Snuba,
training on all labels, and IWS with a random acquisition function. Note that, while
one iteration on this corresponds to one expert label, a comparison of effort needed to
answer each type of query (label for sample vs label for LF) will vary by application.

The experiments in this Section show that heuristics obtained via a small number

of iterations of IWS can be used to train a downstream end classifier f with highly
competitive test set performance. I first present results obtained with a simulated
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IWS oracle instead of human users. Oracle experiments allow us to answer how the
method would perform if users had perfect knowledge about LF accuracies. I then
show results from a user study on text data in which the query feedback is given by
humans. In Section [£.1.2] T provide results of a user study on images, using image
based LF's.

Datasets Six binary text classification tasks are created on the basis of publicly
available dataset§’] The tasks are chosen such that most English speakers can pro-
vide sensible expert feedback on LFs, for ease of reproducibility. I use a subset of
the Amazon Review Data [11§] for sentiment classification, aggregating all categories
with more than 100k reviews from which 200k reviews are sampled and split into 160k
training points and 40k test points. The IMDB Movie Review Sentiment dataset [182]
is also used. It has 25k training samples and 25k test samples. In addition, I use
the Bias in Bios [§] dataset from which I create binary classification tasks to distin-
guish difficult pairs among frequently occurring occupations. Specifically, I create the
following subsets with equally sized train and test sets: journalist or photographer
(n = 32258), professor or teacher (n = 24588), painter or architect (n = 12236),
professor or physician (n = 54 476).

For the cross-modal tasks of text captions and images as well as the pure image
task the COCO dataset [168] is used. The official validation set (n = 4952) is used
as the test set. This set of test images is only used to compute evaluation metrics,
and is never accessed at any other point in the pipeline.

Cross-modal classification: As in [254], using the COCO dataset |168] LFs are gen-
erated over captions, while classification is performed on the associated images. The
two binary tasks are to identify a ‘person’ in an image, and to identify ‘sports’ in an
image.

Image classification: For image classification tasks with image LFs, I use the COCO
dataset and create two binary classification tasks to identify ‘sports’ in an image and
‘vehicle’ in an image. For these image-only experiments, nearest-neighbor based LFs
are created using feature representatinos of the images.

Approaches All approaches train the same downstream end classifier f on the
same inputs X. Results are provided for IWS-LSE-a (unbounded LF set), WS-
LSE-ac (bounded LF set), and IWS-AS (validated LF set). For IWS-LSE-ac, the
size of the final set of LFs at each iteration ¢ is bound by m = Zf;} u; + m, i.e.
the number of LFs so far annotated as u = 1 plus a constant m. The test set
performance of IWS is compared to a set of alternatives including (1) annotation
of samples via active learning (uncertainty sampling) by a noiseless oracle, (2) the
Snuba system [254], and (3) using all ground truth training labels. Additionally, the

performance of IWS with a random acquisition function (/WS-random) is evaluated.

2 Amazon: https://nijianmo.github.io/amazon/index.html, IMDB: https://ai.
stanford.edu/~amaas/data/sentiment/, BiasBios: http://aka.ms/biasbios
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In the figures, annotations on the x-axis correspond to labeled samples for Snuba and
active learning, and to labeled LFs for IWS. This head to head comparison of user
effort is naturally application dependent. For a comparison of effort in these specific
experiments, 1 provide a timing study descibing the time required to carry out LF
labeling versus labeling of samples, see Table [4.1]

LF Families For text tasks, prior work such as [220] and [255] demonstrates that
word and phrase LFs can provide good weak supervision sources. To generate LFs, I
define a uni-gram vocabulary over all documents and discard high and low frequency
terms. I then exhaustively generate LFs from an LF family z4 which outputs a
target label if a uni-gram appears in a document, where ¢ specifies the uni-gram
and target label. I also evaluated combinations of higher-order n-grams, but did not
observe a significant change in performance. For COCO images, it is difficult to
obtain strong domain primitives to create weak supervision sources, even for data
programming from scratch. To generate LFs with high coverage, I first create small,
unique clusters of up to k; mutual nearest neighbors (MKNN)| For each member of
a cluster, I find the ko nearest neighbors, and keep ones shared by at least one other
cluster member. Finally, each extended cluster defines an LF, which assigns the same
label to each member of the extended cluster. The MkNN symmetry produces good
initial clusters of varying size, while the second kNN step produces LFs with large
and varying coverage. User experiments in Appendix show that real users can
judge the latent LF usefulness quickly by visually inspecting the consistency of the
initial cluster and a small selection of the cluster nearest neighbors.

Implementation Details The probabilistic ensemble in IWS, which is used
in all acquisition functions to learn p(u; = 1|Q);), is a bagging ensemble of s = 50
multilayer perceptrons with two hidden layers of size 10, RELU activations, sigmoid
output and logarithmic loss. To create features for the p candidate LFs in L, 1
use singular value decomposition (SVD) to project from n to d = 150. Thus, at
iteration ¢, given a query dataset Q:—1 = {(\;, u;) ;;11, the ensemble is trained on
pairs {(7(X;),u;)}Z] where 7();) are the SVD features and u; the binary expert
responses. The output of the ensemble on LFs not in the query dataset is used
to compute 0;(Qi—1) = +/Var[g~ (p(u; = 1|Qs—1))] and p;(Qi—1) = E[g~ (p(u; =
1|Q4—1))]. While g, which maps «; to v;, could be fine-tuned from data, I set ¢
as the identity function in the experiments, which works well empirically. Finally,
to allow human experts to express some level of confidence about their decision on
u;, I also collect corresponding uncertainty weights b; € {1,0.5}, and I multiply the
contribution to the loss of each u; by the respective weight b;. Users can also skip
queries if they are unsure, indicated in black in Fig. [4.3] These ‘unsure’ responses are
still counted as an iteration/query in the plots.

3Image A is a k; nearest neighbor of image B, and image B is also a k; nearest neighbor of image

A.
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The downstream end classifier f is a multilayer perceptron with two hidden
layers of size 20 and RELU activations, sigmoid output and logarithmic loss. Each
model in the ensemble as well as f are optimized using Adam [146]. For the text
datasets, I fit the end models f to low dimensional projections of a large bag-of-words
matrix via truncated Singular Value Decomposition (SVD), fixing the embedding size
to d = 300. I repeat each experiment ten times. I assume that the class balance is
known when fitting the label model, as common in related work. When class balance
is unknown, [221] discuss an unsupervised approach to estimate it. For the COCO
image experiments, I use the second-to-last layer of a ResNet-18 |117] pretrained on
ImageNet to obtain image features. These image features are used as the embedding
to train the end classifier for all approaches which I compare. The embeddings are
also used to create the nearest-neighbor based image LFs.

The first 8 iterations of IWS are initialized with queries of four LFs known to
have accuracy between 0.7 and 0.75 drawn at random and four randomly drawn LFs
with arbitrary accuracy. Subsequently, IWS chooses the next LFs to query. Active
learning is initialized with the same number of known samples.

Oracle experiments

The simulated oracle labels an LF as useful if it has an accuracy of at least 0.7.
Measured by test-set AUC of final classifier f, IWS-LSE outperforms other approaches
significantly on five out of six text datasets, and matches the best performance also
attained by Snuba on one dataset, see Fig. IWS-AS performs similarly well
on four text datasets, and competitively on the other two. Both IWS approaches
outperform active learning by a wide margin on all text datasets. IWS also quickly
approaches the performance achieved by an end model trained on the full ground
truth training labels. Ablation results for IWS-LSE varying the final set size as well
as thresholds r are provided in Appendix[4.1.2] For the COCO image tasks, LFs were
created using image captions as in [254] (Fig. [4.4] first and second plot), as well as
on images directly via nearest neighbors (Fig. , third and fourth plot). IWS also
performs competitively on these image tasks and quickly approaches the performance
achieved using all training ground truth.

User experiments on text

Experiments of IWS-AS are con- Table 4.1: A comparison of the median (mean)
ducted with real users on the Ama- yger response time for responding to queries

zon and IMDB review sentiment ahout labeling functions (LFs) vs samples.
classification tasks.  The results
demonstrate that users judge high Dataset ‘ Annotate LF ‘ Annotate sample

accuracy functions as useful and Amazon‘ 4.25 (8.3s) ‘ 7.9s (10.3s)

make few mistakes. In the exper-
: . IMDB | 32s(6.0s) | 19.s (24.39)
iments, users are shown a descrip-
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tion of the heuristic (the key term

pattern) and the intended label. Users can also view four snippets of random doc-
uments where the LF applied, but are instructed to only consider the examples if
necessary. See Appendix for a screenshot of the query interface and details re-
garding the user prompts. The top of Fig. shows that mean test set performance
of IWS-AS using LFs obtained from human feedback closely tracks the simulated
oracle performance after about 100 iterations. Fig. further shows the queried LF's
and corresponding user responses by their true accuracy vs. their non-abstain votes.
To match the mean test AUC of IWS-AS obtained after 200 iterations on the Ama-
zon dataset, active learning (uncertainty sampling) requires about 600 iterations. For
the IMDB dataset, to achieve the same mean test AUC of IWS-AS obtained after
200 iterations, active learning requires more than 1000 iterations. For both datasets,
the average response time to each query was fast. A manual labeling exercise of
samples for the IMDB and Amazon datasets (Table is also conducted with real
users. Assuming the original ratings are true, the users incorrectly classified ~9% of
IMDB reviews while taking significantly longer compared to the response times to
LF queries. For the Amazon dataset, users mislabeled ~2% of samples and were also
slower at labeling samples than LFs. The user-study experiments involved nine per-
sons with a computer science background. Neither the true accuracy of each heuristic
nor the end model train or test set results were revealed to the users at any stage of
the experiment. Section [4.1.2] provides results for a similar user study on the COCO
sports task with image LFs. These results are consistent with those for text, showing
that users are able to distinguish accurate vs. inaccurate image LFs well, and that
the full IWS procedure with real users achieves similar performance as the one using
a simulated oracle.

User Experiments on Images with Image Labeling Functions

I also carried out a user study on the COCO Sports image classification task described
above, using a family of mutual nearest neighbor image labeling functions. In line
with the experiments on text data, Figure shows that users were able to judge
the accuracy of LFs consistently and well, and that the performance of IWS closely
tracks the simulated oracle performance after about 100 iterations.

Again, users were quite quick at responding to LF queries, and judging LF's to be
predictive of the latent class variable appeared to be an intuitive task. The average
user response time to these image LF queries was 8.8 seconds, while the response time
for annotating individual images was around 4.1 seconds on average. To assess an
LF, a human user was shown the LFs MkNN image cluster of up to 20 images (the
mean size was 7.9 images), and 15 random images contained in the extended cluster,
sorted according to their mean distance to the MkNN image cluster. For this nearest
neighbor-based family of LFs, the parameter k; was set to 20, and ks to 1500—but
performance was robust to changes in these parameters. While the results show that
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Figure 4.3: Human user study, text data. Top: Test AUC of end classifiers
trained on soft labels obtained via IWS-AS. Test set performance of humans closely
tracks performance using a simulated oracle after ~100 iterations. Bottom: scatter
plots of human responses to queries showing the true LF accuracy vs LF coverage
by one user (lower left) and all users (lower middle and lower right). An ‘unsure’
response does not provide a label to an LF query but is counted as an annotation.
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Figure 4.4: COCO image classification. Images (1) and (2): Test AUC of image
classifiers trained using probabilistic labels obtained from LFs on captions, compared
to training with active learning and the full training ground truth. Images (3) and
(4): Test AUC of image classifiers trained using nearest neighbor based image LFs
compared to training with active learning and the full training ground truth. Due to
the low coverage of LFs, only IWS-LSE-a is used in the image experiments.

IWS performs well in this setting, and that classifiers can be trained competitively
compared to active learning, it is an interesting challenge to develop better image
primitives from which labeling functions can be constructed in data programming,
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Figure 4.5: Human user study, image data (Section . The user experi-
ments in this plot were done using a labeling function family defined directly on the
images. Left: Test AUC of end classifiers trained on soft labels obtained via TWS-
LSE-a. Test set performance of humans closely tracks performance using a simulated
oracle after ~100 iterations on these datasets. Right: scatter plots showing the true
LF accuracy vs LF coverage of responses to queries by one user.

and generated in IWS and Snuba.

Ablation of IWS parameter settings

This section provides results of ablation experiments for IWS. The IWS-LSE algo-
rithm requires us to set a threshold r on the (unknown) LF accuracy around which
the model aims to partition the set of candidate LFs. Fig. .6 provides results for
different r threshold settings for IWS-LSE-a and IWS-LSE-ac, corresponding to Sce-
nario (A) and Scenario (B). The figure shows that the algorithms perform well across
a wide range of r. While there is no clear, distinct performance difference discernible,
the figure suggest that a threshold too close to 1.0 can cause the algorithm to under-
perform. A possible explanation is that as it stifles exploration of LFs within the
limited budget of queries to users.

In Scenario (B), which corresponds to the IWS-LSE-ac algorithm, the aim is to
find a final set of LFs of limited size. Fig. H shows that a wide range (m = 50 to
200) of final set sizes produce good results. Recall that in the experiments, the size of
the final set of LF's at each iteration t is bound by m = Zf: u; +m, i.e. the number
of LFs so far annotated as u = 1 plus a constant m.

4.1.3 Discussion

The above results show that a small number of expert interactions with the proposed
method can suffice to select good weak supervision sources from a large pool of can-
didates, leading to competitive end classifiers. IWS shows promise as a way to signif-
icantly speed up the process of weak supervision source discovery by domain experts
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Figure 4.6: IWS-LSE ablation plots for varying thresholds r which are use to partition
the set of LFs. On all datasets test set performance is very similar after around
100 iterations, showing that a wide range of such thresholds leads to good test set
performance. For IWS-LSE-ac shown in this plot m was set to 100.

as an alternative to devising such sources from scratch. On a large number of tasks,
IWS obtains superior predictive performance on downstream test sets compared to
the automatic selection of LFs with Snuba and standard active learning (where
users annotate samples instead of LFs), when measured with respect to the number
of user annotations. Experiments with real users on two text benchmark datasets
and one image dataset show that humans recognize and approve high accuracy LF's,
yielding models that match performance attainable with a simulated oracle. The text
experiments also suggest that tasks exist where users are able to annotate heuristics
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Figure 4.7: IWS-LSE-ac ablation plots for varying final sizes via parameter m. Recall
that the size of the final set of LF's at each iteration t is bound by m = Zf;i u; +m,
i.e. the number of LFs so far annotated as u = 1 plus a constant m. Note that the
LSE-ac setting takes LF coverage into account to rank LFs according to (2a; — 1) * Zj
where a;, l}- are the estimated LF accuracy and observed LF coverage.

faster than individual samples. The proposed approach is not meant to replace ac-
tive learning or manually created weak supervision. For many tasks, standard active
learning, data programming, or crowd-sourcing may be entirely sufficient. However,
when a large number of labels is necessary to train good models while experts’ effort
is precious, an interactive framework for weak supervision can be the right choice.
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4.2 Weak Supervision as Paired Multi-Modal Data:
Vision—Language Processing in Biomedicine

This Section is based on the work presented in:

Boecking, Benedikt et al. “Making the Most of Text Semantics to Improve
Biomedical Vision-Language Processing”. In: Furopean Conference on
Computer Vision (ECCV). 2022

Benedikt Boecking (myself) and Naoto Usuyama contributed equally to
the research article published at ECCV.

J

This section focuses on vision-language processing (VLP)) for paired image and
text data in the biomedical domain. The weak form of supervision here is the knowl-
edge of the paring of samples across the modalities, i.e. we know which pairs of images
and text documents go together. In particular, in this application we know which
text report was written to describe the findings of a specific imaging study. In related
work, this learning scenario has been framed under the terms weak supervision as well
as multi-modal self-supervised learning. From hereon, I will refer to this scenario as
self-supervised learning, as this terminology has evolved as the predominant one in
related studies. However, I want to emphasize that the ‘self-learning’ is only possible
because the latent shared entities across the modalities are linked weakly through
knowledge about which samples are associated with each other. This in turn allows
for the formulation of contrastive objectives on the basis of imprecise positive and
negative samples derived from this known relationship.

The setting of paired multi-modal image-text data is common in weak supervi-
sion research. Many domains exist in which large amounts of raw signal data such
as time series or images are accompanied by unstructured or semi-structured text
documents that capture knowledge about the unobserved target variables. One ex-
ample of such data are maintenance records in aviation, paired with engine data. On
online platforms such as Flickr one can find large numbers of images associated with
captions written by users. For videos of sports events, news programs, or movies,
large datasets of video segments with closed captions are common and routinely used
in vision-language processing.

In healthcare, paired visual and text data is collected routinely during clinical
practice, and common examples are X-ray images [85], 132, 266] or computed tomog-
raphy (CT) scans [52, 85, 88, 251] paired with reports written by medical experts.
Importantly, while many remain private, some paired clinical datasets |34} 75, [136]
have been released to the research community such as MIMIC-CXR [136].

The multi-modal paired scenario has also been exploited in programmatic weak
supervision, for example to train image classifiers [266, 132, |85, 92, [88] in data such
as radiology images or CT scans. Here, imperfect rules are defined on the text doc-
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uments, a label model then estimates the unobserved true label on the basis of the
weak supervision votes, and an end model that receives the images as input is learned
using this estimate.

Self-supervised Vision—Language Processing The goal of self-supervised VLD
is to jointly learn good image and text representations that can be leveraged by down-
stream applications such as zero-/few-shot image classification, report generation and
error detection, and disease localization. Self-supervised [VLPI has several advantages
over supervised learning and programmatic weak supervision, not just because it does
not require laborious manual annotations or the creation of weak supervision sources
by users, but also because it does not operate on a fixed number of predetermined
conditions or object categories, since the joint latent space is learned from raw text.

Self-supervised Vision—Language Processing in the Biomedical Domain
Advances in deep learning have enabled automated diagnosis systems that operate
near or above expert-level performance, paving the way for the use of machine learn-
ing systems to improve healthcare workflows, for example by supporting fast triaging
and assisting medical professionals to reduce errors and omissions [52, |87, 189, [251].
A major hurdle to the widespread development of these systems is a requirement for
large amounts of detailed ground-truth clinical annotations for supervised training,
which are expensive and time-consuming to obtain. Motivated by this challenge,
there has been a rising interest in multi-modal self-supervised learning [128| |166] and
cross-modal programmatic weak supervision [85] 88, |132, [251}, [266], in particular for
paired image-text data.

In contrast to the general domain setting, self-supervised VLP| with biomedical
data poses additional challenges. Take radiology as an example, publicly available
datasets [136, |75, [34] are usually smaller, on the order of a few hundred thousand
pairs rather than millions in general-domain vision-language processing (e.g. [215]
collected 400M text—image pairs on the Internet for self-supervision). Furthermore,
linguistic challenges are different in biomedical settings, including common usage of
negations, expressions of uncertainty, long-range dependencies, more frequent spatial
relations, the use of domain-specific modifiers, as well as scientific terminology rarely
found in the general domain. Taking negation as an example, “there is no dog in this
picture” would be a highly unusual caption on social media, but “there is no evidence
of pneumonia in the left lung” or “there are no new areas of consolidation to suggest
the presence of pneumonia” are descriptions commonly found in radiology reports.
Moreover, pretrained models including object detectors often used in general domain
visual grounding are typically unavailable or under-perform in domain-specific appli-
cations (see also Supp. in [128]). Additionally, imbalance in underlying latent entities
of interest (e.g., pulmonary findings) can cause larger numbers of false negatives in
contrastive learning objectives that sample at random, which can lead models to de-
grade and memorize irrelevant text and image aspects. For example, radiology images
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Figure 4.8: BioViL leverages a radiology-specific text encoder (CXR-BERT), text
augmentation, regularization, and maintains language model quality via a loss.
A broad evaluation of models and representations is conducted which includes zero-
shot classification, phrase grounding, and natural language inference.

and text reports with normal findings occur much more frequently compared to exams
that reveal abnormal conditions such as pneumonia or pneumothorax (also see [61]).
Supp. provides further discussion of these challenges.

Making the Most of Text Semantics to Improve Biomedical Vision—Language
Processing Related self-supervised [VLP| work in biomedicine [124, [128], [166], [194]
292] has achieved impressive downstream classification and zero-shot classification
performance. However, the work here reveals that sub-optimal text modeling due to
insufficient vocabulary adjustment, fine-tuning, and language grounding during joint
training appears to have gone unnoticed, all of which are shown to degrade the qual-
ity of the latent representations. In particular, a more thorough benchmarking of the
text, image, and shared embeddings, across a multitude of downstream benchmarks,
reveals that large improvements in performance are possible by taking care to build
highly specialized text models and by maintaining their performance during joint
training. Free-text image descriptions provide a semantically dense learning signal
compared to image-only contrastive methods and supervised classification [78]. Fur-
ther, extracting shared semantics of images and text pairs is easier for text, as the
modality is already discretized. Thus, making the most of text modeling before and
during joint training can lead to large improvements in not just the text model, but
also of the image model and joint representations. This section present the following
contributions:

1. A new Chest X-ray (CXR]) domain-specific language model, CXR-BERT[] (Fig. [4.9).

Through an improved vocabulary, a novel pretraining procedure, regularization,
and text augmentation, the model considerably improves radiology natural lan-

4Pretrained models available on HuggingFace: https://aka.ms/biovil-models
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guage inference [189], radiology masked token prediction [79, 174], and down-
stream [VLD] task performance.

2. A simple but effective self-supervised [VLP] approach for paired biomedical data
named BioViL“ﬂ (Fig. , and evaluate in the radiology setting. Through
improvements in text modeling, text model grounding, augmentation, and reg-
ularization, the approach yields new state-of-the-art performance on a wide
range of public downstream benchmarks. Large-scale evaluation conducted in
this section (see Table includes phrase grounding, natural language infer-
ence [189], as well as zero-/few-shot classification and zero-shot segmentation
via the RSNA Pneumonia dataset |237, |266]. Notably, the approach achieves
improved segmentation performance despite only using a global alignment ob-
jective.

3. A dataset for phrase grounding in radiology, MS-CXR’| to encourage reproducible
evaluation of shared latent semantics learned by biomedical image-text mod-
els. This large, well-balanced phrase grounding benchmark dataset contains
carefully curated image regions annotated with descriptions of eight radiology
findings, as verified by board-certified radiologists. Unlike existing chest X-ray
benchmarks, this challenging phrase grounding task evaluates joint, local image-
text reasoning while requiring real-world language understanding, e.g. to parse
domain-specific location references, complex negations, and bias in reporting
style.

4.2.1 Methodology

Assume that we are given a set D of pairs of radiology images and reports (Ximg, Xixt)-
Let w = (wy, ..., wr) denote a vector of T' (sub-)word tokens of a text document X
(after tokenization). Recall that a BERT [256] encoder Eiy outputs a feature vector
for each input token w; as well as a special global [CLS] token used for downstream
classification. Let t = [Eixt (W)]eLsy denote the [CLS] token prediction by Fi based

on input w, and t = P(t) its lower-dimensional projection by a model Pi.

CXR-BERT: Domain-Specific Language Model Pretraining
The proposed CXR-BERT (Fig. is a specialized Chest X-ray (CXR) language

model with an adjusted vocabulary, pretrained in three phases to capture dense se-
mantics in radiology reports [38]. To achieve this specialization to the report
domain despite limited data availability, the approach includes pretraining on larger
data from closely related domains. The phases proceed as follows: (I) First, a custom

5Code can be found at: https://aka.ms/biovil-code
6The MS-CXR dataset can be found on PhysioNet https://aka.ms/ms-cxr.
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WordPiece [272] vocabulary of 30k tokens is constructed based on PubMed abstracts{’
(15 GB), MIMIC-IIT [137] clinical notes (3.5 GB), and MIMIC-CXR radiology reports
(0.1 GB). With this custom vocabulary, the model produces fewer sub-word break-
downs (Table[4.2). (II) Second, a randomly initialized BERT model is pretrained via
Masked Language Modeling (MLM]) on the PubMed + MIMIC-IIT + MIMIC-CXR
corpora, largely follow RoBERTa [174] pretraining configurations, i.e. dynamic whole-
word masking for [MLM] and packing of multiple sentences into one input sequence.
This phase aims to build an initial domain-specific BERT model in the biomedical
and clinical domains. (IIT) Third, pretraining is continued on MIMIC-CXR only, to
further specialize CXR-BERT to the domain. Here, a novel sequence prediction
task is added to the objective to obtain better sequence representations, as explained
below.

Note that a raw radiology report X typically consists of several sections, in-
cluding a ‘FINDINGS’ section that details clinical observations, and an ‘IMPRESSION’
section summarizing the clinical assessment [261}, [268]. The sequence prediction ob-
jective of phase (III) aims to take advantage of this structure. Specifically,
pretraining is continually run on MIMIC-CXR radiology reports, and a radiology sec-
tion matching (RSM) pretraining task is added, formulated to match IMPRESSION to
FINDINGS sections of the same study.

Let 6 denote the weights of the language model and m C {1,...,7} denote
mask indices for M masked tokens, randomly sampled for each token vector w at
every iteration. Given a batch B of token vectors w = (wi,...,wr), we write
the [MLM] loss as the cross-entropy for predicting the dynamically masked tokens:
Ly = —|—113‘ > wer 108 Po(Win, | Wh,) . Further, let (t,t]) denote a pair of [CLS] to-

177
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Figure 4.9: The proposed CXR-BERT text encoder has three phases of pretraining
and uses a domain-specific vocabulary, masked language modeling (MLM) and radi-
ology section matching (RSM) losses, regularization, and text augmentations.
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Table 4.2: Vocabulary comparison of common radiology terms with Clinical-
BERT (Wiki/Book, cased), PubMedBERT (PubMed, uncased), and CXR-BERT
(PubMed+MIMIC-III/CXR, uncased). v" marks that a word appears in the vocabu-
lary, otherwise its sub-tokens are shown.

Full word Clinical BERT PubMedBERT CXR-BERT
pneumonia v v v
opacity op-acity v v
effusion e-ff-usion v v
pneumothorax p-ne-um-oth-orax v~ v
atelectasis ate-lect-asis ate-le-ct-asis v
cardiomegaly  card-io-me-gal-y  cardio-me-gal-y v
bibasilar bi-bas-ila-r bib-asi-la-r v

kens corresponding to the FINDINGS and IMPRESSION sections of the same i'" report,
and let (t7',t]) denote the pair projected to a lower dimension via a two-layer per-
ceptron P. Now, let us define the RSM contrastive loss on the text modality. This
loss over N pairs of samples favors IMPRESSION and FINDINGS text pairs from the

same report over unmatched ones:

exp(tF - t1/m,) exp(t! - € /7)
Lo — 41 i b .48
o Z( S (@ 6 T ey ) Y

where 71 > 0 is a scaling parameter to control the margin. The resulting total loss of
the specialization phase (III) is L1 = Lrsm + AmemLvov- An additional important
component for regularizing the RSM loss is the use of increased dropout (25%), in-
cluding on attention. In the experiments, 7 = 0.5 and Ayry = 0.1, determined by a
limited grid-search measuring Lga (Eq. (4.9)) of the joint model on a validation set.
Also, note that similar losses to the RSM loss—defined over the same or separate text
segments—have been explored successfully for sentence representation learning [95,
177] in other settings. Empirically, experiments conducted for the work presented in
this section showed that an objective as in [95] using masked FINDINGS to FINDINGS
matching can achieve similar performance and may be an appropriate replacement in
other biomedical settings with differing text structure.

Text Augmentation. As domain-specific datasets are often quite small, effective
text augmentation can induce large benefits. In the radiology domain, the sentences
of the FINDINGS and IMPRESSION sections, which contain the detailed description
and summary of the radiological findings, are usually permutation-invariant on the
sentence level (cf. [214]). Thus, in the experiments of this work sentences are randomly
shuffled within each report section as an effective text-augmentation strategy for both
pretraining of CXR-BERT as well as during joint model training.
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BioViL: Vision-Language Representation Learning

Let us now introduce BioVil, a simple but effective self-supervised VLP setup for
the biomedical domain (Fig. , and here studied in a application setting.
BioViLuses a convolutional neural network (CNN) [155] image encoder Ej,, the
CXR-BERT text encoder Eiy proposed above, and projection models Py,e and Py to
learn representations in a joint space. The CNN model provides useful inductive biases
given the limited amount of image data available for training, and allows us to obtain
a grid of local image embeddings V = Eing (Ximg ), which is fine-grained enough to be
useful for segmentation (e.g. 16x16). Each encoder is followed by a modality-specific
two-layer perceptron projection model P, which projects the encoded modality to
a joint space of 128 dimensions—e.g., V = Pimg(\?)fwhere the representation is fo-
normalized. Note that projection should be applied to local embeddings before mean-
pooling v = pool(Pimg(V)), which gives us the global image embedding v. The
text branch uses the IMPRESSION section’s projected [CLS] token t! as the text
representation in the joint space, as it contains a succinct summary of radiological
findings. To align the representations and learn a joint embedding, the use two loss
terms is proposed. For a batch of size N, a symmetric contrastive loss [205] for
global alignment of the image and text projections helps us learn the shared latent
semantics:

N

exp(v; - t} /7 exp(t; - v,/
Loa = N <log & P / 12) + log — p( . /72) ) , (4.9)
i=1 Zj:l exp(Vv; - tj/T2) Zj:l exp(t; - v;/72)

where 75 > 0 is a scaling parameter. Importantly, the Ly loss is maintained during
joint training to avoid degradation of language modeling performance, resulting in
the final joint loss Lioint = AgaLaa + Lyrm. In the experiments and released models
79 = 0.5 and Aga = 0.5, determined by a limited grid search measuring Lga on a
validation set.

Augmentations, Regularization, and Image Encoder Pretraining. Due to
the small dataset sizes expected in biomedical applications, image and text augmen-
tations are used to help learn known invariances. A ResNet-50 [117] architecture is
used as the image encoder, pretrained on MIMIC-CXR images using a SimCLR [45]
objective with domain-specific augmentations as detailed in Section [£.2.3] For text,
the same sentence-shuffling augmentation as in pretraining of CXR-BERT is used
(see Section for details). Furthermore, as in phase (III) of CXR-BERT training,
higher text encoder dropout (25%) than in standard BERT settings is applied [79,
256]. The combination of all these components, including continuous [MLM] optimiza-
tion, is important to improve downstream performance across the board (see ablation

in Table .

Zero-shot Classification. After joint training, text prompts are used to cast
the zero-shot classification problem into an image—text similarity task as in [128
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215, [219]. For C' classes, subject-matter experts design C' text prompts represent-
ing the target labels ¢ € {1,...,C}, e.g. for presence or absence of pneumonia
(see Section . Each class prompt is represented as a vector of tokens w¢
and passed to the text encoder and projector of BioViLi to obtain ¢y-normalized
text features t¢ = P (Ei(w°)) € R For each input image Xj,, € R7*W
the image encoder and projection module are used to obtain patch embeddings
V = Pug(Eimg(Ximg)) € Ri6* 16128 for segmentation tasks or the pooled embed-
ding v = pool(V) € R'*® for instance-classification. Dilated convolutions [282] are
used to obtain higher-resolution feature maps. Probabilities for classes/regions can
then be computed via a softmax over the cosine similarities between the image (or
region) and prompt representations.

Few-shot Tasks with BioViL. To further assess the representation quality, linear
probing is applied to local (V) and global (v) image representations, by learning
B € R8¢ yeights and a bias term. Unlike [128| 292], this work leverages the
pretrained projectors and class text embedding t¢ from the zero-shot setting by using
them for initialization, which leads to improved performance and further reduces the
need for manual label collection. Specifically, in few-shot classification settings, the
weights and bias are initialized with 3 = [t!, ..., t%] and zeros, respectively.

4.2.2 A New Phrase Grounding Benchmark

Accurate local alignment between modalities is an important characteristic of suc-
cessful joint image-text training in healthcare, in particular since image and report
samples often contain multiple clinical findings, each of which correspond to distinct
image regions. Standard global-alignment approaches may attain high classification
accuracy by overfitting to spurious image features for a given finding (e.g., chest
tubes in images correlating with mentions of pneumothorax in reports). Image clas-
sification, the most frequently evaluated downstream task in related work [128; 166,
194} [292], requires only scene-level labels, hence a less sophisticated understanding of
natural-language image descriptions. Image classification tasks can largely be solved
by simply detecting a small set of words and maintaining some understanding of nega-
tion, as exemplified by the development of automated, rule-based text-labelers such
as CheXpert [132]. Instance-level image-text retrieval tasks address some evaluation
limitations, but do not require the level of language reasoning needed to solve local
correspondence between phrases and image regions. Existing public CXR benchmark
datasets to evaluate local aspects of VLP have one or more of the following limitations
(see Supp. for more details): bounding boxes without corresponding free text
descriptions, a limited number of samples, a limited number of abnormalities, and
non-curated phrases impacting evaluation quality.

With this motivation in mind, the proposed MS-CXR was designed as a radiology
visual-grounding benchmark that has domain-specific language (e.g., paraphrasing
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Figure 4.10: Examples from the newly released MS-CXR phrase grounding dataset
with BioViL latent vector similarity for different input text queries superimposed as
heat-maps. Dashed boxes are ground-truth annotations by radiologists. X-ray images
are mirrored horizontally.

and negations) and forms a more challenging real-world image-text reasoning task
compared to existing evaluation datasets. To name just a few challenges, the phrase
grounding task requires the ability to parse domain specific location modifiers, the
ability to deal with reporting style biases, and understanding of complex negations,
all while relating the correct findings to specific image regions.

MS-CXR — A Chest X-ray Phrase Grounding Benchmark

MS-CXR is a new, publicly released dataset containing image bounding box labels
paired with radiology text descriptions. Two board-certified radiologists assigned
and verified the annotations in MS-CXR (see examples in Figs. and . MS-CXR
provides 1153 image—sentence pairs of bounding boxes and corresponding phrases,
collected across eight different cardiopulmonary radiological findings, with an ap-
proximately equal number of pairs for each finding (see Table . It is curated to
ensure gold-standard evaluation of phrase grounding. The phrases in MS-CXR are not
simple short captions, but genuine descriptions of radiological findings from original
radiology reports and dictated transcripts . Thus, compared to existing eval-
uation datasets, this proposed benchmark is a more challenging real-world image-text
reasoning task.

All the benchmark samples were chosen from the public MIMIC-CXR dataset
, . To collect a set of bounding-box labels, samples were first selected from a
set of studies with pre-existing image annotations (e.g., ellipses) , and their
correctness was verified by radiologists. To link each image region with candidate
phrases, sentences were sampled from the report of each study by extracting the
highest matching sentences to the annotated labels using scores of the CheXbert
classifier [242], and transcriptions of dictations were also used when available [20].
Next, to better balance findings, additional studies were sampled at random, and
ones used in the ImaGenome dataset were added, the latter being a dataset
of annotations of anatomical regions. Note that these sampled studies did not have

93



Table 4.3: Comparing evaluations conducted in recent CXR image-text alignment
studies.

. & Image Text Phrase  Findings  Latent Annotation

Downstream task Used in ref. . Lo . I,
encoder encoder reasoning localization alignment availability

Natural language inference [B] - v v - - Scarce
Phrase grounding [B] v v v v v Scarce
Image classification [B,C,G,L,M] v - - - - High
Zero-shot image classif. B, ] v v - - v Moderate
Dense image pI‘.edICtIOIl B,G.L] v ) ) v ) High
(e.g. segmentation)
Global image-text retrieval [C,G] v v - - v High

*B, BioViL (Proposed); C, ConVIRT [292]; G, GLoRIA [128]; L, LoVT [194]; M, Local MI |166].

preexisting region proposals. Radiologists then manually reviewed separate sets of
candidates. If a bounding box was not available, the radiologists manually annotated
the corresponding region(s) in the image with new bounding boxes. Radiologists
rejected studies where no correct phrase candidates were available and where existing
bounding boxes were placed incorrectly (e.g., covering too large an area). To ensure
a high quality, consistent benchmark, the phrase-image samples that did not adhere
to specific guidelines (see Supp. [E.3.1)) were filtered out, such as phrases containing
multiple abnormalities in distinct lung regions.

4.2.3 Experiments

A comprehensive evaluation of the CXR-BERT language model as well as the pro-
posed BioViL self-supervised VLP approach is done, and both are compared to state-
of-the art counterparts. Table shows how the evaluation coverage of this work
compares to recent related studies. This section begins by demonstrating CXR-
BERT’s superior performance and improved vocabulary, including on a radiology-
specific NLI benchmark. Next, the joint image-and-text understanding of BioViL is
assessed on the new MS-CXR benchmark, which evaluates grounding of phrases describ-
ing radiological findings to the corresponding image regions. Zero-shot classification
and fine-tuning performance of BioViL is also investigated on image- and pixel-level
prediction tasks via the RSNA pneumonia dataset [237, |266].

Setup

Datasets. Experiments are conducted with the MIMIC-CXR v2 136 [99] chest ra-
diograph dataset, which provides 227,835 imaging studies with associated radiology
reports for 65,379 patients, all collected in routine clinical practice. Only frontal
view scans (AP and PA) are used, and studies without an IMPRESSION section are
discarded. From this data, a training set of 146.7k samples is established, and a set
of 22.2k validation samples, and it is ensured that all samples used for the different
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downstream evaluations are kept in a held-out test set. No labels are used during pre-
training; for early stopping, only a loss on unlabeled validation data is tracked. For
evaluation, RadNLI [189] is used to assess the proposed CXR-BERT text model in iso-
lation, the new MS-CXR assesses joint image-text understanding via phrase grounding,
and the RSNA Pneumonia dataset [237] 266] is used to test zero-shot segmentation,
as well as zero-shot and fine-tuned classification performance.

Image and Text Pre-processing. Images are downsized and center cropped to a
resolution of 512x512 whilst image aspect ratios are preserved. Image augmentations
are performed during training including: random affine transformations, random color
jitter, and horizontal flips (only for image fine-tuning tasks). For text model pre-
training, the ‘FINDINGS’ and ‘IMPRESSION’ sections of reports are used, while joint
training is performed using only the latter. During training, sentence shuffling is
performed within sections as text-augmentation. Additionally, a limited automatic
typo correction is done as in [40].

Comparison Approaches. The proposed CXR-BERT text model is compared
to the other specialized PubMedBERT [107] and ClinicalBERT [4] models. Note
that ClinicalBERT was used in most related studies [128, |166, 292 194]. BioViL
is compared to the closely related, state-of-the-art ConVIRT [292], LoV'T [194] and
GLoRIA [128] approaches. Lastly, BioViL-L is created by extending BioVilL. with the
local loss term introduced in [128] to illustrate the complementary role of proposed
pre-training strategy to recent advances in biomedical VLP.

Metrics. Segmentation results are reported via mean intersection over union (mloU)
and contrast-to-noise ratio (CNR), and the Dice score [59] is reported to compare
to |194]. First, the cosine similarity is computed between a projected phrase em-
bedding t and local image representations V., resulting in a grid of scores between
[—1,1]. The similarities are later thresholded to compute mIoU and Dice score. The
mloU is defined as an average over the thresholds [0.1, 0.2, 0.3, 0.4, 0.5]. The CNR
measures the discrepancy between scores inside and out of the bounding box region,
without requiring hard thresholds. This evaluation of local similarities is important
as some clinical downstream applications may benefit from heat-map visualizations
as opposed to discrete segmentation. For CNR, let A and A denote the interior and
exterior of the bounding box, respectively. Then CNR = |ua — px|/ (0% —f-O'%)%, where
px and 0% are the mean and variance of the similarity values in region X.

Text Model Evaluation

Natural Language Understanding. The RadNLI benchmark [189] is used to
evaluate how well the proposed CXR-BERT text model captures domain-specific se-
mantics. The dataset contains labeled hypothesis and premise pairs, sourced from
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Table 4.4: Evaluation of text encoder intrinsic properties and fine-tuning for radiol-
ogy natural language inference: (1) RadNLI fine-tuning scores (average of 5 runs);
(2) Mask prediction accuracy on MIMIC-CXR wval. set; (3) Vocabulary comparison,
number of tokens vs. original number of words in FINDINGS, increase shown as per-
centage.

RadNLI accuracy Mask prediction  Avg. # of tokens Vocabulary

(MedNLI transfer) accuracy after tokenization size
RadNLI baseline [189] 53.30 - - -
Clinical BERT 47.67 39.84 78.98 (+38.15%) 28,996
PubMedBERT 57.71 35.24 63.55 (+11.16%) 28,895
CXR-BERT (after Phase-III) 60.46 772 58.07 (+1.59%) 30,522
CXR-BERT (after Phase-III + Joint Training) 65.21 81.58 58.07 (+1.59%) 30,522

MIMIC-CXR radiology reports, with the following label categories: (1) entailment,
i.e. the hypothesis can be inferred from the premise; (2) contradiction, i.e. the hypoth-
esis cannot be inferred from the premise; and (3) neutral, i.e. the inference relation is
undetermined. RadNLI provides expert-annotated development and test sets (480 ex-
amples each), but no official training set. Thus, following [189], MedNLI [239)] is used
for training, which has 11k samples sourced from MIMIC-IIT discharge summaries,
with equally distributed NLI labels. The language models are fine-tuned up to 20
epochs, and early stopping is done by monitoring accuracy scores on the RadNLI
development set. Table summarizes the NLI evaluation, masked token predic-
tion, and sub-word tokenization results. Using only MedNLI training samples, the
proposed model achieves a good accuracy of 65.21%, and far outperforms fine-tuned
Clinical BERT, PubMedBERT, and the score reported in RadNLI [189]. Another im-
portant result is that RadNLI accuracy improves after joint training with images (last

row of Table [4.4)).

Mask Prediction Accuracy. While mask prediction accuracy does not always
translate to downstream application performance, it is an auxiliary metric that cap-
tures important aspects of a language model’s grasp of a target domain. Top-1 mask
prediction accuracy is reported on radiology reports in the MIMIC-CXR validation set
(Table[4.4), and the standard masking configuration (15% masking probability) is fol-
lowed. Despite being trained on closely related data, the CXR-BERT displays a much
better mask prediction accuracy compared to Clinical BERT (trained on MIMIC-III,
which includes radiology reports) and PubMedBERT (trained on biomedical litera-
ture text). This suggests that radiology text significantly differs from other clinical
text or biomedical literature text, highlighting the need for specialized text encoder
models.

Ablation. An ablation of the various aspects of CXR-BERT is also conducted,
measuring the impact after joint training. Table [4.5 shows that all components of
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Table 4.5: CXR-BERT ablation. CNR and mloU are macro averages of BioViL per-
formance on all categories of MS-CXR. Syn. sim. denotes the average cosine similarity
between RadNLI entailments. Cont. gap is the average similarity gap of RadNLI en-
tailment and contradiction pairs. CXR-BERT is the combination of all components
below the first row.

RadNLI Grounding
Model or pretraining stage Syn. sim. Cont. gap mloU CNR
Clinical BERT 657 .609 182 0.791
Pretrain & Vocab (I-1I) 749 .646 194 0.796
+ MLM loss added to joint training 871 745 209  0.860
+ Use of attention drop-out (III) .893 802 217 0.945
+ RSM Pretrain (I1I) 877 779 220 1.012
+ Sentence shuffling (CXR-BERT) 884 798 220 1.031

CXR-BERT contribute to improved downstream and NLI performance, both in terms
of alignment between related sentences (entailments) and of discrimination of con-
tradictions. In particular, note the substantial improvement on these scores due to
keeping the MLM objective during joint fine-tuning.

Local Alignment Evaluation — Phrase Grounding

A phrase grounding evaluation of the pretrained BioViLi model is performed on the
MS-CXR dataset. For each image—phrase pair, the image is passed to the CNN image
encoder and projected to obtain a grid of image representations V in the joint space.
Similarly, the phrase is embedded via the text encoder and projected to the joint space
to obtain t. Cosine similarity between t and elements of V produces a similarity grid,
which is evaluated against the ground-truth bounding boxes. Table shows the
superior phrase grounding results achieved by BioViL. across radiological findings and
further shows that the addition of local losses as in the BioViL-L can improve phrase
grounding performance for almost all findings. Moreover, the ablation in Table
demonstrates that there are clear gains to be had in visual grounding performance
by improving the text model.

Global Alignment Evaluation — Zero-shot & Linear Probing

To measure global alignment quality, the joint models are also benchmarked on zero-
/few-shot binary pneumonia classification problems (image-level) using the external
RSNA dataset [237]. Fine-tuning is done via linear probing, i.e. only a last linear
layer is trained. The evaluation is conducted on Dy, = 9006 images as in [128§]
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Table 4.6: Contrast-to-noise ratio (CNR) obtained on the newly released MS-CXR
dataset, averaged over four runs with different seeds. The results are collected using
different text encoder and training objectives (e.g., G&L: Global and local loss).

Method Objective Text encoder Atelectasis Cardiomegaly Consolidation Lung opacity ~Edema Pneumonia Pneumothorax PI. effusion Avg.

Baseline Global Clinical BERT 0.70+£.03 0.53+.04 1.15+.07 0.75£.12 0.83+.04  0.85%.09 0.29+.01 1.05+£.05  0.769+.02
Baseline Global PubMedBERT  0.72+.08 0.64+.05 1.224+.07 0.69+.07 0.80+.04  0.91£.09 0.21£.07 0.99£.03  0.773+.05
ConVIRT [292| Global Clinical BERT 0.86+.04 0.64+.06 1.254.06 0.78+.07 0.68+.07  1.03+.05 0.28+.08 1.02+.03  0.818+.01
GLoRIA 128 G&L Clinical BERT 0.98+.04 0.53+.31 1.38+.03 1.05+.04 0.66+.03  1.18+.04 0.47+.02 1.20+.04  0.930£.03
BioViL Global CXR-BERT 1.02+.06 0.63+.08 1.424.02 1.05+.06 0.93+.03  1.27+.04 0.48+.06 1.40+£.06  1.0274.02
BioViL-L G&L CXR-BERT 1.17+.04 0.95+.21 1.454.03 1.194.05 0.96+.05  1.194.01 0.74+.05 1.50+.03  1.1424+.04

Table 4.7: RSNA Pneumonia zero-shot and fine-tuned classification. Results are
compared to GLoRIA scores reported in [128] which outperforms ConVIRT [292] (see
[128]). Training size: GLoRIA (N = 186k, private dataset), BioViL (N = 146.7k of
MIMIC-CXR).

Method Type Text model  Loss % of labels Acc. F1 AUROC

0.801 I 1% 0545 0.522 0.701
———"" | SimCLR [45] Or:lage - Global 10%  0.760 0.639  0.802
0.751 y 100% 0788 0.675 0.849

??070. Zero-shot  0.70  0.58 -
57 ) - Global 1% 0.72 0.63 0.861
E 0651 GLoRIA [128] Joint Clinical BERT & local 10% 078 0.63  0.880
o 100%  0.79 0.65 0.886
=@==BioViL (Ours)
0.601 GLoRIA Baseline Joint  ClinicalBERT Global  Zero-shot 0.719 0.614 0.812
0.551 =e= SimCLR Zero-shot 0.732 0.665 0.831
I ) 1% 0.805 0.723  0.881
0% (Zero-Shot) 1% 10% 100%  BioViL Joint CXR-BERT  Global
Percentage of Labeled Training Data 10% 0.812 0.727  0.884

100% 0.822 0.733 0.891

(30% eval. / 70% train.) using the ground-truth labels of the dataset. Two simple
text prompts are defined, representing presence/absence of pneumonia: “Findings
suggesting pneumonia” and “No evidence of pneumonia”. The image encoders are
utilized and fine-tuned as described in Section [£.2.1]

The zero-shot and fine-tuned results in Table [£.7] show that the focus of this work
on better text modeling results in improved joint modeling of shared latent informa-
tion between text-image pairs. Note that, to achieve its superior performance here
and in Section 4.2.3] BioVili does not require extensive human expert text-prompt
engineering (see Supp. for a sensitivity analysis) as for example conducted in
GLoRIA [128], where variations over severity and/or location were created.

Local Alignment Evaluation — Semantic Segmentation

Models are evaluated on an RSNA pneumonia segmentation task, using grid-level
image representations in the joint latent space. The same text prompts as in the
previous section are used for all models, and ground-truth bounding boxes of the
RSNA pneumonia dataset (|Dgain| = 6634 and |Diest| = 2907) are used for evalua-
tion. Tablel4.8/shows that BioViL significantly reduces the need for dense annotations
as compared to similar multi-modal and image-only pretraining approaches, outper-
forming them when using the same number of labeled data points. Note that the
proposed modeling framework BioViL(Fig. |4.8)), uses neither a local loss term [128],
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Table 4.8: RSNA pneumonia segmentation, showing Zero-shot and linear probing

results. Related work is reproduced in the same experimental setup except for LoVT
[194].

Method % of Labels  Supervision IoU Dice = CNR
LoVT [194] 100% Lin. prob. - 0.518 -

ConVIRT [292] - Zero-shot 0.228 0.348 0.849
GLoRIA [128] - Zero-shot 0.245 0.366 1.052
BioViLL - Zero-shot 0.355 0.496  1.477
SimCLR [45] 5% Lin. prob. 0.382 0.525 1.722
SimCLR [45] 100% Lin. prob. 0.427 0.570  1.922
BioViLL 5% Lin. prob. 0.446 0.592 2.077
BioViLL 100% Lin. prob. 0.469 0.614 2.178

194], nor a separate object detection [224] or segmentation network [229]. Further,
while Table 4.8 shows results using two simple queries, the experiments show that
BioViL continues to outperform related work even when more prompts are used for
all models as in [12§]. Dice and IoU are computed using the same threshold of 0.6 on
predictions scaled between [0, 1].

4.2.4 Discussion

The work in this section shows that weak supervision in the form of paired images and
text can be an invaluable source of learning signal as relationships of shared latent
entities can be exploited to learn good representations for the individual modalities.
Furthermore, it shows that careful attention to text modeling can lead to large benefits
for all learned models.

The contributions of this section included the introduction of a pretraining pro-
cedure and the public release of a radiology domain-specific language model: CXR-
BERT. This model has an improved vocabulary and understanding of radiology sen-
tences, contributing to improved downstream performance for all aspects of VLP
approaches, e.g., the superior performance on a radiology natural language inference
benchmark. This section also presented BioVil, a simple yet effective baseline for
self-supervised multi-modal learning for paired image—text radiology data, with a fo-
cus on improved text modeling. The approach displays state-of-the-art performance
on a large number of downstream tasks evaluating global and local aspects of the
image model, text model, and joint latent space. On zero-shot tasks, the model does
not require extensive text-prompt engineering compared to prior work. Notably, it
outperforms related work on segmentation without requiring a local loss term or an
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additional vision model to produce region proposals. In that regard, it is comple-
mentary to local contrastive losses, and the combination of the two yields improved
phrase grounding performance (Table .

To support the research community in evaluating fine-grained image-text under-
standing in the radiology domain, a chest X-ray phrase grounding dataset called
MS-CXR was also released. It presents a more challenging benchmark for joint image—
text understanding compared to existing datasets, requiring reasoning over real-world
radiology language and scans to ground findings in the correct image locations.

Limitations of the proposed joint approach include that it does not explicitly deal
with false negatives in the contrastive losses. Furthermore, co-occurrence of multiple
abnormalities could enable contrastive methods to focus only on a subset to match
pairs, e.g. pneumothorax and chest tubes commonly occur together |[104]. Among
its failure cases (see Supp. for more), experiments revealed cases where the
approach struggles with very small structures, likely due to image resolution limits.
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Chapter 5

Conclusions

In this thesis, I tackled the labeled data bottleneck by developing approaches that
support various aspects of learning with weak supervision. The thesis argued that
weak supervision provides alternative pathways for acquiring domain knowledge upon
which scalable learning mechanisms can be built to train [ML] models quickly and ef-
ficiently. To this end, I introduced a constrained clustering algorithm for improved
data partitioning through small amounts of pairwise feedback, new label models for
synthesizing programmatic weak supervision votes into an estimate of the unobserved
ground truth, an interactive approach to aid users in discovering good sources of weak
supervision, and a multi-modal approach to jointly learn representations for paired
image-text biomedical data. The results presented in this thesis show that these new
weak supervision approaches lead to improved data exploration, improved modeling
of unobserved ground truth, and to drastic reductions of user effort. Together, these
works provide tools and insights for practitioners and researchers to adopt weak su-
pervision for their [MI tasks, in place of having to collect large amounts of manually
annotated data. The following sections will summarize the core methodological and
open source contributions of this thesis, and finally discuss remaining challenges and
open questions.

5.1 Summary of Methodological Contributions

Learning from Pairwise Linkage In Section I introduce Kernel Constraint
Satisfaction Clustering (KernelCSC) [23], a multiple kernel learning based approach
for clustering data under weak supervision in the form of pairwise linkages between
samples. The algorithm learns to minimize constraint violation without relaxing
the pairwise constraints to distances. Experiments on over 140 benchmark datasets
demonstrate that the approach generalizes to unseen pairwise links better than related
approaches. I also demonstrate that the approach scales to large datasets through the
use of kernel approximations. In Section [2.2 T proposed the introduction of pairwise
Labeling Functions (LFs) to programmatic weak supervision, i.e. using functions
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that provide noisy pairwise linkages in addition to the commonly used [LFS that
outputs imperfect labels for samples directly. I introduce a new, scalable label model
based on a Neighborhood Evidence (NE) heuristic. Using synthetic and real data, I
demonstrate that the approach can lead to improved downstream test set performance
with the introduction of just one pairwise [LEL

Label Models In Chapter[3] I develop label models for programmatic weak super-
vision and show that modeling the distribution of inputs in concert with weak labels
leads to improved estimates of the unobserved label, as well as improved downstream
results. First, Section introduces WeaSEL [36], a Weakly Supervised End-to-end
Learning model, in which a weak supervision label model (teacher) and the end model
(student) are trained jointly. In this work, the label model acts as a differentiable
encoder. It receives weak supervision votes and featurized samples as inputs, and
produces accuracy parameters that are used to synthesize the weak supervision votes
into a label estimate. The algorithm is trained to maximize agreement between the
label estimate the end model outputs. WeaSEL was evaluated on one crowdsourcing
and several weak supervision benchmarks and outperformed related work. Section (3.2
introduces Weakly Supervised GAN (WSGAN) [26] a method which fuses generative
adversarial networks and programmatic weak supervision models. WSGAN explic-
itly models a latent discrete variable in the input data, and aligns its estimate of
this variable with the label model estimate on samples where weak sources of sig-
nal are available. The experiments on multiple weakly supervised image datasets in
Section [3.2] show that WSGAN produces superior latent label estimates compared
to other weak supervision label models, improves the quality of generated images
compared to unconditional networks trained without weak supervision, and provides
evidence that WSGAN can be used for data augmentation (via synthetic samples and
pseudolabels) for downstream models trained on weak supervision pseudo labels.

Interactive Weak Supervision Section introduces Interactive Weak Super-
vision (IWS) [25], an approach to help domain experts with fast and query-efficient
discovery of good sources of weak supervision. In IWS, users provide feedback to the
IWS algorithm in order to find useful sources of weak supervision from a pool of gen-
erated candidates with arbitrary accuracy and coverage. Experiments with real users,
using both text and image datasets, demonstrate competitive test set performance of
the downstream end classifier, quickly approaching that of a fully supervised model.
The experiments also show that users can provide accurate feedback on automatically
generated [LFY

Vision Language Processing Section 1.2 based on work in [27], introduces
BioViL, a self-supervised'| VTPl approach for paired biomedical data, and CXR-

1See the introduction of Section for a short discussion of why both terms—weakly supervised
and self-supervised—are used to refer to this learning scenario.
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BERT, a Chest X-ray (CXR) domain-specific language model based on BERT |256].
CXR-BERT is built to have an improved, domain-specific vocabulary. Furthermore,
is fine-tuned to data using a masked language modeling (MLM) and a novel
section-matching pretraining objective, as well as text augmentation and strong reg-
ularization. The model improves radiology natural language inference, radiology
masked token prediction, as well as downstream VLP task performance. BioViL
is a simple but effective joint VLP model for biomedical image-text data that uses
uses CXR-BERT as its text encoder. It optimizes a symmetric contrastive loss [205]
on global image and text representations, while maintaining language modeling per-
formance via an loss. With this objective, image and text augmentations, and
regularization, BioViL, achieves new state-of-the-art performance on various down-
stream tasks in the domain.

5.2 Summary of Open Source Code and Dataset
Contributions

Open Source Code

e For the constrained clustering work presented in Section [2.1] a python library is
made available containing code for the KernelCSC and MahalanobisCS(f] algo-
rithms [23]: https://github.com/autonlab/constrained-clustering. The
code-base allows one to reproduce all results that were presented in this work.
Additionally, the library contains extra features such as farthest-first cluster
initialization and alternative base unsupervised algorithm components for Ker-

nelCSC and MahalanobisCSC.

e Code for the Weakly Supervised End-to-end Learning model WeaSEL [36], pre-
sented in Section [3.1] is released at https://github.com/autonlab/weasel.
The python code base is designed to be flexible, so that any PyTorch down-
stream model can be used with the approach.

e The python libraries for WSGAN [26] are available at https://github.com/
benbo/WSGAN-paper and https://github.com/benbo/stylewsgan. The li-
braries contain code to train WSGAN based on simple DCGAN architectures,
as well as on more advanced StyleGAN2 networks.

e Code for Interactive Weak Supervision (IWS) [25] presented in Section
is available at https://github.com/benbo/interactive-weak-supervision.
This python code can be used to reproduce the experiments discussed in this
thesis as well as to run an interactive session where a user interacts with IWS.

2Which follows the same principles as KernelCSC but learns a Mahalanobis metric.
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e A number of artifacts were produced for the biomedical Vision-Language Pro-
cessing work presented in [27] and covered in Section[t.2] The language and im-
age models were released on HuggingFace: https://huggingface.co/models?
arxiv=arxiv:2204.09817. Source code for inference with these models is avail-
able at https://aka.ms/biovil-code. A python notebook demoing phrase
grounding can be found at http://aka.ms/biovil-demo-notebook

Datasets With the work presented in Section 4.2| on biomedical Vision-Language
Processing [27], MS-CXR [2§] was released on PhysioNet: https://doi.org/10.
13026/b90j-vb87. MS-CXR is a dataset for phrase grounding in radiology images.
It contains over 1,000 image—sentence pairs of eight radiology findings. In MS-CXR,
the image regions were carefully annotated and matched with real natural language
descriptions, verified by board-certified radiologists. The dataset is well-balanced
in terms of the clinical findings. Unlike existing benchmarks, this challenging
phrase grounding benchmark dataset can be used to evaluate joint, local image-text
reasoning while requiring real-world language understanding, e.g. to parse domain-
specific location references, complex negations, and bias in reporting style.

5.3 Remaining Challenges and Open Questions

While research has made strides to enable the use of weak supervision as a valid
path to build [MI] applications, numerous challenges remain. For many practical
applications of weak supervision, to achieve satisfactory downstream performance re-
quires the definition of multiple high-quality sources of weak supervision. This entails
training domain experts in the creation of [LFd diligent LF creation iterations, and
frequently the use of labeled development sets to gauge performance. This difficulty
of constructing sufficient numbers of [LFd with good accuracy and coverage is the
core motivation for the interactive weak supervision work presented in [25] and for
automated weak supervision work such as [254, 227]. However, the generated sources
of weak supervision these works operate on are quite simple in nature still. The de-
velopment of curriculum learning frameworks for programmatic weak supervision is
an attractive proposition, to enable domain experts to specify more fine-grained, high
accuracy where required.

Furthermore, the difficulty of defining high quality [LF§is not equally distributed
across modalities. Natural language data is already discretized into an interpretable
vocabulary, making the definition of weak supervision rules on text straightforward for
many problems. Defining weak supervision sources is much harder for other modalities
such as time series and images. Thus, the ease with which can be created for
non-text data remains a critical roadblock. To boost the use of programmatic weak
supervision outside of text-centric domains, the development of flexible methods that
create an interpretable vocabulary of building blocks in an unsupervised fashion for
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modalities other than text would be extremely impactful.

I explored the pretraining of large models through paired multi-modal biomedical
data in Section [4.2] showing that this domain specific pretraining results in new
state-of-the-art performance in natural language inference and image tasks such as
phrase grounding. A topic of interest that I did not get to explore is the use of
large general domain foundation models such as CLIP [215] or GPT3 [31] within
other weak supervision paradigms such as Data Programming (DP]). The rise and
impact of foundation models is not competition for weak supervision, but rather
offers opportunities for the fusion of the two paradigms along many axes. Here, while
some initial studies exist [227, 44], much work remains to be done to explore the
relative strengths and weaknesses of zero-shot and few-shot foundation models and
(programmatic) weak supervision paradigms, and how to best use them in concert.

Finally, the progress made in the development of learning paradigms that aim to
reduce the reliance of manually annotated ground truth data has largely been siloed.
In the previous paragraph, I pointed to the need to investigate the fusion of (pro-
grammatic) weak supervision and zero/few-shot foundation models. In Section [3.2]
I studied the fusion of programmatic weak supervision and [GANkK, with a focus on
images. However, no flexible frameworks exist that allow users to apply various com-
binations of learning paradigms simultaneously, and selectively, in order to make use
of all the domain knowledge they possess, no matter the format.

5.3.1 A User-Centric and Human-Centric Perspective

The focus of the work presented in this thesis has been primarily model-centric, insofar
as the central goal has been to leverage the proposed weak supervision methodologies
to improve model performance metrics. Of course, some sections of in this thesis had
their core motivation tied to user needs. Interactive Weak Supervision (IWS) [25]
presented in Section [£.1] was designed to aid users in discovering good sources of weak
labels. The constrained clustering algorithm presented in is in part motivated by
use cases where users are exploring a dataset and are yet unsure of the underlying
classes they want to partition. However, even for these methods the core metrics of
success that the evaluations focused on were tied to collected ground truth labels. A
focus on improvements achieved by new weak supervision approaches measured via
the target variable-which remained unobserved during training—is a sensible choice to
assess if the models can provide typical performance benefits targeted in supervised
learning in the first place. But it is also important to consider that [MIL] models
are being deployed in diverse application scenarios, including ones with significant
societal impact. And in some, the algorithms take a supporting role assisting users,
e.g. in decision making or knowledge discovery. In such settings, model performance
is only one part of the puzzle, and there are other meaningful endpoints that must be
considered. This section will discuss the potential for future work to investigate the
utility of the research areas explored in this thesis through a user- and human-centric
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lens.

Future work on weak supervision approaches such as the ones presented in this the-
sis may consider if they present pathways towards advancing critical goals of human-
centric machine learning [158]. For example, this thesis has assumed the presence of
ground truth labels. In many domains however, what constitutes “ground truth” may
be subject to debate and not directly observable, e.g. when the targets are unobserv-
able theoretical constructs. This results in a gap between the labels that are observed
and used to train models, and the construct of interest to humans. The issue is often
referred to as construct validity [134]. To give a concrete example, an algorithm that
was meant to prioritize patients for risk-management programs relied on cost as a
proxy for healthcare needs, and as a result it exhibited racial bias [201]. In child
welfare, models meant to assist call workers in identifying which hotline calls should
trigger a social worker investigation often predict the risk of out-of-home placement,
but it has been shown that this fails to capture important dimensions of risks which
are considered by the human experts in this domain [7]. Weak supervision provides
a pathway to potentially capture constructs of interest to experts, circumventing the
need to rely on observed labels. A potential fruitful direction for future work is to
explore the use of the methodologies proposed in this thesis to mitigate issues of con-
struct validity, by shaping the target label through weak supervision sources designed
by domain experts.

Another issue that can be connected to human-centric machine learning is that of
model monitoring, the goals of which have been described as ensuring “[. .. Jthat mod-
els are making accurate predictions, are robust to shifts in the data, are not relying on
spurious features, and are not unduly discriminating against minority groups” [236,
p.173 ]. First, the issue of distributions that shift during production is one where the
use of weak supervision is an attractive proposition to circumvent manual annotation
of new, shifted data. Second, as the relationships between input and target variables
may change over time, programmatic weak supervision is a promising paradigm as it
can considerably speed up the process of redefining labels and relabeling data. Here,
IWS [25] may provide further time savings and performance benefits as it aids users
in the discovery of new [LEs. Furthermore, if a programmatic weak supervision frame-
work is adopted instead of a supervised one, it offers the ability to not just monitor
the distribution of features, but also the distribution of [LE] outputs.

Of course, in a human-centric context, future work should also investigate if and
when learning from user defined weak supervision sources and methods as proposed
in this thesis can mitigate fairness concerns, or in what cases it may risk reproducing
the biases of the users, potentially exacerbating and compounding them. To this
end, weak supervision with fairness constraints, e.g. by only accepting [LFs that hold
equal predictive power across different demographic groups, is a concrete direction
that could be explored.

Future work should also investigate the utility of weak supervision work, such
as the methods presented in this thesis, for user-centric machine learning. By user-
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centric machine learning, I refer to work that aims to assist users in their needs and
goals related to the data they are modeling. Adopting weak supervision paradigms
in lieu of manual data annotation has obvious usability-related benefits, such as the
efficiency and scalability aspects that weak supervision offers. However, here I want
to emphasize user-centric scenarios where the user takes an active role in building
and using models to address their needs, e.g. to explore and understand a domain,
to support decision making, or to collect data.

Weak supervision may play an important role for user-centric[MIJas it can provide
pathways to capture user knowledge and intuition. Future work should investigate if
the trained models indeed align better with human intuition about a target construct
than alternative ways of data collection for training such as manual labeling or using
observed historical outcomes of proxy measures. In relation to user-centric design
and decision support, a growing body of research is showing that model performance
is only one piece of the puzzle, and appropriate reliance is essential to algorithms
enabling better decision making [6]. For example, the types of errors that a model
makes can influence if users trust it. It is worthwhile to explore if models trained with
user-defined weak supervision sources can lead to improved human-Al collaboration,
since target labels may be shaped through user defined weak supervision sources.
The process of defining in order to annotate a dataset programmatically can
be viewed as a vehicle to incorporate high level, conceptual feedback into the data
labeling process. Thus, the programmatic weak supervision methods presented in this
thesis may be used to train models that align well with users’ intuition about a target
variable as captured by the weak supervision sources they design, which in turn could
lead to more trust in a model’s prediction once deployed. On the flip side, there is a
risk that the alignment between user and model objectives could induce over-reliance
if the model always confirms the human intuitions (even when the human is wrong),
and it could reduce the potential for complementarity.

A specific decision support paradigm that future work may explore is that of case-
based decision support. In this paradigm, algorithms are used to produce examples
that help users make sense of predicted labels to aid them in decision-making. For
example, nearest neighbors in a representation space learned via supervised learning
may be shown to a user, see e.g. [171]. However, such representations learned by
supervised models may not align well with human intuition [171]. Weak forms of
supervision may offer a valuable alternative to supervised frameworks in this case
if the sources of weak supervision are designed with the help of the users. The
constrained clustering and metric learning work presented in Section can form
an excellent basis for such case-based decision support. Here, the algorithm can
learn from a users intuition about group membership, expressed through pairwise
constraints, and do so even when the underlying partitions are still unclear to a user.
Further, the programmatic weak supervision work presented in Section [2.2] which
combines intuition about the latent classes by using pairwise weak sources of labels
as well as the traditional [LEFS, presents an opportunity to study if such rich and
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varying sources of weak supervision can be combined to produce representations that
align even better with users’ understanding of similarity.

Two more user-centric areas of interested concern knowledge discovery and data
collection. For example, the work presented in Section [2.1] is a good candidate for
scenarios where users aim find new data/documents related to an area of interest.
Here, the algorithm only requires users to specify documents they consider to belong
to the same group or different groups, even if they are as yet unable to exactly artic-
ulate the underlying groups they are targeting (as discussed in [56]). Programmatic
weak supervision work such as the one presented in Section may also be a great
fit in this context, as it is easier to adjust user-defined [LFs when a user’s understand-
ing of the underlying classes evolves, compared to having to correct labels previously
assigned through manual annotation.
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Appendix A

Constrained Clustering and

Multiple Kernel Learning without
Pairwise Constraint Relaxation
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Figure A.1: Percentage of times over all datasets each algorithm is ranked first on
the test set (y-axis), vs. the number of pairwise training constraints (x-axis) used in
training. The ranks were established on test-sets using mean F-score over 10 random

trials.
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A.1 Varying Evaluation Metrics

To evaluate and compare the performance of the proposed approach, numerous evalu-
ation metrics were computed such as the[ARI] F-score and[NMIlL The superior perfor-
mance of the proposed approach remains consistent across these different evaluation
metrics. In addition to the [ARIl results shown in the main document, Figure
and Figure demonstrate that the proposed approach also outperforms related
approaches under F-score and [NMIl Under [NMI] the percentage of datasets where
the proposed approach ranks first is slightly lower compared to evaluations done with

F-score and [ARIl
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Figure A.2: Percentage of times over all datasets each algorithm is ranked first on
the test set (y-axis), vs. the number of pairwise training constraints (x-axis) used in
training. The ranks were established on test-sets using mean [NMI] over 10 random
trials.

A.2 Informativeness and Coherence Measures

suggested that averaging over different randomly chosen constraint sets may
mask interesting properties of the individual constraint sets. The authors introduce
two quantitative measures, informativeness and coherence, and among other things,
use these measures to inspect disparities in performance of different clustering algo-
rithms. Since the evaluation of the propose approach of this thesis averages algorithm
performance over randomly chosen constraint sets, this section discusses an additional
analysis that was performed in which the relative performance is inspected when more
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and less informative or coherent constraint sets are used, to see if differences in the
relative ranking of algorithms emerge when these metrics vary.

No systematic differences in the relative performance of the top performing algo-
rithms is observed when relative algorithm performance is compared across datasets
using different levels of informative and coherent constraint sets. A small drop in
performance occurs across all algorithms when less coherent constraints are used. In
the relative comparison between algorithms, this does lead to some ranking differ-
ences being less significant. To illustrate this, in Figure [A.3] recreates the results of
Figure but uses the 5 least informative constraint sets compared to the 5 most in-
formative constraint sets. Similarly, Figure shows the 5 least coherent constraint
sets compared to the 5 most coherent constraint sets. All rankings in these figures
rely on [ARIl scores.
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Figure A.3: Percentage of times over all datasets each algorithm is ranked first on
the test set (y-axis), vs. the number of pairwise training constraints (x-axis) used in
training. The ranks were established on test-sets using mean [ARIl over the 5 out of
10 most and least informative random trials.
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(a) Most coherent constraint sets. (b) Least coherent constraint sets.

Figure A.4: Percentage of times over all datasets each algorithm is ranked first on
the test set (y-axis), vs. the number of pairwise training constraints (x-axis) used in
training. The ranks were established on test-sets using mean Adjusted Rand Index
over the 5 out of 10 most and least coherent constraint sets.
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Appendix B

End-to-End Weak Supervision

B.1 Posterior Reparameterization

This section motivates the design choices and inductive biases of the proposed ap-
proach which were encoded into the neural encoder network e, i.e. the network that
is used to model the relative accuracies of the weak supervision sources A. Recall
that we model the probability of a particular sample x € X having the class label

yel={1,...,C} as

Py(y| A) = softmax (s), P(y), (B.1)
s=0Ax)"A R, (B.2)

where #(X, x) € R™ weighs the LF votes on a sample-by-sample basis and the softmax
for class y on s is defined as

softmax (s), = P (90\’ x)T1{A = y})
v Sy e BT =y}

Connection to prior PGM| models This choice will be motivated by deriving
a less expressive variant of it from the standard label model approach. If we
view the attention scores (A, x) € R™, that assign sample-dependent accuracies to
each labeling function, as sample-independent parameters 6; and, by that, eliminate
the features from the equation, we can rewrite Eq. as

exp (0] {X = y})
> yey exp (0T L{A = y'})

P(y)
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Let ¢1(A,y) = 1{\ = y}. For clarity, we will drop the class balance, so that the
expression becomes

. exXp (Q?le()‘a y))

T ey exp (07N y)

 Zy'texp (0T 01( N y) + 05 ga(N))
Xy Zy e (0701 (A, ) + 0T 6a(N))
B Py (X, y)

a Zy/ey Py (A y)

 P(\y)

PN

= Py (y| A),

where in the second step the denominator and numerator are multiplied with the
same quantity Z%; exp (92T¢2()\)), and # now parameterizes the joint distribution of
the latent label and weak sources as

Fo(A,y) = ZL@ exp (6761 9) + 6 62(0)) = - exp (970N )

We can recognize Py as a distribution from the exponential family, and more specif-
ically as a pairwise [MRF] or factor graph, with canonical parameters § = (y,65)
and corresponding sufficient statistics, or factors, ¢(X,y) = (¢1(A, y), P2(A)), as well
as the log partition function Zy. The accuracy factors and parameters ¢, 6, are the
core components of this model and sometimes take the form ¢;(Ay) = Ay in bi-
nary models as in [222, 93, 42]. The label-independent factors ¢o(A) have, as can
be seen from the derivation above, no direct influence on the latent label posterior,
but are often used to model labeling propensities 1{A # 0} and correlation depen-
dencies 1{)\; = A;}, which can be important for PGM parameter learning, but are
susceptible to misspecification [255, |42 35]. The parameterization of the proposed
approach is therefore a more expressive variant of the posterior of the latent-variable
PGM models, where LF accuracies can now be assigned on a sample-by-sample basis.
Furthermore, the neural encoder network outputs them as a function of the LF out-
puts and features, and may learn the dependencies and label-independent statistics.
Indeed, the empirical findings of this work support this.

B.2 Extended Results

We provide more detailed results in Table Here, we include WeaSEL-random,
which corresponds to WeaSEL with a randomly initialized encoder network that is
not trained/updated. As expected, this setting produces performance often similar
compared to training an end model on the hard majority vote labels. This is due to
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Table B.1: The final test F1 performance of various multi-source weak supervision
methods over seven runs, using different random seeds, are averaged out + standard
deviation. The top 2 performance scores are highlighted as First, Second. Triplet-
median [42] is not listed as it only converged for IMDB with 12 LFs (F1 = 73.0£0.22),
and Spouse (F1 = 48.7+1.0). Sup. (Val. set) is the performance of the downstream
model trained in a supervised manner on the labeled validation set. The rest are
state-of-the-art latent label models. For reference, the table also shows the Ground
truth performance of a fully supervised model trained on true training labels (which
are unused by all other models, and not available for Spouse). The performance of
WeaSEL-random is also shown, where only the downstream model of WeaSEL is trained
(and the encoder network is left at its randomly initialized state). All models are run
twice, where only the learning rate differs (either 107 or 4-107%), and the model with
best ROC-AUC on the validation set is reported. The probabilistic labels from Snorkel
used for downstream model training are chosen over six different configurations of the
learning rate and number of epochs (again with respect to validation set ROC-AUC).

Model ‘ Spouse (9 LFs) ProfTeacher (99 LFs) IMDB (136 LFs) IMDB (12 LFs) Amazon (175 LFs)
Ground truth - 90.65 + 0.29 86.72 + 0.40 86.72 + 0.40 92.93 +0.68
Sup. (Val. set) 20.4+0.2 73.34 £0.00 68.76 £ 0.00 68.76 + 0.00 84.18 +0.00
Snorkel 48.79 £ 2.69 85.12 £ 0.54 82.22 £ 0.18 74.45 £ 0.58 80.54 £ 0.41
Triplet 45.88 £ 3.64 74.43 £10.59 75.36 £1.92 73.15£0.95 75.44 £3.21
Triplet-Mean 49.94 + 1.47 82.58 +0.32 79.03 £ 0.26 73.18 £0.23 79.44 +0.68
WeaSEL-random 46.43 £ 3.29 83.47 £ 0.64 79.80 £ 0.48 74.22 £0.45 82.22 £ 0.57
Majority vote 40.67 £2.01 85.44 + 0.37 80.86 + 0.28 74.13£0.31 84.20 £ 0.52
WeaSEL 51.98 + 1.60 86.98 + 0.45 82.10 £ 0.45 77.22 £ 1.02 86.60 + 0.71




the strong inductive bias in our encoder model that constrains the encoder labels to be
a normalized linear combination of the LF votes, weighted by positive accuracy scores.
In fact, WeaSEL-random itself is often able to outperform the PGM-based baselines, in
particular the triplet methods. Our results show that WeaSEL consistently improves
significantly upon these baselines via training the encoder network to maximize its
agreement with the downstream model.

B.3 Extended Implementation Details

Weak supervision sources For the Spouses dataset, and the IMDB variant with
12 LFs, the same LFs are used as in [93] and [42], respectively{T] The set of 12 IMDB
LFs was specifically chosen to have a large coverage, see Table [3.3] These LFs and
the larger set of LF's that this work introduces for the second IMDB experiment are
all pattern- and regex-based heuristics, i.e. LFs that label whenever a certain word
or bi-gram appears in a text document. For instance, ’excellent’” would label a sample
as a positive movie review (and would do so with 80% accuracy on the samples where
it does not abstain). This holds for the other text datasets as well, while the Spouse
experiments also contain LFs that are distant supervision sources based on DBPedia.
For the remaining datasets (IMDB with 136 LF's, Bias Bios, and Amazon), the respec-
tive LF sets were created by the authors of this work, and remained fixed throughout
the experiments.

Encoder network architectures In all experiments, we use a simple as
the encoder e, with two hidden layers, batch normalization, and Rectified Linear
Unit (ReLU) activation functions. For the Spouse dataset, the hidden layers of the
network are a bottleneck of 50, 5. This is motivated by the small size of the set of
samples labeled by at least one LF. For all other datasets, hidden dimensions of 70,
70 are set. Ablations in Table show that the proposed end-to-end model also
succeeds for different encoder architecture choices.

Downstream models For all datasets besides Spouse, a three-layer MLPl with hid-
den dimensions of 50, 50, 25 is used. For Spouse, a single-layer bidirectional [LSTM]
is used, with a hidden dimension of 150, followed by two fully-connected readout lay-
ers with dimensions 64, 32. All fully-connected layers use [Rel.Ul activation functions.
Simple downstream architectures were chosen as the relative improvements over other
label models are the core interest, rather than the best possible downstream perfor-
mance due to the downstream architecture. Naturally, sophisticated architectures are
expected to further improve the performance further for the larger datasets.

LAll necessary label matrices are available in the code release. At the time of writing, the
Spouse LF's and data are also available at the following URL: https://github.com/snorkel-team/
snorkel-tutorials/blob/master/spouse/spouse_demo.ipynb
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Hyperparameters Unless explicitly mentioned, all reported experiments are aver-
aged out over seven random seeds. An L2 weight decay of 7e-7 and a dropout of 0.3
are used for both encoder and downstream models for all datasets but Spouse (where
the does not use dropout). All models are optimized with Adam, with early-
stopping based on performance on the small validation set, and a maximum
number of 150 epochs (75 for Spouse). The batch size is set to 64. The loss function
is set to the (binary) cross-entropy. For each dataset and each model/baseline, the
same experiment is run for learning rates of le-4 and 3e-5. The model performance
that is reported is chosen according to the best ROC-AUC performance on the small
validation set. For the Spouse dataset, additional experiments are run with an L2
weight decay of le-4. For the proposed WeaSEL model, additional experiments are
conducted for the Spouses dataset with different configurations of the temperature
hyperparameter, 71 € {1,1/3}. Again, the test performance as measured by the best
validation ROC-AUC is reported.

The probabilistic labels from Snorkel used for downstream model training are cho-
sen over six different configurations of the learning rate and number of epochs for
Snorkel’s label model (again with respect to validation set ROC-AUC). For all binary
classification datasets (i.e. all except for LabelMe), the downstream model’s decision
threshold is tuned based on the resulting F'1 validation score for all models. All label
model baselines are provided with the class balance, which WeaSEL does not use (but
which is expected to be helpful for unbalanced classes, where no validation set is
available).

B.4 Extended Ablations

The full ablations are reported in Table [B.2] where exactly one component of the pro-
posed WeaSEL model is changed or removed. Most changes consistently underperform
the base WeaSEL design shown in the main document, and the occasional positive
changes — 1e-4 weight decay, and the Squared Hellinger loss instead of the symmetric
cross-entropy — only beat the base WeaSEL performance in at most two datasets, and
never significantly. In practice, it is of course advised to explore such configurations
if a validation set is available.

Letting the accuracy scores depend on the input features (first row), usually boosts
performance, but not by much (1.2 F1 points at most). On the other hand, it proves
very important to allow the accuracy scores to depend non-linearly on the LF votes
and the features: A linear encoder network, as in [37], significantly underperforms
WeaSEL with at least one hidden layer by up to 4.9 F1 score points. Conversely, a
deeper encoder network (of hidden dimensionalities 75, 50, 25, 50, 75, see fourth row)
does not improve results.

While the effect of the inverse temperature parameter 7;—which controls the softness
of the encoder-predicted accuracy scores—on downstream performance is not large, it
can have significant effects on the learning dynamics and robustness, see Fig for
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Table B.2: Ablative study on the sub-components of our algorithm as in Algorithm
(over 5 random seeds). In each row below, exactly one component of WeaSEL is
changed, and the resulting F1 score is reported. Note that the scores for WeaSEL are
slightly different to the ones in the main results table, since these ablations here were
run separately, with fewer seeds, and for only one learning rate (1e-4). Configurations
that outperform base WeaSEL are highlighted in bold font, while the four worst
performing configurations are highlighted in red for each dataset. Note that bold
font does not indicate significant differences.

Change ProfTeacher IMDB-136 LFs IMDB-12 LFs Amazon
WeaSEL 86.8 +0.4 82.1+0.7 77.34+0.5 86.6 + 0.5
B(A, x) = O(N) 85.6+1.6 82.1+0.5 75.9 + 0.8 86.6 = 0.4
Linear e 81.9£0.7 80.0 £ 0.6 73.24+0.6 82.6 £ 0.5

1 hidden layer e 87.1 £ 0.7 818406 76.8 £ 0.9 85.3+0.8
75x5H0x25x50x75 e 84.3£2.1 81.9+0.6 758+t 1.1 86.1 £0.6
T =2 86.7 £ 1.0 81.9+0.3 77.3£0.5 85.5+ 1.0
T =1/2 86.5 £ 0.8 81.8 £ 0.5 76.0£1.4 86.4 + 0.3
T =1/4 84.5+1.2 81.8£0.2 73.9+£0.9 85.6 1.0
=1 85.2+1.6 82.2 + 04 76.6 = 1.0 84.3+1.2
To=m 86.1 + 0.7 81.2+£0.6 76.44+0.4 85.7+£0.2
No BatchNorm 82614 81.9+0.5 74.7£0.7 85.3+0.8
le-4 weight decay 874 +04 809+1.3 77.9 £ 0.6 85.2+0.5
MIG loss 86.7+ 0.4 78.7+0.4 741404 84.7+ 1.8
L1 loss 86.2£0.6 81.1£0.5 75.6 £0.9 84.1£0.9
Squared Hellinger loss 87.4 + 0.3 822+ 0.6 75.7+£1.1 86.3£0.4
CE(Py, P.) asymm. loss 77.3 £3.7 717 +£1.1 71.7 £ 0.3 78.7 £ 1.2
CE(P., Py) asymm. loss 73.1 £ 6.8 719+ 1.9 69.7 £ 0.7 70.1 £ 1.1
No stop-grad 80.4 +£ 2.1 76.2+0.5 71.0 + 0.6 79.3£0.6
O(X, x) = y/m - sigmoid(e(A,x)) 85.5+0.6 81.8+0.5 78.0 £ 0.7 86.9 +£ 0.3
O(X,x) = ReLU(e(A,x))+ le-5  83.0423 783+ 1.1 69.1 £ 2.1  74.2 £ 2.7
f(\, x) = Tanh(e(X, x)) 719 £ 4.0 67.0+08  67.0+1.1 67.3 + 1.1
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such learning curves as a function of epoch number. In particular, a lower 7, helps
to stabilize the training dynamics, since the accuracy score weights are more evenly
distributed across LF's, which appears to help avoid overfitting. When overfitting is
not easily detectable due to a lack of a validation set, it is therefore advisable to use
a lower 71. It also proves helpful to scale the softmax in Eq. by +/m, rather than
not scaling it (7o = 1 row) or scaling by m.

Changing the loss function from the symmetric cross-entropy to the MIG function
[37] or the L1 loss consistently leads to worse performance. The former is interesting,
since using the MIG loss for the crowdsourcing dataset LabelMe, see subsection [3.1.2]
was important in order to achieve state-of-the-art crowdsourcing performance (with
a similar lift in performance observable for Snorkel using MIG for downstream model
training). The result provides some evidence that the MIG loss may be inappropriate
for weak supervision settings other than crowdsourcing.

The ablations show that it is important to constrain the accuracy score space to a
positive interval, either by viewing them as an aggregation of the LFs via the scaled
softmax in Eq. 3.3} or by replacing the softmax with a sigmoid function. Indeed, us-
ing a less constrained activation function for the estimated accuracies (last two rows,
where the le-5 in the [ReLUl row avoids accuracy scores equal to zero) significantly
under-performs: Allowing the accuracies to be negative (last row) leads to collapse
and bad downstream performance. This is likely due to the removal of the inductive
bias that LFs are designed by users to be better-than-random, which makes the joint
optimization more likely to find trivial solutions. Additionally, the choice of using the
symmetric cross-entropy loss with stop-grad applied to the targets is crucial for the
performance of WeaSEL. Removing the stop-grad operation, or using the standard
cross-entropy (without stop-grad on the target) leads to significantly worse scores
and a very brittle model. This is expected, since conceptually our goal is to have an
objective that maximizes the agreement between a pair of models that predict based
on two different views of the latent label, the features and the LF votes. The cross-
entropy with stop-grad on the targetE] naturally encodes this understanding, since
each model uses the other model’s predictions as a reference distribution. Losses that
already are symmetric (e.g. L1 or Squared Hellinger loss) neither need to be sym-
metrized nor use stop-grad. While the L1 loss consistently underperforms, we find
that the Squared Hellinger loss can lead to better performance on two out of four
datasets.

However, only the symmetric cross-entropy loss with stop-grad on the targets is
shown to be robust and able to recover the true labels in the synthetic experiments
in Section [B.6] see Fig. in particular. The synthetic ablation in Section gives
interesting insights, and strongly supports the proposed design of WeaSEL. Indeed,
many choices for WeaSEL that perform well enough on the real datasets, such as no
features for the encoder, 7, = 1, sigmoid parameterized accuracies, and all other ob-
jectives that were evaluated, lead to significantly worse performance and less robust

2or, due to the stop-grad operation, equivalently the KL divergence
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learning on the synthetic adversarial setups.

B.5 A Crowdsourcing Dataset

The multi-class LabelMe image classification dataset that was previously used in the
most related crowdsourcing literature [228),37] was chosen for an additional evaluation
of the proposed WeaSEL approach. Note that this dataset consists of 10k samples, of
which only 1k are unique, in the sense that the rest are augmented versions of the
1k. The samples were annotated by 59 crowdworkers, with a mean overlap of 2.55
annotations per image. The downstream model is identical to the previously reported
one in [228| |37]. That is, a VGG-16 neural network is used as feature extractor, and
a single fully-connected layer (with 128 units and ReLLU activation) and one output
layer is put on top, using 50 % dropout.

Experiments were conducted over seven random seeds with a learning rate of le-4
and 50 epochs. The reported scores are the ones with best validation set accuracy for
a L2 weight decay € { 7e-7, le-4 }. The validation set is of size 200, and was split at
random from the training set prior to running the experiments.

As is usual in the related work for multi-class settings [220], class-conditional accura-
cies B(X,x) € R™“ are used instead of only m class-independent accuracies. Recall
the LF outputs indicator matrix, A € R™*“. To compute the resulting output soft-
max logits s € RY, we set A = (A, x) © A € R™“ and s; = >, Aj; € R, where ©

is the element-wise matrix product and we sum up the resulting matrix A across the
LF votes dimension.

Snorkel+MIG indicates that the downstream model f was trained on the MIG loss
with respect to soft labels generated by the first Snorkel step, label modeling. Snorkel+CE
refers analogously to the same training setup, but using the cross-entropy (CE) loss.
All crowdsourcing baseline models are based on the open-source code from [37].

B.6 Robustness Experiments

This section provides more details on the experiments that validate the robustness
of the proposed approach against (strongly) correlated LFs that are not better than
a random coin flip. In addition, this section presents one further experiment where
the random LFs are independent of each other — a more difficult setup for learning
(but which does not violate any assumptions of the PGM-based methods) — and the
proposed approach, WeaSEL, again is shown to be robust to a large extent.

In contrast to WeaSEL, prior PGM-based approaches [220, |93} 42| attain significantly
worse performance under these settings, due to assuming a Naive Bayes generative
model where the weak label sources are conditionally independent given the latent
label.
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B.6.1 Adversarial LF duplication

For this experiment, a set of 12 LFs from the IMDB dataset is used, and fake ad-
versarial sources are generated by flipping the abstain votes of the 80%-accurate LF
that labels for the positive sentiment on ’excellent’ to negative ones.

B.6.2 Recovery of True Labels

This set of synthetic experiments focuses on the Bias in Bios dataset, and uses its
features and true labels y*. We let the initial LF set consist of 1) a 100% accurate LF,
that is Ay = y*, and 2) a LF that votes according to the class balance (i.e. a coin flip
with probabilities for tail/head set according to the class balance), i.e. Ao ~ P(y). In
the first experiment, the same random LF ), is then duplicated multiple times into the
LF set, see Section [B.6.2] In the second experiment, random LFs are incrementally
added independently of Ay (and independently of any other LF already in the LF
set), see Section For both setups, the proposed WeaSEL approach is able to
recover the performance of the same downstream model, f, that is directly trained
on the true labels, y* (F1 = 90.65, ROC-AUC = 0.967, see Table B.1]). In contrast,
the PGM-based baselines quickly collapse.

Random LF Duplication

This experiment is inspired by the theoretical comparison in Appendix E of [37]
between the authors’ end-to-end system and maximum likelihood estimation (MLE)
approaches that assume mutually independent LFs. The authors show that such
MLE methods are not robust against the following simple example with correlated
LFs. Based on the setup described above in [B.6.2] the random LF A, is duplicated
multiple times, i.e. A3 = --- = X\, = A\o. Experiments for varying numbers of
duplicates € {2,25,100,500,2000} are conducted.

WeaSEL is able to consistently and almost completely recover the fully supervised
performance, even when the number of duplicates is very high (m = 2001). Snorkel
and triplets methods, on the other hand, fare far worse (AUC| ~ 0.5) for all numbers
of duplicates. This behavior is similar to the one observed in [B.6.1] (see Fig. for
the performance of the baselines and WeaSEL averaged out over the varying number of
duplicates, and Fig. B.3p-c for the separate performance of WeaSEL for each number
of duplicates).

An additional ablation study is run on this synthetic experiment that shows that
the observed robustness does not hold for all configurations of WeaSEL. Fig. shows
the test performance curves over the training epochs for the different number of LF
duplications.

The proposed WeaSEL model enjoys a stable and robust test curve (Fig. and
quickly recovers the fully supervised performance, even with 2000 LF duplicates (con-
vergence becomes slower as the LF set contains more duplicates). Many other config-
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Test ROC-AUC
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Figure B.1: Test [AUC performance at each training epoch for different choices of
71 € {1/5,1/3,1,2} of the synthetic experiment, see Section [B.6.2, averaged out over
the number of duplicates and five random seeds. A lower 77 leads to slower or worse
convergence in this specific case. A lower 77 corresponds to smoother accuracies,
which makes their induced label depend on more LFs. Since in this specific case
only one LF is 100% accurate and the rest are not better than a coin flip, the shown
behavior is expected.
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Figure B.2: The experiments start with a 100% accurate LF (i.e. ground truth labels)
and incrementally add new, independent LF's that are no better than a random guess.
WeaSEL recovers the performance of training directly on the ground truth labels (Fully
Supervised f), for up to 10 such randomly voting LF's that are independent of each
other. The PGM-based prior work rapidly degrades in performance (AUCl~ 0.5) and
is not able to recover any of the 100% accurate signal of the true-labels-LF, as soon
as the LF set is corrupted by three or more random LFs. Performances are averaged
out over five random seeds, and the standard deviation is shaded. For more details,

see Section

urations and designs for WeaSEL on the other hand lead to worse results. Indeed, for
this experiment it is key to use the proposed symmetric cross-entropy with stop-grad
applied to the targets (see Fig.[B.3¢, Fig.[B.31)), accuracies parameterized by a scaled
( Fig. softmax ( Fig. [B.3g), and, to a lesser extent, using the features an input
to the encoder ( Fig.|B.3d)).

While the impact of not using stop-grad, or using an asymmetric cross-entropy
loss is similarly bad in the main ablations on the real datasets, other configurations,
and in particular sigmoid-parameterized accuracies (the choice in [140]), an unscaled
softmax, and no features for the encoder, often perform well there.

Random Independent LF's

The experiment starts with the same setup as in Section but instead of dupli-
cating the same LF multiple times as in Section a new, independent random
LF is drawn at each iteration. That is, the experiment start with A\; = y*, Ay ~ P(y)
as the initial LF set, and then new LFs \; ~ P(y) are added that have no better
performance than a coin flip. Notably, since these Ao, ..., \,, are independent, we are
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not violating the independence assumptions of PGM-based methods. Nonetheless,
the experiment shows that these PGM-based baselines break with only three (m = 4)
of such random, but independent LFs, while WeaSEL is shown to be stable and able
to recover the ground truth LF A; for up to 10 random LFs (m = 11). For more ran-
dom LFs, WeaSEL starts deteriorating in performance, but is still able to consistently
outperform the trivial solution of voting randomly according to the class balance (i.e.
based on Ay, ..., ;) and the baselines, see Fig.
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Figure B.3: As a robustness check, this experiment starts with one 100% accurate LF
(i.e. ground truth labels), and test performance is plotted at each training epoch for a
varying number of duplicates LFs € {2,25,100,500,2000} of an LF that is no better
than a coin flip. Performance is averaged over five random seeds, and the standard
deviation is shaded. Details are given in Section
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Appendix C

Weakly Supervised GAN
(WSGAN)

C.1 Implementation Details and Complexity

(WS)GAN Models The following design choices were used for the experiments
conducted with simple DCGAN base networks (as opposed to the settings used in
the StyleGAN ablations). Generator G, Discriminator D, and auzxiliary model Q:
Figures|[C.2]and [C.1|show the simple DCGAN [216] based generator and discriminator
architectures we use in WSGAN for experiments with 32 x 32 images. Q and D are
neural networks that share all convolutional layers, with a final fully connected layer
to output predictions. The dimension of the noise variable z is set to 100, and of b
equal to the number of classes. The variable z is sampled from a normal distribution
and b from a uniform discrete distribution.

Accuracy Encoder A: For WSGAN-Vector, A is simply a parameter vector of the same
length as the number of labeling functions. For WSGAN-Encoder, image features are
obtained from the shared convolutional layers of () and D, which are detached from
the computational graph before being passed to an [MLPl prediction head. For images
with 32 x 32 pixels, the feature vector obtained from the shared convolutional layers
is of size 512 x 16. The [MLDP] head of A is set to have three hidden layers of size
(256,128, 64), with [ReL.U] activations, and an output layer the size of the number of
labeling functions followed by a sigmoid function. Significant changes in performance
were not observed when the [MLPl was changed to be shallower or wider. However,
for large numbers of LF's, one should consider increasing the width the MLP.
Mappings F'1, F2: F1 and F2 are set to each be simple linear models with a softmax
at the output. The input and output size of each are set to the number of classes.

(WS)GAN Training The same hyperparameter settings were used for all datasets.
All GANs were trained for a maximum of 200 epochs. A batch size of 16 is used,
which leads to more stable training dynamics with a DCGAN than larger batch sizes.
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Ablation experiments with batch sizes of 8 and 32 did not lead to a significant differ-
ence in FID image generation quality or label model accuracy, but in worse training
dynamics, i.e. more frequent failures to converge. For WSGAN, four optimizers are
used, one for each of the different loss terms: discriminator training, generator train-
ing, the Info loss term, and the WSGAN loss term. Adam is used for all optimizers,
and the learning rates are set as follows: 4 x 107 for D, 1 x 10~* for G, 1 x 10~ for
the info loss term, and 8 x 1075 for the WSGAN loss term. The same settings are
followed for the training of an InfoGAN training (for the components it shares with
WSGAN).

(WS)GAN Training and Failure Cases While WSGAN is still susceptible to the
common GAN failure cases of its base networks, such as mode collapse, we empirically
find WSGAN training to be more stable than training a GAN that also learns a
discrete latent code but uses no weak supervision signals (InfoGAN), despite the high
level of noise in our weak supervision sources. InfoGAN failed to converge more
frequently.

To help train the DCGAN networks successfully, employing discriminator label
flipping (randomly calling a tiny percentage of real samples fake and vice versa) and
label smoothing (adding small amounts of noise to the real target of 1.0 and fake
target of 0.0) appears to stabilize and improve GAN training. Despite employing
such tricks, it was not possible to completely avoid the occasional convergence failure.
Fortunately, monitoring the generator and discriminator losses, inspecting the quality
of generated images, or tracking image quality metrics such as FID allows one to easily
discard failed runs or to pick model checkpoints from earlier iterations before a failure,
without requiring labeled data.

StyleWSGAN Model Setup and Training We adapt StyleGAN2-ADA [142] to
build a StyleWSGAN Model as well as a StyleInfoGAN. The generator architecture
follows the same approach as a class-conditional StyleGAN generator: the sampled
code is embedded to a d-dimensional vector via a linear layer and then concatenated
with the original latent code, after each is normalized. This concatenated vector
is then passed to the StyleGAN mapping network. The relationship between the
number of layers of the StyleGAN mapping network and the size of the embedded
sampled code d turns out to be crucial for StyleWSGAN convergence. When the
mapping network is too shallow, as in the tuned CIFARI10 settings in [142], a large
d can lead to training instability for StyleWSGAN and StyleInfoGAN, likely due to
strong dependencies in the latent space of the mapping network output.

Separate optimizer settings are used for each loss term, and the learning rate for
the Info term (added term of Equation and the WSGAN term (added term of
Equation plus decay penalty) are set as a factor of 2/10 of the base learning rate
in StyleGAN. This results in a learning rate of 0.0005 for the added WSGAN terms in
the StyleWSGAN experiments, while a learning rate of 0.0025 is maintained for the
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original Styel GAN terms. Due to the use of different learning rates in the separate
optimizers, the added loss terms are not scaled, and the hyper-parameters «, 8 are
set to 1.

The CIFAR10 StyleWSGAN experiments largely follow the settings used in |142]:
no style mixing, no path length regularization, no ResNet D. However, the depth of
the mapping network is increasedd from 2 to 6, the size of the code embedding is
decreased to 200, and training is continued until the discriminator has seen a total of
50M real images. A mapping network of depth 4, and a code embedding size of 50
also lead to good performance, performing only slightly worse measured by both FID
and label model accuracy.

For the LSUN experiments, StyleWSGAN is trained until the discriminator has
seen a total of 35M real images, and the baseline StyleGAN2-ADA until the discrimi-
nator has seen a total of 50M real images. The experiment largely follows the settings
used for 256 x 256 images in [142], but style mixing and path length regularization
are disabled. The size of the discrete code embedding is set to 50.

End Model Training For all datasets, a ResNet-18 |117] is trained for 100 epochs
using Adam and a learning rate scheduler. The learning rate scheduler uses a small
validation set to make adjustments to the learning rate.

Image Augmentation The following random image augmentation functions are
used during DCGAN and endmodel training for color images: random crop and
resize (cropping out a maximum height /width of 13%), random sharpness adjustment
(p = 0.2), random color jitter, and random Gaussian blur (p = 0.1).

Label Models To compare to related work, the implementations of label models
made available via WRENCH [289] were used.

Complexity WSGAN shares the same operations as InfoGAN and adds some ad-
ditional steps on real samples that have at least one LF vote, which slightly increases
the required computation. Recall that C' denotes the number of classes, m the num-
ber of LFs, and x an image of a real sample. Further, let n,, denote the number of
samples that have at least one weak label vote from any LF, let ¢ denote the number
of steps required for a forward pass through ) to obtain image features and the dis-
crete code prediction, and a denote the number of steps for a forward pass through
the MLP A. For a forward pass, WSGAN increases the complexity compared to In-
foGAN in each epoch by O(n,(a + ¢+ m+2C? + C(m +8))). Note that ¢ may be
eliminated for the forward pass through careful implementation as the image features
are already obtained for the basic InfoGAN update. In the experiments of this work,
the computational overhead, including for additional data loading of the LFs, lead to
a modest increase in runtime (measured in bps, denoting batches per second) of the
weakly supervised WSGAN over the unsupervised InfoGAN, as follows. InfoGAN:
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Layer (type:depth-idx) Output Shape Param #

InfoDCDiscriminator -- --

f—sequential: 1-1 [16, 512, 4, 4] e
Lconv2d: 2-1 [16, 64, 32, 32] 1,792
L—LeakyRelLU: 2-2 [16, 64, 32, 32] =c
L—conv2d: 2-3 [16, 64, 16, 16] 65,600
L—LeakyRelLU: 2-4 [16, 64, 16, 16] o
L_conv2d: 2-5 [16, 128, 16, 16] 73,856
L L eakyRelLU: 2-6 [16, 128, 16, 16] --
L_conv2d: 2-7 [16, 128, 8, 8] 262,272
L eakyReLU: 2-8 [16, 128, 8, 8] e
L_convad: 2-9 [16, 256, 8, 8] 295,168
L eakyReLU: 2-10 [16, 256, 8, 8] oc
L_convad: 2-11 [16, 256, 4, 4] 1,048,832
L eakyReLU: 2-12 [16, 256, 4, 4] e
L_conv2d: 2-13 [16, 512, 4, 4] 1,180,160
L—LeakyRelLU: 2-14 [16, 512, 4, 4] =c
LDropout: 2-15 [16, 512, 4, 4]

f—sequential: 1-2 [16, 1, 1, 1] s

| L _conv2d: 2-16 [16, 1, 1, 1] 8,192

Figure C.1: The DCGAN discriminator architecture used in experiments with 32 x
32 images.

14bps, WSGAN Encoder: 7.8bps, WSGAN Vector: 8.6bps (NVIDIA RTX A6000,
batch size 16). In terms of parameters, WSGAN shares the same generator G and
discriminator components D,Q as InfoGAN, and adds additional label model param-
eters. The overall number of parameters in the experiments with 32 x 32 images are:

InfoGAN 6.7M, WSGAN 8.8M.

C.2 Dataset Details

e CIFARI10 contains 32x32 color images of 10 different classes. Two different
subsets of CIFAR10 are created. One set (used for experiments CIFAR10-C,D)
uses the full training set of CIFAR10 (minus 300 samples held out for down-
stream validation), while the second (used for experiments CIFAR10-A,B,E,F)
is a random subset of 30,000 training images.

e MNIST and FashionMNIST both contain 28x28 gray-scale images, which were
resized to 32x32. For both, a random sample of 30,000 images is taken from the
training data. SSL-based labeling functions are fine-tuned on small, random
subsets of the remaining training data of each dataset.

e GTSRB contains 64x64 color images of German traffic signs. 22,640 random
images from the full training dataset are used for the experiments, while random
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Layer (type:depth-idx) Output Shape Param #

DCGeneratorThree -- --
|—Linear: 1-1 -- 2
F—sequential: 1-2 [16, 3, 32, 32] =c

| L—convTranspose2d: 2-1 [16, 512, 4, 4] 901,632
| L—BatchNorm2d: 2-2 [16, 512, 4, 4] 1,024

| L_ReLU: 2-3 [16, 512, 4, 4] o

| L—ConvTranspose2d: 2-4 [16, 256, 8, 8] 2,097,408
| L_BatchNorm2d: 2-5 [16, 256, 8, 8] 512

| L RelLU: 2-6 [16, 256, 8, 8] e

| L—ConvTranspose2d: 2-7 [16, 128, 16, 16] 524,416
| L_BatchNorm2d: 2-8 [16, 128, 16, 16] 256

| L—ReLU: 2-9 [16, 128, 16, 16] --

| L—ConvTranspose2d: 2-10 [16, 64, 32, 32] 131,136
| L_BatchNorm2d: 2-11 [16, 64, 32, 32] 128

| LReLU: 2-12 [16, 64, 32, 32] 2

| L_ConvTranspose2d: 2-13 [16, 3, 32, 32] 1,731

| L—Tanh: 2-14 [16, 3, 32, 32] --

Figure C.2: The DCGAN generator architecture used in experiments with 32x32
images.

automobile (0.28) horse (0.30) horse (0.30) airplane (0.53) automobile (0.28)

B PN e BN s

bird (0.30) airplane (0.53) airplane (0.53) bird (0.30) horse (0.30)

] s ] R

Figure C.3: Some synthetic images and pseudolabels generated by the proposed WS-
GAN with a DCGAN base-architecture, learned from weakly supervised CIFAR10.
Note that WSGAN is able to generate images and estimate their labels, even for im-
ages where no weak supervision sources provide information (see end of Section m
for details).
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subsets of the remaining images in the original training data are used to finetune
the SSL-based labeling functions.

The original DomainNet [209] dataset contains 345 classes of images in 6 differ-
ent domains EI As the dataset for the proposed work, following [185] the images
in the real domain are used and the 10 classes with the largest number of in-
stances in this domain are selected. Because of the small size of the resulting
dataset, images are resized to 32 x 32.

Animals with Attributes 2 (AwA2) |185] is an image dataset with known general
attributes for each class, divided into 40 seen and 10 unseen classes. Because
of the small size of the resulting dataset once LF's are created, the images are
resized to 32 x 32 in the experiments.

LSUN scene categories A random small set of up to 2,000 held-out images is
used to finetune SSL-based labeling functions.

C.2.1 Labeling Function Details

Synthetic: based on the true class label, synthetic, unipolar LF's were created
via the following procedure: for each LF, a class label, an error rate, and a
propensity (i.e., the percentage of samples where the LF casts a vote, also
referred to as coverage) are sampled. Given the target label, true positives and
false positives are then sampled at random to achieve the desired LF accuracy
and propensity.

Domain transfer: these LFs are used in the DomainNet dataset experiments.
Following [185], weak supervision sources are derived for a multiclass classifica-
tion task of the real images contained in the DomainNet [209] dataset. First, the
target domain is set to real images and the 10 classes with the largest number
of instances in this domain are selected. As LF's, classifiers are trained using the
selected classes within the remaining five domains, and these trained classifiers
are applied to the unseen images in the target domain of real images to obtain
imperfect labels.

Attribute heuristics: two sets of LFs are created for the for the Animals with
Attributes 2 (AwA2) [185] image classification dataset. Following [186, 185],
one-vs-rest attribute classifiers are trained using the 40 seen classes of the AwA2
dataset. These classifiers are applied to the 10 unseen classes to produce weak
attribute labels. At this stage, attribute classifiers which perform worse than
random are discarded. An 85%/5%/10% train/validation/test split of the 10
unseen classes is created to define decision trees to produce weak labels on the

'Real, painting, sketch, clipart, infograph, quickdraw.
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Figure C.4: [ARI for additional CIFARI1O experiments. The plots show the ARI
between the unobserved class label y and the discrete code prediction by the auxiliary
model Q(x) on real image x, during training. Weak supervision allows WSGAN to
better uncover the latent class structure compared to an unsupervised InfoGAN.

bases of weak attribute predictions. The final 29 unipolar LFs for AwA2-A are
created by training 3 one-vs-rest decision trees per each of the 10 classes on 100
random samples from the training set. To create a slightly easier set, the 32
unipolar LF's used in AwA2-B are created by training 80 decision trees, retaining
one random tree specializing in each class, and then selecting all remaining ones
where validation accuracy is higher than 0.65.

SSL-based: The base representations are learned on unsupervised ImageNET
with SImCLR [45]. The trained network is used to obtain features for the image
datasets. Then, shallow MLP networks are trained on a few hundred held-out
samples to predict a randomly sampled target label at a randomly sampled
target accuracy. The accuracy is validated to be within range of the target
accuracy on another small amount of held-out data. Thus, during their creation
these unipolar LF's are never trained or evaluated on the WSGAN training data
or the downstream test data.

C.3 Additional Experiments

C.3.1 WSGAN with a DCGAN Base-architecture

For further evaluation of WSGAN with a DCGAN base architecture, additional
weakly supervised image datasets were created based on CIFAR10, by varying the
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Table C.1: Additional datasets and labeling function (LF) characteristics used to
evaluate the proposed WSGAN model. Acc denotes accuracy, while Coverage denotes
the number of samples where the LF does not abstain.

Dataset #Classes #LFs #Samples Mean LF Acc Min LF Acc Max LF Acc  Mean Coverage LF Type
CIFAR10-C 10 20 49,700 0.747 0.621 0.879 0.048 Synthetic
CIFAR10-D 10 40 49,700 0.760 0.621 0.898 0.052 Synthetic
CIFAR10-E 10 40 30,000 0.761 0.624 0.896 0.056 Synthetic
CIFAR10-F 10 40 30,000 0.728 0.531 0.912 0.046 SSL, finetuning

Table C.2: Additional datasets to evaluate WSGAN with a DCGAN base architec-
ture. This table shows the average posterior accuracy of various label models on
training samples with at least one LF vote. The best result is highlighted in blue
and the second best result in bold.

Dataset MV DawidSkene MeTalL FS Snorkel WSGAN-Vector WSGAN-Encoder
CIFAR10-C 0.762 0.778 0.751 0.764 0.757 0.778 0.796
CIFAR10-D 0.831 0.861 0.819 0.805 0.812 0.854 0.865
CIFAR10-E 0.865 0.902 0.845 0.827 0.849 0.898 0.917
CIFAR10-F 0.687 0.601 0.682 0.677 0.678 0.691 0.702

Table C.3: Additional datasets: color image generation quality measured by average
Fréchet Inception Distance (FID). The best scores for each dataset are highlighted in
blue.

Dataset InfoGAN WSGAN-V WSGAN-E
CIFAR10-C 33.64 24.11 26.00
CIFAR10-D 33.64 24.09 23.78
CIFAR10-E 28.93 21.97 22.63
CIFAR10-F 33.50 24.59 22.54

number of samples and the type of labeling function, see dataset details in Table
[C.I] The proposed WSGAN approach outperforms related approaches in these ex-
periments as well. The label model accuracy results are shown in Table [C.2] while
additional metrics including F1 are shown in Section [C.5] Image generation quality
results are provided in Table [C.3] Finally, a comparison between the latent discrete
variable of WSGAN and InfoGAN is given in Figure which shows how the [ARI]
evolves between the unobserved class labels and the latent discrete variable modeled

by auxiliary model Q).
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C.4 Additional Baselines

Two additional baselines are created for comparison. First, a generative model that
is conditioned on pseudolabel information is created with the aim of improving image
generation performance; pseudolabels provided by established weak-supervision label
models are used in this role. Second, a basic generative model is used to produce
synthetic samples that augment a downstream classifier (with weak labels provided
by outputs of weak supervision sources applied to the synthetic images). These
two baselines represent the straightforward way to use weak supervision to improve
generative modeling (and vice-versa). Experiments with these models showed that
such naive combinations struggle compared to the proposed WSGAN approach.

C.4.1 Conditional Image Generation with Pseudolabels or
Raw Weak Supervision Votes

As an additional GAN baseline to compare the proposed WSGAN, an Auxiliary Clas-
sifier Generative Adversarial Network (ACGAN) [203] is adapted to be conditioned
on pseudolabels provided by a label model. The ACGAN is run on all data, but the
auxiliary loss on real data with pseudolabels is only used for samples where at least
one labeling function does not abstain. Two versions were created: (1) using prob-
abilistic pseudolabels with a soft cross-entropy loss, and (2) using hard/crisp labels
with a cross-entropy loss. To provide the strongest possible baseline in this exper-
iment, the pseudolabels are obtained via the Dawid-Skene label model as it attains
the best performance on average over all datasets compared to other related label
models. Results are provided in Table showing that this baseline approach is
frequently unable to overcome the noise in the pseudolabels to improve over the In-
foGAN results, and that it does not perform better than WSGAN with an encoder.
Furthermore, the models were difficult to train and converged rarely.

We also attempted to train different types of conditional GANs (ACGAN and a
GAN with projection discrimination) conditioned on the raw weak supervision votes,
but were unable to obtain reasonable performance as the models failed to converge.

C.4.2 Data Augmentation for Downstream Classification with
Synthetic Images

In this experiment, the training set for a downstream classifier is augmented with
synthetic images. As baselines, synthetic images & were generated with an InfoGAN,
and the image labeling functions A were then applied to the generated images to obtain
LF votes A(Z). Pseudolabels for the synthetic images are then obtained by fitting label
models to the real training data and then applying the label models to the labeling
function outputs on the synthetic data. Table compares InfoGAN + Snorkel and
InfoGAN + DawidSkene baselines to the improvements in test accuracy obtained
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Table C.4: A comparison to using an ACGAN with pseudolabels. Image generation
quality is measured by average Fréchet Inception Distance (FID). The best scores for

each dataset are highlighted in blue.

Dataset InfoGAN ACGAN ACGAN (crisp) WSGAN-V  WSGAN-E

AwA2 - A 41.62
AwA2 - B 41.62
DomainNet 51.88
CIFAR10-A 28.93
CIFAR10-C 33.64
CIFAR10-D 33.64
CIFARI0-E 28.93

01.32
53.73
61.96
79.15
36.53
36.81
80.43

47.21
50.03
47.32
25.53
26.61
45.1

33.05

36.74 34.71
36.79 34.52
51.16 45.6

25.7 22.71
24.11 26.0

24.09 23.78
21.97 22.63

Table C.5: Baseline comparisons using an InfoGAN to create synthetic images, apply-
ing LF's to the synthetic images, and then using established label models to synthesize
the weak labels in to a pseudolabel resulting in weakly labeled fake images. The table
shows the change in test accuracy by augmenting the downstream classifier training
data with such 1,000 synthetic images and corresponding pseudo labels. Experiments
are conducted on a subset of the datasets where labeling functions can be applied to

synthetic images.

Dataset WSGAN

InfoGAN 4 Snorkel

InfoGAN + DawidSkene

AwA2 - A  0.79%
AwA2-B 3.90%
DomainNet 1.50%

-0.63%
-1.01%
0.02%

-1.26%
-1.77%
-3.14%

by using WSGAN and shows that this naive baseline does not provide performance
improvements in downstream accuracy.
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Table C.6: This table includes standard deviations for the posterior accuracy of
various label models on training samples with at least one LF vote, computed over
five random runs. Due to a limited computational budget, it was not feasible to
accumulate five runs for all datasets and model combinations.

CIFARI10-A 0.850(+0.001) 0.806(+0.001)  0.800(£0.000
CIFAR10-B 0.677(£0.000)  0.708(+0.001)  0.708(40.000

0.807(£0.002)  0.874(=0.002
0.707(£0.000)  0.731(=0.004

Dataset DawidSkene MeTaL FS Snorkel WSGAN-Encoder
AwA2 - A 0.607(£0.029)  0.632(£0.002)  0.615(£0.003) 0.641(£0.001) 0.681(£0.011)
DomainNet 0.658(+0.000) 0.487(+0.004)  0.635(£0.000) 0.499(+0.015)  0.643(40.003)
MNIST 0.729(£0.000)  0.766(%0.001)  0.773(£0.000) 0.766(+0.001)  0.813(40.004
FashionMNIST 0.717(£0.002) 0. 730(:|:O 001)  0.734(£0.001) 0.729(+0.001) 0.744(+£0.002
GTSRB 0.619(4+0.001)  0.815(+0.002) 0.679(+£0.001)

( )

( )

)
)
0.814(=£0.000) 0.823(+0.001)
)
)

Table C.7: Weighted mean average precision of various label models on training
samples with at least one LF vote. The best result are highlighted in blue and the
second best result in bold.

Dataset MV  DawidSkene MeTal. FS Snorkel WSGAN-Vector WSGAN-Encoder
AwA2 - A 0.616 0.661 0.653 0.627 0.653 0.672 0.737
AwA2-B 0.591 0.652 0.662 0.642 0.668 0.681 0.743
DomainNet 0.599 0.702 0.630 0.654 0.621 0.679 0.795
MNIST 0.684 0.772 0.784 0.765 0.785 0.792 0.870
FashionMNIST 0.620 0.712 0.691 0.686 0.692 0.703 0.742
GTSRB 0.718 0.731 0.761 0.714 0.772 0.768 0.808
CIFARI10-A 0.796 0.866 0.855 0.838 0.854 0.878 0.912
CIFARI10-B 0.594 0.659 0.658 0.631 0.666 0.678 0.732
CIFARI10-C 0.664 0.763 0.758 0.737 0.751 0.780 0.825
CIFARI10-D 0.788 0.896 0.889 0.876 0.878 0.901 0.908
CIFARIO-E 0.880 0.954 0.942 0.924 0.940 0.950 0.959
CIFARI10-F 0.561 0.658 0.66 0.647 0.659 0.675 0.708

C.5 Additional Metrics

This section provides additional metrics for the label model comparisons shown in
Table in the main paper. Again, results are averaged over 4 random runs. Table
shows the weighted F'1 score, an average over all classes weighted by the sup-
port of each class. Table [C.7 shows weighted mean average precision, a metric that
summarizes the precision-recall curve across all classes. The average precision is com-
puted individually for each class (one vs. rest) and the scores are then aggregated by
summing them weighted by the support of each class to produce the weighted mean
average precision score.
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Table C.8: Weighted F1 score of various label models on training samples with at
least one LF vote. The F1 is computed separately for each class and then averaged
weighted by the support of each class. The best result is highlighted in blue and the
second best result in bold.

Dataset MV DawidSkene MeTalL FS Snorkel WSGAN-Vector WSGAN-Encoder
AwA2 - A 0.641 0.665 0.62 0.619 0.636 0.637 0.684
AwA2 - B 0.604 0.661 0.58 0.597 0.593 0.664 0.672
DomainNet 0.603 0.655 0.443 0.622 0.468 0.654 0.634
MNIST 0.756  0.716 0.746 0.755 0.746 0.764 0.795
FashionMNIST 0.706 0.691 0.698 0.705 0.698 0.710 0.715
GTSRB 0.802 0.616 0.800 0.628 0.799 0.801 0.811
CIFAR10-A 0.824 0.850 0.797 0.796 0.798 0.851 0.872
CIFAR10-B 0.712  0.672 0.702 0.703 0.702 0.720 0.727
CIFARI10-C 0.726  0.741 0.723 0.713 0.718 0.738 0.759
CIFAR10-D 0.809 0.839 0.791 0.784 0.781 0.834 0.844
CIFARI10-E 0.864 0.901 0.843 0.825 0.839 0.899 0.916
CIFAR10-F 0.684  0.609 0.677 0.675 0.674 0.688 0.699

C.6 Theoretical Justification

This section provides additional setup details and proofs for the two theoretical claims
of this work.

C.6.1 Claim (1)

Our goal is to derive a generalization bound; that is, an upper bound on |R@ —Rp|. In
words, this is the gap between the loss on a sample drawn from the true distribution
and the empirical loss we obtained by training on the weakly-supervised dataset with
unlabeled data sampled from the generative model.

Mixture of Gaussians Recall that D is the joint distribution of the unlabeled
and labeled points. Let us call the unlabeled data marginal distribution Dx. Then,
we make the assumption that Dy is a mixture of k& Gaussians. Here, there is some
relationship between the mixtures and the two classes, but we need not further specify
it. Using the result [9], we get that the number of samples needed to learn Dx up to
£ in total variation distance is ©(kd?/<?).

Note that in fact this expression hides some polylogarithmic terms. However, for
simplicity, we are going to ignore these terms and just pretend that the necessary
bound is cgkd? /g%, where cg is some constant for learning a density.

Based on this, we will make the following assumption. We perform density esti-
mation on ny; samples from Dy and obtain some model g such that distribution of g

167



(we will abuse notation and just refer to this as the model itself g) and Dy satisfies

k
dry(Dy, g) < dy/ <= (C.1)

ni

So now we have control over one marginal (the unlabeled data). Let us work on
the conditional term next.

Majority Vote For simplicity, let us assume that we use majority vote as the
aggregation scheme for the m labeling functions. We make the following assumptions.
The labeling functions have accuracy 1/2 + a, for some « € (0,1/2], in the following
sense. For any datapoint (X,Y), the probability of a labeling function guessing the
value of Y correctly is 1/2 + «, and the probability of any guessing wrong is 1/2 — av.
This holds for all values of X. Note: these are very strong assumptions.

The probability that we make a mistake, e.g., that majority vote aggregates votes
to 0 when Y = 1 or vice-versa is given by the binomial CDF F(m/2,m,a + 1/2),
which has the following simple bound that follows from Hoeffding’s inequality,

F(m/2,m,a+1/2) <exp (—2m (a +1/2 — %/2) > = exp(—2ma?).

With the above, as Dy|x is a Bernoulli random variable, we can directly upper
bound the total variation distance between Dy |x and Df/l e

drv(Dy|x, Dy x) < exp(—2ma?). (C.2)

Joint Distribution Now we have some control over the generative model’s error
(from the density estimation bound) and some control over the label recovery (from
the above bound resulting from majority vote). Now we put it together. First,
we write down some useful inequalities between the total variation distance and the
Hellinger distance [84] (Prop 2.10). These are, for densities p, g,

Dra(p,q) < v/2drv(p, q) (C.3)

and

drv(p,q) < Dua(p, ¢)v/1 — Dya(p, q)2/4. (C.4)

We use p as the density for D and ¢ as the density for D, and write p =
p(z)p2(y|z), ¢ = ¢1(x)ga(y|x). First, using (C.1)) and (C.3), we have that

Acghd?\ 3
Dna(Dx, g9) < /2drv(Dx,g) < ( o ) : (C.5)

ni
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Then, using (C.2) and (C.3)), we get

Dhe(Dyx, Dy x) < \/QdTv(DnX,quX) < V2 exp(—2ma?) = V2 exp(—ma?).
(C.6)

Next,

Du(.D) = [ [(/o@mle) - Vsl *dyds
— [ [ (momole) + a@aatola) - 20/ @l @aalole) ) dyds
~2-2 [ [ VnEmba el
=2 2/ Vpi(@)q (z) (1 - %Dhel(pg,qQ)) dz

<2-— 2/ Vi (z)q () (1 - gexp(—ma2)> :

Note that here, we use the fact that our bound holds for all conditional distributions
regardless of z. Continuing,

Dhel(D,f)) <2-— 2/ vV (2)q () (1 — g exp(—ma2)>
=2-2(1- %Dhel(pl, ¢) <1 — g exp(—ma2)>

<29 (1 . % <4Cilfd2) i) <1 - ? exp(—ma2)>

1 1
deghd®\ * kd*\ #
= ( s ) + V2exp(—ma?) — (CG ) exp(—ma?).

ni ni

Now we apply ((C.4]) to get the bound back into the total variation distance setting.
We have

dTV(Daﬁ) < Dhc1<D7ﬁ)\/1 — Dhel(D,ﬁ)2/4 < Dhcl(Dvﬁ)

1 1
deghd®\ * kd*\ #
< < ‘e ) +V2exp(—ma?) — (CG > exp(—ma?)

o ny ny

< (466"”2)1 + V2 exp(—ma?). (C.7)



Bounding the Risk The final task is to bound the risk. First, suppose we are
training a classifier chosen from a function class F, trained on ns independently-
drawn data points. Then, a standard result is that with probability at least 1 — 9,

sup (R (/) ~ Bo( )] < 208 12500 (8)
feF o

Here, R is the Rademacher complexity of the function class. However, the above is
for training on samples from the true distribution. Instead, we can write

Rp —Rp| =[Rp —Rp +Rp — Rp|
< |Rﬁ—R@|+|Rﬁ—RD’.

For the right-hand term, we have the following:

Re — o | = | [ €(f().)lp(w.5) - a(o. )lds
< Bydrv(D, D).

Then, putting this together with the expression in (C.7)) into (C.8]), we get that, with
probability at least 1 — 4,

sup |[Rp(f) — Rp(f)] < (sup [Rp — Rp| + [Rp — Rp )
fer feF

log(1/8 R
< 2R + # + Bydry(D, D)
2

1

log(1/d deghkd®\

< 2R + # + By (Ci—) + BiV/2exp(—ma?).
2 1

(C.9)

Interpreting the Bound In (C.9)), we saw that
. log(1/6 deghd®\ T
sup[Rp (f) — Ro(f)] < 202 B0 | p, (G—) + Bivexp(—ma?).
fer 2ns ny
Now let’s interpret this result piece-by-piece. The terms are the following

e The Rademacher complexity of the function class, which is present in the stan-
dard generalization bound.

e An estimation error term as a function of how much data we have to train our
classifier ny. It has the standard rate 1/ /ny. Again, this is standard in any
bound.
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e A penalty term due to the generative model usage. It tells us how much we
lose by training on generated data rather than (unlabeled) data from the true
distribution. It scales as nl_l/ 4, where n; is the number of samples of unlabeled
data used to train the generative model. Note also the dependence on the
number of mixture components and dimension.

e A penalty term due to weak supervision. It tells us what we lose by using
estimated (pseudo)labels rather than true labels; we note that the penalty scales
exponentially in the number of labeling functions m, but is slowed down by small
«, as our accuracies are « better than random.

C.6.2 Claim (2)

The proof of claim (2) uses the setting of [249|, which introduces RCGAN. RCGAN
is a conditional GAN architecture that corrupts the label before passing them to the
discriminator by passing the true labels through a noisy channel. The authors provide
a multiplicative approximation bound between the GAN loss under the unobserved
true labels and the loss under the noisy labels. This noisy channel model acts as
a nice model of the label generating process of weak supervision. Using this noisy
channel model, we can control the amount of label corruption to match that of weak
supervision.

Following the setup of [249], we define a function that multiplies a one-hot encoded
true label vector by a right-stochastic matrix C' € R**? where C; ; = P(y;|y;)—this is
our noisy channel. This induces a joint distribution JSXy for the examples z and noisy
labels y from the conditional distribution defined by C'. We restate the theorems of
interest from [249] here, and proceed to adapt them to our problem setting.

Theorem 1. (Multiplicative bound on the total variation distance from [249].) Let
Pxy and Qxy be two distributions over X x {0,1} and let Pyy and Qyy be the
corresponding distributions with noisy labels from C. If C is full-rank, then

dTV(ﬁv @) < dTV(Pv Q) < ||C_1||oo dTV(ﬁvé)' (ClO)

Theorem [1] says that the total variation distance between the true noisy distri-
bution and the noisy generated distribution from RCGAN approximate its noiseless
counterpart up to a factor of ||[C~!||... The goal here is to construct C.,,, to model
the noise from weak supervision (in particular, majority vote) and show that it leads
to a tighter bound than when we directly plug in the labels from a single LF into
Theorem |1} To begin, consider the following parameterization of C, with € € (0,1/2):

O€=IQ+{_: E}z{l_e ¢ } (C.11)

€ 1—e¢
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Here, € denotes the labeling error for each class. Given this parameterization, we
obtain the following expression for ||C7!| .

1—¢ e 177
€ 1—c¢

=[((1—e)* =€)

IC oo = (C.12)

oo

=l
= (1-2¢)" (C.14)

Note that C, is full-rank as it has a finite inverse. It is also clear that |[|C7!||
is a monotonically increasing function of €. That is to say that if we do something
to decrease the labeling error €, then ||C7!|| also decreases and we obtain a tighter
bound. We will go on to derive an expression for the labeling error under majority
vote with m LFs,; eyry, and show that it is smaller than the labeling error from a single
LF, e). Namely, we want find a condition where e\ry < €, holds and that majority
vote leads to an improved Theorem [1| bound.

(C.13)

Proposition 1. (Total variation version.) Let €yy be the labeling error from magjor-

log(1/ex)
1

ity vote from m LFs, where m > ; 7 whose individual labeling errors are each
7€

€x- Then the following holds

drv(Puv, Quv) < drv(P,Q) < 1C! 1o drv(Parv, Quv) < 1C drv(Parv, Quiv)-

Proof. We begin by deriving an upper bound on e\ry. We have LFs {\;}7, that each
produce incorrect predictions with probability ey = % —q, using « as defined in Claim
(1). Now, we need to show that the probability of producing incorrect predictions
using majority vote with more label functions, {\;}7,, has error e\ry < €. Define
the event that J\; is incorrect as follows: z; = I[\; # y|, then E[z;] = €,. Using this,
we apply Hoeffding’s bound to eypy.

emy = P <Z 2 — mey > % — me)\> (C.15)

i=1

< exp <_2 (3 —me) ) (C.16)

m

— exp (—Qm G _ Q)Q) | (C.17)

Next, we plug the bound from ((C.17)) into (C.14)) to obtain the following expression
for |CZ 1 [oo-

1Cor oo = (1 = 2enpy) ™! (C.18)

< (1 — 2exp (—Qm (% — EA)Q) ) - : (C.19)
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To complete the proof, we need the following to hold: [|C ] [lec < [|C o, but

EMV
due to the monotonicity of ||C7 ||, it is sufficient to show that ey < €.

Recall that eyy < exp <—2m (% — e,\)2>, so if we set exp (—Qm (% — e,\)2> < €y,
we obtain the minimum number of label functions, m, required to ensure ey < €.

1 2
exp (—2m (5 — e,\) ) <€y

5 m > 28l/)
2(3-e)

Plugging ((C.19)) into Theorem (1, we obtain the following

dry(Puv, Quv) < drv(P, Q) < 1C0 Nl dry (Parv, Quv)

< (1 — 2exp (—Qm (% - e,\) >> drv(Puv, Quv)

<(1- 2@)_1 dTV<ﬁMV7 @MV)

= HCG_AlHoo dTV<ﬁMVa@MV>
which completes the proof. O

Notice that the proof of Proposition [I|does not depend on total variation distance
beyond the dependence on Theorem|[I} As such, Proposition[I]can be stated more gen-
erally in terms of the Integral Probability Metric induced by the GAN discriminator
F using Theorem 2 of [249):

dr(Puv, Quv) < dr(P,Q) < 1C) Nl dr(Puv, Quv) < 1C dx(Puv, Qurv)-
Finally, notice that Proposition |1|is made in terms of d;(]BMV, @MV) and not in
terms of dz(Py,@,). We can show that as the number of LFs approach infinity,

we recover the distance under the clean labels: dx(P,Q). Applying Theorem [I| to
majority vote and a single LF results in the following two expressions:

dr(Puv, Quv) < dr(P,Q) < 1C Nl dz(Puv, Quv) (C.20)

dr(Py,Qy) < dx(P.Q) < ||C5 oo dr(Py, Q) (C.21)
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Rearranging terms, we obtain the following

1< dr(P, Q)
dr(Pyv, Quv)

< ICanlloe < M1CS oo

EMV

and J(P
1< .7:( 7Q)

T dr(Py, Q)
Notice that ||C'||s has no dependence on m since it’s a single LF, but [|C_ ||«
approaches 1 as m — oc:

< |1C o

im 1< — 209 oo <o
m—00 dr(Puv, Quv)
= 1< dr (P, Q) <1< 10

= dr(Puv, CN?I\{V) B
= dr(P,Q) = dr(Puv, Quv)-

Hence we obtain a stronger bound as the number of LF's increases.

C.6.3 Extensions

For the sake of clarity, several simplifying assumptions are made in Claims (1) and
(2). Both claims use the simplest possible aggregation strategy for weak supervision—
majority vote, and our analysis in Claim (1) involves the use of a Gaussian mixture
model—a less complex object of study compared to a GAN. Both analyses can di-
rectly be extend to use more sophisticated weak supervision label models instead of
majority vote, and different generative models, which should lead to improved bounds
at the expense of a more complex claim statement. Note, additionally, that neither
of the claims attempt to provide deep insight into the benefits of jointly learning the
generative model and the label model—but this may be done with a slightly more
careful analysis.
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Figure C.5: A random set of MNIST images generated by WSGAN-E (using a DC-
GAN), with the discrete latent random variable kept fix for each row of images.

RNEAQANN
M ELI L

Figure C.6: A random set of FashionMNIST images generated by WSGAN-E (using
a DCGAN), with the discrete latent random variable kept fix for each row of images.

C.7 Additional Images

This section provides additional generated images in Figures [C.5 [C.6] [C.7] and [C.§]
These random images are generated by WSGAN with a DCGAN base architecture,
where the discrete latent variable d passed to the generator is kept the same in each
row.
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Figure C.7: A random set of Domainnet images generated by WSGAN-E (using a
DCGAN), with the discrete latent random variable kept fix for each row of images.
Note that this dataset is particularly challenging for a GAN as the subset used that
is used has few images, resulting in considerably lower quality of synthetic images
compared to GTSRB for example.
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Figure C.8: A random set of AwA2 images generated by WSGAN-E (using a DC-
GAN), with the discrete latent random variable kept fix for each row of images. Note
that this dataset is particularly challenging for a GAN, as the weakly supervised
subset that is used has very few images, resulting in considerably lower quality of
synthetic images compared to GTSRB for example.
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Appendix D

Interactive Weak Supervision

D.1 LF Accuracy and Coverage Trade-off

This section analyzes how LF accuracy and LF propensity (i.e. non-abstain behavior)
influence the estimate of the true latent class label Y*. For simplicity, the analysis will
focus on the binary classification case. Assume each data point z € X has a latent
class label y* € Y = {—1,1}. Given n unlabeled, i.i.d. data points X = {z;} |, the
goal is to train a classifier f : X — ) such that f(x) = y*. Asin [222] a user provides
m LFs {\;}7L,, where \; : X — YU{0} noisily label the data with \;(z) € {—1,1} or
abstain with \;(z) = 0. The corresponding LF output matrix is A € {—1,0, 1}"*™,
where A; ; = \j(x;).

A factor graph is defined as proposed in [222, 220] to obtain probabilistic labels by
modeling the LF accuracies via factor qﬁffc(A, Y) = 1{A;; = y;} and labeling propen-
sity by factor ¢/¢°(A,Y) £ 1{A;; # 0}. Assume LFs are independent conditional on
Y. The label model is defined as

po(Y,\) = ZJI exp (Z 07 i (A, yz)) ) (D.1)
i=1

where Zy is a normalizing constant and ¢;(A;,y;) defined to be the concatenation
of the factors for all LFs j = 1,...,m for sample i. Also, let § = (#1),0?) where
61 92 c R™. Here, AV are the canonical parameters for the LF accuracies, and 6
the canonical parameters for the LF propensities.

To estimate the label model parameters, one generally obtains the maximum
marginal likelihood estimate via the (scaled) log likelihood

U6) = 1/ny " log (mei,yre)) -

yey

Let finite § € R2™ be such an estimate. One uses p4(y|A;) to obtain probabilistic
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labels:

pa(y = KA = % (D2)
m (1) 4 Ace (1
(S 0 () b)) .

Y gey XD, 08V gA(N; (1), §))

Note that the label estimate does not directly depend on #®. Further, note that the
denominator is the same over different label possibilities. Finally, note that even in
a case where we include correlation factors ¢{27(A,Y) = 1{Ai; = Ay}, (4, k) € C
in the model above with C as a set of potential dependencies, the probabilistic label
will only directly depend on the estimated canonical accuracy parameters 81, In the

binary classification case, which is assumed here, the expression simplifies further.
For k e {—1,1}:

exp(320, 059 ¢ (N (), k)

o(vi = k|A;) = — ~ D4
i ) = (T AV A (1) ) (DY
_ S ! (D.5)

T exp(X 7y 00 (62 (22), —k) — @Ay (), k)
= o(32 0 ), ) = 4y ), —H)), (D.6)

where o denotes the sigmoid function. The probabilistic labels are a softmax in the
multi-class classification case and, as shown above, simplify to a sigmoid in the binary
case. An absolute label prediction § € {—1,1} is therefore simply a function of

g; = argmax py(y; = y|A\;) = argmaxz 9](»1)¢ACC()\]~($Z-), 7).
geY ey 4
Some assumptions on the accuracy and error probabilities of labeling functions
will now be introduced, similar to the Homogenous Dawid-Skene model |72, |161] in
crowd sourcing, where label source accuracy is the same across classes and errors are
evenly divided with probability mass independent of the true class.
Under these assumptions, denote by a; = P(\;(z) = y*|\;(x) # 0) the accuracy
of LF j. Further, denote by [; = P()\;(x) # 0) the labeling propensity of j, i.e.
how frequently LF j does not abstain. Note that the observed LF propensity is also
referred to as LF coverage in the related literature. Recall Theorem |4.1.1}

Theorem 4.1.1. Assume a binary classification setting, m independent labeling func-
tions with accuracy o € [0,1] and labeling propensity l; € [0,1]. For a label model as
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m Fq. with given label model parameters g R*™ and for anyi € {1,...,n},

(S, 69 (205 — 1)1)?
2|60 |2

P(gi:yf)21—exp<—

where 0O are the m weights of ¢, and §; € {—1,1} is the label model estimate for
Yi -

Proof. Assume that we use the label model to obtain a label estimate y; € {—1,1}.
As shown in Eq. (D.3]), the prediction rule in that case is

Define by A(z) = (Ai(z),..., An(z)) the vector of the j = 1,...,m LF outputs on z.
Further, define for k € {—1,1}:

k‘) = Zé§1)<¢ACC(Aj($)’ k?) i @ACC(/\]'(ZL’), —k))
=280 @) = k)~ Ly (@) = k).

For the two label options k € {—1, 1}, we have

iln{A ) =1} — 1{)\(z) = —1}) Ze<l

Jj=1

and

i W (1) (z) = =1} — 1{)\(= f: ()

Jj=1 Jj=1

Now, we want to obtain a bound on the probability that the label estimate y; is equal
to the true label. We have

PG = y;) = Ply; = )P (9 =
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Note that

m

P(j; = 1ly; = 1) = P(Vy(A\(@:),1) > 0y = 1) = P> 08N(2) > 0lyr = 1),

7=1
and that

P(j; = —1ly; = —1) = P(V3(M(;), —1) > Oly; = —1) = P(>_ 087 (x) < Olyf = —1).

7j=1
We therefore have

P(j; = y!) = Ply; = PO 0N (i) > 0ly; = 1) + (1= P(y; = D))PY_ 05 N(x:) < Oly; =
7j=1

Jj=1

Now we define &; = 6\”)\;(z;) and we know that & € [—|0\",[6"[]. Given the
Dawid-Skene model assumptlons stated previously, we have

E[Zfzﬂyf:ﬂ :ZE[&-ﬂy;‘—l 29 i2xa; —1),
i=1 j=1

and

ED &ilyi =—1]=> Elgly; =—1]=-> 8125 a; — 1).
j=1 =1

J=1

Now, using Hoeffding’s inequality and assuming independent LF's, we can bound
P(y; = 1|yf = 1) and P(y; = —1|yf = —1) from below:

Z D\ i(z) > 0ly; =1) qu >0lyf =1)
=P<Z@j Z%Iyz =1] Ze< 2wy —1) |y =1)
j=1

51— exp <_(ZT 09 (20 — 1)lj) ) |

2|02

and
P> 09N (@) < Oly; = —1) = P(>_ &, < Oly; = —1)

= PO & =B ol = 1) < 2072w, =1) i = 1)

j:]- ) j=1
<Z 05 (205 — 1))
>1—exp | ==~ _
2|62
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Finally we have
P(gi=y;)=Ply; = )P0 = 1y; = 1)+ (1 — P(y; = 1))P(4; = —1]y; = —1)

e[ (O 0\ (20 — 1))
- SIE |

What do the theorem and the quantities analyzed in this section indicate?

e The trade-off between LF accuracy and LF propensity (also referred to as LF
coverage) is captured by (2a; — 1)l; which allows us to rank LFs if we know the
accuracy «; or can estimate it and use the observed, empirical coverage as an
estimate of [;.

e Not surprising, the relation between sign(¢;) and «a; is important. A better than
random LF j should have a positive 6;. This indicates that a gap to randomness
is important if we cannot guarantee that we learn 6; well, to reduce the chance
of obtaining a negative ¢; for better than random LF j, or vice versa.

e Note how the label estimates are obtained in Eq. . Increasing the 6; of am
LF also effectively means reducing the impact other LFs have on a prediction.
In particular when ¢ estimates are imperfect, a gap to random accuracy of «;
is important to obtain good label estimates. Intuitively, we do not want to add
excessive noise by including LFs close to random unless we can guarantee that
their parameter estimate is appropriately low and has the correct sign.

D.2 Interactive Weak Supervision User Experiments

D.3 Interface and experiment prompt

Fig. shows an example of the prompt that was shown to users at each iteration of
the IWS user experiments. Before the experiment started, users were first instructed
on the interface they would see and the task they would be given, i.e. to label
a heuristic as good if they would expect it to label samples at better than random
accuracy and as bad otherwise. Users were also instructed about the response options,
including the option to not answer a query if they were unsure (‘I don’t know’).

Users were given a description of the classification task and domain of the doc-
uments for which heuristics were being acquired. Users were also provided with a
description of the heuristic generated which labeled samples with a target label if
a document contained a certain term. Finally, users were given two examples of a
better than random heuristic, and two examples of an arbitrary heuristic.
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Description of heuristic| contains term: clueless

Intended label of heuristibpnsitive sentiment 1 Intended Label

Is this a good labeling function for positive sentiment?

Useful heuristic for: positive sentiment

Likely a useful heuristic for: positive sentiment

Likely NOT a useful heuristic for: positive sentiment
» NOT a useful heuristic for: positive sentiment

| don't know

Submit

Undo last decision

Init 0/4

Figure D.1: An example of the prompt and answer options that users were shown
during the user study. Before starting the experiment, users were provided with a
description of the task and the labeling function family.

During the experiments, users were also provided with 4 random examples of
documents documents where the queried LF applied. Users were instructed to first
consider the LF without inspecting these random samples, and to only consider the
examples if necessary.

While LFs receive binary labels, users were allowed to express uncertainty about
their decision, which was used as a sample weight (1 if certain else 0.5) of LFs during
training of the probabilistic model of user feedback.

D.4 Additional statistics of user experiments

Fig. provides more details about the IWS user experiments. The top row displays
the test set performance of downstream model f for each individual user. The middle
row shows how the number of LFs determined by the user to be useful u = 1 increases
with the number of iterations. The bottom row displays the maximum positive cor-
relation between a new LF with u = 1 at iteration ¢ and all previously accepted LFs
with w = 1 up to iteration ¢. Note that abstains are taken into account by computing
the correlation between and LF ¢ and j only on entries where at least one of them is
Nonzero.
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Figure D.2: Test [AUC| by IWS iteration shown for individual user experiments with
IWS-AS (top). Number of LFs labeled as useful by IWS iterations (middle). Maxi-
mum correlation to previously accepted LFs by number of iterations (bottom).
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Appendix E

Weak Supervision as Paired
Multi-Modal data:
Vision—Language Processing in
Biomedicine

E.1 Additional Experiments

E.1.1 Zero-shot Text-prompt Sensitivity Analysis

Vision-language pretraining aligns image and text data in a joint representation space,
which enables impressive zero-shot downstream image classification performance via
input text prompts. However, some recent work [128, 292] has shown that downstream
task performance can heavily depend on the choice of text prompts. Constructing
good text prompts (prompt engineering) may require expert domain knowledge and
can be costly and time-consuming. Table studies RSNA pneumonia zero-shot
classification performance using different text prompt combinations. Compared to
the baseline, BioViLL demonstrates much lower sensitivity to prompt choices selected
from the data distribution. BioVil. maintains its high performance even when faced
with relatively long queries, which is not the case for the baseline model. These
observations suggest that the improved text encoder CXR-BERT is more robust to
prompt variations, and makes prompt engineering easier and less of a requirement to
achieve high zero-shot classification performance.

E.1.2 Qualitative Results — Phrase Grounding

Fig. describes some phrase grounding examples obtained with different models on
the MS-CXR dataset. From left to right, the figure shows the Clinical BERT baseline,
ConVIRT, GLoRIA, and BioViL similarity maps. While the figure only illustrates
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Table E.1: Text prompt sensitivity analysis on the RSNA pneumonia zero-shot clas-
sification task. Image-text models trained without the proposed text modelling im-
provements (Table show higher sensitivity to different input text prompts as the
latent text embeddings are inconsistent for synonym phrases. For this reason, base-
line methods often require post-hoc text prompt engineering heuristics (e.g. )

Method Pos. Query Neg. Query F1 Score ROC-AUC |AAUC|
BioViL “Findings suggesting pneumonia” “There is no evidence of acute pneumo- 0.657 0.822 -
nia”
ClinicalBert “Findings suggesting pneumonia” “There is no evidence of acute pneumo- 0.581 0.731 -
nia”
BioViL “Findings suggesting pneumonia” “No evidence of pneumonia” 0.665 0.831 -
BioViL “Consistent with the diagnosis of pneumo- “There is no evidence of acute pneumo- 0.669 0.839 0.008
nia” nia”
ClinicalBert “Findings suggesting pneumonia” “No evidence of pneumonia” 0.614 0.815 -
ClinicalBert “Consistent with the diagnosis of pneumo- “There is no evidence of acute pneumo- 0.621 0.694 0.121
nia” nia”
BioViL “Findings consistent with pneumonia” “No evidence of pneumonia” 0.672 0.838 -
BioViL “Findings consistent with pneumonia” “There is no pneumonia” 0.679 0.847 0.009
ClinicalBert “Findings consistent with pneumonia” “No evidence of pneumonia” 0.640 0.782 -
ClinicalBert “Findings consistent with pneumonia” “There is no pneumonia” 0.586 0.724 0.058
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Table E.2: An extension of Table to include Sensitivity and Specificity for the
RSNA Pneumonia zero-shot and fine-tuned classification. Results are compared to
GLoRIA scores reported in [128], which outperforms ConVIRT [292] (see [128]).
Training size: GLoRIA (N = 186k, private dataset), BioViL. (N = 146.7k of MIMIC-
CXR).

Method Type Text Model Loss % of labels Acc. Sens. Spec. F1 AUROC

Image 1% 0.545 0.776 0.436 0.522 0.701
SimCLR [45] onl g - Global 10% 0.760 0.663 0.806 0.639 0.802
Y 100% 0.788 0.685 0.837 0.675 0.849

Zero-shot 0.70 0.89 0.65 0.58 -
Global 1% 0.72 0.82 0.69 0.63 0.861
& local 10% 0.78 0.78 0.79 0.63 0.880
100% 0.79 0.87 0.76 0.65 0.886

GLoRIA [128] Joint Clinical BERT

Baseline Joint Clinical BERT Global Zero-shot 0.719 0.648 0.781 0.614 0.812

Zero-shot 0.732 0.831 0.685 0.665 0.831
1% 0.805 0.791 0.812 0.723 0.881
10% 0.812 0.781 0.826 0.727 0.884

100% 0.822 0.755 0.856 0.733 0.891

BioViL Joint CXR-BERT Global

a few examples, the results demonstrate that phrase grounding performance can be
significantly enhanced by leveraging improved text modelling (BioViL). The examples
include clinical findings that differ in size, type, and anatomical location.

Additionally, Fig. describes some failure cases of BioViL. on the MS-CXR dataset
to motivate any further research on this topic. In particular, the models show limi-
tations in grounding the descriptions relating to smaller structures (e.g., rib fracture,
pneumothorax), and in a few cases the location modifier is not disassociated from the
entities corresponding to abnormalities, see (a) in Fig. [E.3|

E.1.3 Additional Evaluation Metrics

In Table[E.2] an extension of Table[4.7]is provided to include the sensitivity and speci-
ficity metrics for the zero-shot and fine-tuned classification experiments presented in
Section The classification thresholds are set to maximize the F1 scores for
each method. Further, Table provides mean IoU scores for the phrase grounding
experiments presented in Section [4.2.3] which evaluates the pretrained BioViL model
on the MS-CXR dataset. It is observed that the distribution of similarity scores is
different for GLoRIA and BioViL-L due to the different temperature parameter used
in the local loss term in [128]. To provide a fair comparison, the similarity scores
are adjusted via min-max scaling to the full [—1, 1] range. The same scaling strategy
is utilized in the implementation of the baseline method [128]. Note that the CNR
scores are not affected by this linear re-scaling.
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Query: "Retrocardiac opacification is again seen with air bronchograms suggesting pneumonia"

CNR = 1.61, mloU = 0.34 CNR = 0.69, mloU = 0.16 CNR = 1.37, mloU = 0.13 CNR = 2.00, mloU = 0.51 1.00
0.75
0.50
0.25
0.00
-0.25
—-0.50

-0.75

(a) Relatively long and complex query

Query: "area of opacification has developed in the right juxta hilar region"

CNR = 2.13, mloU = 0.27

1.74, mloU = 0.24 1.82, mloU = 0.29 2.37, mloU = 0.29 1.00

0.75

0.50

0.25
_______ 0.00
-0.25
-0.50

-0.75

-1.00

(b) Complex anatomical location specification

Query: "right basilar pulmonary opacity"
CNR = -0.12, mloU = 0.00 CNR = 1.58, mloU = 0.08 CNR = 1.93, mloU = 0.09 CNR = 2.15, mloU = 0.12 10

(¢) Small ground-truth bounding box

Figure E.1: Qualitative examples from MS-CXR phrase grounding benchmark. Model
outputs (latent vector similarity) are compared (from left, ClinicalBERT baseline,
ConVIRT, GLoRIA, and BioViL). See Fig. for more examples.
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Query: "multifocal pneumonia"
CNR = 0.81, mloU = 0.27 CNR = 0.91, mloU = 0.32 CNR = 0.57, mloU = 0.10 CNR = 1.24, mloU = 0.40 10

¥ o * ] i 05
/ /
0.0
| ~05
» - Y
&" g - -
~10

(a) Multifocal pneumonia example which is localized in the right lobe

Query: "left basilar opacification"

CNR = -1.07, mloU = 0.00 CNR = 0.15, mloU = 0.03 CNR = 0.80, mloU = 0.04 CNR = 1.99, mloU = 0.30 1.00

—0.25

—0.50

—0.75

—1.00

(b) Location modifier “left basilar”

Figure E.2: More qualitative examples from MS-CXR phrase grounding benchmark.
Model outputs (latent vector similarity) are compared (from left, Clinical BERT base-
line, ConVIRT, GLoRIA, and BioViL)
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Query: "mild subsegmental atelectasis is noted at both lung bases"
CNR = 0.03, mloU = 0.05 CNR = -0.52, mloU = 0.01 CNR = 1.03, mloU = 0.07 CNR = 0.10, mloU = 0.06 10

(a) Failed to recognize atelectasis despite having lung location specification

Query: "small left apical pneumothorax"

CNR = 0.46, mloU = 0.02 CNR = -0.29, mloU = 0.01 CNR = 0.10, mloU = 0.00 CNR = 0.00, mloU = 0.01 1.00

-0.25

—0.50

-0.75

17 ' ' 1'%

(b) Failed to recognize small pneumothorax despite having “apical” modifier.

-1.00

Query: "loculated pleural fluid in the right hemithorax, at the apex"

CNR = 0.05, mloU = 0.09 CNR = 0.03, mloU = 0.09 CNR = -0.03, mloU = 0.06 CNR = 0.07, mloU = 0.09 1.00

-0.25
-0.50

-0.75

au a

-1.00

(c) Loculated pleural fluid not recognized despite “apical” and “right hemithorax”
information.

Figure E.3: MS-CXR benchmark failure cases. Latent vector similarity is compared

(from left, Clinical BERT baseline, ConVIRT, GLoRIA, and BioViL). See Fig. [E.4] for

more failure cases.
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Query: "poorly defined opacity approximately at right eighth posterior rib level"

CNR = 0.89, mloU = 0.06 CNR = 0.64, mloU = 0.05 CNR = 1.10, mloU = 0.05 CNR = 0.99, mloU = 0.07 1.00

-0.25
—-0.50

=0.75

-1.00

(a) Failed to recognize the rib position
Query: "the heart is mildly enlarged"

CNR = 0.04, mloU = 0.02 CNR = -0.21, mloU = 0.11 CNR = 0.49, mloU = 0.11 CNR = 1.03, mloU = 0.09 1.00

-0.25
—0.50

=0.75

-1.00

(b) Mismatch between bounding box and salient region: Models attend to the
enlarged area to identify the abnormality instead of the entire heart.

Figure E.4: MS-CXR benchmark failure cases. Latent vector similarity is compared
(from left, Clinical BERT baseline, ConVIRT, GLoRIA, and BioViL).
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Table E.3: Ablations on BioViLL — Increasing training set size and use of raw DICOM
images instead of compressed JPEG images. The approaches are compared in terms
of contrast-to-noise ratio (CNR) obtained on the newly released MS-CXR dataset,
averaged over four runs with different seeds.

Method Training Atelectasis Cardiomegaly Consolidation Lung opacity ~Edema  Pneumonia Pneumothorax Pl. effusion Avg.

BioViL 146.7k 1.02+.06 0.63+.08 1.42+.02 1.05+£.06 0.93+.03  1.274+.04 0.48+.06 1.40£.06  1.03£.02
+ More data  176.0k 1.01£.07 0.70+.03 1.45+.01 1.04+.04 0.94+£.01  1.27+£.05 0.54+.05 1.43+.04  1.05+.02
+ Raw images 176.0k 1.03+.06 0.64+.09 1.51+.02 1.12+.06 1.00+£.07  1.39+.04 0.56+.05 1.46+.05  1.09+.02

Table E.4: Mean IoU scores obtained on the newly released MS-CXR dataset, averaged
over four runs with different seeds. The results are collected using different text
encoder and training objectives (e.g., G&L: Global and local loss).

Method Objective Text encoder  Atelectasis Cardiomegaly Consolidation Lung opacity Edema Pneumonia Pneumothorax Pl effusion Avg.
Baseline Global Clinical BERT 0.228 0.269 0.293 0.173 0.268 0.249 0.084 0.232 0.224
Baseline Global PubMedBERT 0.225 0.293 0.297 0.167 0.266 0.286 0.077 0.222 0.225
ConVIRT [292| Global Clinical BERT 0.257 0.281 0.313 0.177 0.272 0.238 0.091 0.227 0.238
GLoRIA 128 G&L Clinical BERT 0.261 0.273 0.324 0.198 0.251 0.246 0.100 0.254 0.246
BioViL Global CXR-BERT 0.296 0.292 0.338 0.202 0.281 0.323 0.109 0.290 0.266
BioViL-L G&L CXR-BERT 0.302 0.375 0.346 0.209 0.275 0.315 0.135 0.315 0.284

E.1.4 Ablations on Training Dataset Size & Use of Raw In-
put Images

An additional set of experiments are conducted to test the impact of (I) training
dataset size and (II) the use of raw DICOM images instead of JPEG images on
phrase grounding performance. In the former case, the number of training pairs is
increased from 146.7k to 176k, where all available studies with IMPRESSION section
and AP/PA scans are used after excluding the test set. In the latter ablation, the
JPEG images are replaced with the raw DICOM images to reduce image artifacts
due to compression. Table shows that further performance gains can be achieved
by utilizing the DICOM data and matching the training set size to related methods
(e.g., GLoRIA [128]), where the raw data is empirically observed to contribute more.
These improved results and pretraining models are neither reported nor used in the
experiments presented in the main body of this paper. The findings can provide
useful insights for future research on this topic.

E.2 Background in Chest Radiology

Chest X-rays are the most commonly performed diagnostic X-ray examination, and
a typical text report for such an exam consists of three sections: a “Background”
section describing the reason for examination and the exam type, a “Findings” sec-
tion describing abnormalities as well as normal clinical findings in the scan, and an
“Impression” section which summarizes the findings and offers interpretation with
possible recommendations. Multiple large Chest X-ray datasets have been released
to the public (see [248] for an overview of CXR image datasets), including multi-
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modal ones of images and text such as MIMIC-CXR [136], some also accompanied
by small sets of expert-verified ground-truth annotations of various nature, making
the application a popular candidate for exploring self-supervised VLP on biomedical
data.

The application area also possesses a strong clinical motivation. Globally, there
is a shortage of qualified trained radiologists and a constantly increasing number of
examinations in healthcare systems, workflows are hampered by issues such as a lack
of standardization in report writing, and fatigue-based errors occur too frequently.
Thus, decision-support systems that can analyze incoming images or image-report
pairs in order to provide real-time feedback to radiologists are a promising avenue
towards improving workflow efficiency and the quality of medical image readings. In
practice, the existing radiology workflow can for example be augmented via machine
learning models by providing feedback on any incorrect or missing information in
reports, and by standardizing the reports’ structure and terminology.

E.2.1 Key NLP and Dataset Challenges in Radiology

This work focuses on developing text and image models to enable clinical decision-
support systems for biomedical applications via self-supervised VLP, without ground-
truth annotations, and the work conducts experiments in CXR applications. Image
and text understanding in the biomedical domain is distinct from general-domain ap-
plications and requires careful consideration. Medical images are elaborately struc-
tured, which is reflected in the corresponding notes. To be able to harness the dense
information captured in text notes for free-text natural language supervision, it be-
comes imperative to obtain finely tuned text models.

Complex Sentence Structure. Linguistic characteristics in radiology reports,
many shared with related clinical text settings, decidedly differ from general do-
main text and thus require carefully tuned text models to acquire the best possible
free-text natural language supervision in self-supervised VLP. For one, negations are
frequently used to indicate the absence of findings, in particular to make references
as to how a patient’s health has evolved, e.g. “there are no new areas of consolidation
to suggest the presence of pneumonia”. This sentence is for example falsely captured
as positive for pneumonia by the automated CheXpert labeler [132]. Furthermore,
as exemplified in this example, long-range dependencies are common, which makes
understanding of relations within sentences challenging.

Use of Modifiers. Another characteristic is the use of highly specialized spatial
language in radiology, which is crucial for correct diagnosis, often describing the
positioning of radiographic findings or medical devices with respect to anatomical
structures, see e.g. |66, |67]. The use of words like “medial”, “apical”, “bilateral”
or “basilar” as spatial modifiers is unlikely to appear in the general domain but very
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common in CXR radiology reports. In addition to spatial modifiers, severity modifiers
such as “mild”, “moderate” or “severe” are also commonly attached to an identified
disorder or abnormality [81].

Expressions of Uncertainty. Another interesting difference to most general do-
main VLP applications and datasets such as Internet image captions, are expressions
of uncertainty that one frequently encounters in radiology reports. One would rarely
expect to find an image caption to read “We see a person petting an animal, it is likely
a dog but it could also be a cat”. In contrast, consider the following real radiology
example: “New abnormality in the right lower chest could be either consolidation
in the lower lobe due to rapid pneumonia or collapse, and/or moderate right pleural
effusion, more likely abnormality in the lung because of absent contralateral mediasti-
nal shift.” It is an extremely long description expressing uncertainty and containing
long range dependencies.

Class Imbalance. Finally, a challenge for many domain-specific VLP applications
that is far less pronounced in the general domain setting is that of imbalanced latent
entities. An example of such entities are the normal and anomalous findings in radiol-
ogy images that doctors will describe in their report. In the CXR application, reports
can roughly be divided into normal and abnormal scans, where abnormal ones reveal
signs or findings observed during the exam [61]. Normal scans that do not show any
signs of disease are far more common than any other findings, which leads to a larger
number of false negatives in contrastive objectives compared to the general domain.
An important detail is that normal scans tend to be expressed in specific forms and
doctors frequently use templates to produce reports with no abnormalities.

E.3 MS-CXR Dataset Details

General Overview. This new benchmark dataset provides bounding box and sen-
tence pair annotations describing clinical findings visible in a given chest X-ray image.
MS-CXR consists of 1047 images, with a total of 1153 bounding box and sentence pairs.
Each sentence describes a single pathology present in the image, and there could be
multiple manually annotated bounding boxes corresponding to the description of the
single radiological finding. Additionally, an image may have more than one pathology
present, and the dataset provides separate sets of bounding boxes for each phrase de-
scribing a unique pathology associated with an image. The annotations were collected
on a subset of MIMIC-CXR images, which additionally contains labels across eight
different pathologies: atelectasis, cardiomegaly, consolidation, edema, lung opacity,
pleural effusion, pneumonia and pneumothorax. These pathologies were chosen based
on the overlap between pathology classes present in the existing datasets and the
CheXbert classifier [242]. In Fig. and Table [E.6] some representative image and
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Table E.5: Distribution of the annotation pairs (image bounding-box and sentence)

across different clinical findings. The demographic statistics (e.g., gender, age) of the
subjects are collected from MIMIC-IV dataset for MS-CXR and all MIMIC-CXR.

Findings # of annotation pairs  # of subjects Gender - F (%) Avg Age (std)
Atelectasis 61 61 28 (45.90%) 64.52 (15.95)
Cardiomegaly 333 282 135 (47.87%) 68.10 (14.81)
Consolidation 117 109 40 (36.70%)  60.08 (17.67)
Edema 46 12 18 (42.86%)  68.79 (14.04)
Lung opacity 81 81 33 (40.24%) 62.07 (17.20)
Pleural effusion 96 95 41 (43.16%) 66.36 (15.29)
Pneumonia 182 146 65 (44.52%) 64.32 (17.17)
Pneumothorax 237 151 66 (43.71%) 60.71 (18.04)
Total 1153 851 382 (44.89%)  64.37 (16.61)
Background (all MIMIC-CXR) - 65379 34134.0 (52.30%) 56.85 (19.47)

text examples from MS-CXR are shown. Additionally, the distribution of samples
across the pathology classes is shown in Table together with demographics across
subjects in MS-CXR.

Differences to Existing Annotations. The proposed benchmark builds on top of
publicly available bounding-box/ellipse annotations in REFLACX [20] and MIMIC-
CXR~Annotations [248], where the latter also contains simplified text phrases for
pneumonia and pneumothorax. MS-CXR extends and curates these annotation sets by
(I) adding a new set of studies to cover a wider range of clinical findings and patholo-
gies, (II) reviewing the clinical correctness and suitability of the existing annotations
for the grounding task (see Section [£.2.2), (III) creating, verifying, and correcting
bounding boxes where necessary, and (IV) pairing them up with real clinical descrip-
tions extracted from MIMIC-CXR reports if none were present. Most importantly,
the textual descriptions paired with dense image region annotations are sampled from
the original distribution of word tokens, which capture dense text semantics and are
better aligned with real-world clinical applications that build on good local alignment.

E.3.1 Label Collection and Review

Original MIMIC reports and REFLACX [20] radiology transcripts are first parsed by
extracting sentences to form a large pool of text descriptions of pathologies. These
candidates are later filtered by deploying the CheXbert [242] text classifier, in order
to keep only the phrases associated with the target pathologies whilst ensuring the
following two criteria: (I) For a given study, there is only one sentence describing
the target pathology, and (II) the sentence does not mention more than one findings
that are irrelevant to each other. After extracting the text descriptions, they are
paired with image annotations on a study level. At the final stage, a review process is
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patchy bilateral ground-glass there is left lower lobe
. enlarged cardiac silhouette pulmonary opacities consolidation
small left apical pneumothorax

PORTABLE
Bapr
1 G

(a) Spatial extent of abnormalities ranging from highly localized to large and diffuse

opacities, consistent with
Subtle opacity in the left small-to-moderate sized apical consolidation, are present in the

perihilar region Patchy right infrahilar opacity right pneumothorax right upper lobe, left upper lobe
and right lower lung

(b) Complex spatial modifiers commonly seen in radiology reports

cardiac silhouette is mildly patchy consolidation of the right left mid and lower lung airspace
enlarged lung base opacification Right lower lung airspace opacity

(¢) Multiple pathologies reported for the (d) Findings with multiple spatial locations
same study reported separately

Figure E.5: Some examples illustrating important axes of variability present in the
MS-CXR dataset. Text descriptions include clinical findings of varying spatial extent
(a) and a range of different spatial modifiers (b). Additionally, a subset of studies
contain multiple bounding-box and sentence annotations per image (c—d).
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conducted with two board certified radiologists mainly to verify the match between the
text and bounding box candidates. Moreover, in this review process, the suitability
of the annotation pairs for the grounding task were also assessed, whilst ensuring
clinical accuracy. In detail, the phrase-image samples are filtered out if at least one
of following conditions is met:

1. Text describing a finding not present in the image.

2. Phrase/sentence does not describe a clinical finding or describes multiple unre-
lated abnormalities that appear in different lung regions.

3. There is a mismatch between the bounding box and phrase, such as image
annotations are placed incorrectly or do not capture the true extent of the
abnormality.

4. High uncertainty is expressed regarding reported findings, e.g. “there is ques-
tionable right lower lobe opacity”.

5. Chest X-ray is not suitable for assessment of the finding or has poor image
quality.

6. Text contains differential diagnosis or longitudinal information that prohibits
correct grounding via the single paired image.

7. Sentences longer than 30 tokens, which often contain patient meta-information
that is not shared between the two modalities (e.g., de-identified tokens).

Note that only phrases containing multiple findings are filtered out, not images with
multiple findings. For instance, if an image contains both pneumonia and atelecta-
sis, with separate descriptions for each in the report, then two instances of phrase-
bounding box pairs are created. Among those candidate annotations automatically
extracted from radiology reports [136] or dictated transcripts [20], 222 of out 817 were
rejected and not included in MS-CXR. Here the raw text data were first processed with
an algorithm to extract caption candidates for the review process. The same review
process is applied to adjudicate the annotation pairs released in [248], and 53 out of
367 pairs were rejected and not included in MS-CXR.

To further increase the size of the dataset, and to balance samples across classes,
additional CXR studies are sampled at random, conditioned on the underrepresented
pathologies. The following procedure is applied to create the pairs of image and text
annotations for these selected studies: Text descriptions are extracted using the same
methodology outlined above, using MIMIC-CXR and ImaGenome datasets [271],
where the latter provides sentence extracts from a subset of MIMIC-CXR dataset
for clinical findings. However, differently from the initial step, the corresponding
bounding box annotations (either one or more per sentence) are created from scratch
by radiologists for the finding described in the text, and the same filtering as above is
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Table E.6: Example findings in MS-CXR with complex syntactic structures. Please
note how radiological sentences are most often not just a simple statement of the
form “[classl, class2, ...]” that can be parsed with a simple bag-of-words approach,
as in typical natural image captioning benchmarks (e.g., “A couple getting married”
retrieved from Flickr30k [211]).

Sentence

Difficulty

Class

“Abnormal opacity in the basilar right
hemithorax is likely atelectasis involving the
right lower and middle lobes”

“Multisegmental lower lobe opacities are
present, consistent with areas of consolidated
and atelectatic lung”

“Parenchymal opacification in the mid and
lower lung”

“Air bronchograms extending from the left
hilum throughout the left lung which has the
appearance of infection”

“Persistent focal bibasilar opacities, most con-
sistent with infection”

“Widespread infection, less severe on the left”

“Airspace consolidation in the right upper,
right middle and lower lobes”

“Subsegmental-sized opacities are present in
the bilateral infrahilar lungs”

“There continues to be a diffuse bilateral
predominantly interstitial abnormality in the
lungs with more focal vague opacity in the left
upper peripheral lung”

“Left apical pneumothorax”

“Fluid level posteriorly, which represents a loc-
ulated hydropneumothorax”

“Mild-to-moderate left pneumothorax”

“There is no pulmonary edema or pneumoth-
orax, but small pleural effusions are still
present”

“Pleural effusions are presumed but impossible

Complex syntactic structure

Complex syntactic structure

Less common expression

Complex location description

Domain-specific modifier

Location partially specified

Multiple locations

Domain specific modifiers

Complex syntactic structure

Domain-specific modifier

Domain-specific language

Severity modifier

Negated disease entities

Complex sentence structure

Atelectasis

Atelectasis

Pneumonia

Pneumonia

Pneumonia

Pneumonia

Pneumonia

Lung opacity

Lung opacity

Pneumothorax

Pneumothorax

Pneumothorax

Pleural effusion

Pleural effusion

to quantify, except say they are not large”

applied by the annotator to discard candidates if the image and/or sentence is found
unsuitable for the grounding task.

Analysis of Average Phrase Length. The average number of tokens (inc. full-
stop) across all phrases is calculated for each benchmark dataset to better understand
the characteristics of the dataset and domain. In that regard, the phrases released in
[248] has an average of 6.76 tokens per sample and MS-CXR has an average of 7.49 of
tokens per sample. The auto-extracted radiology sentences from transcriptions [20]
whereas has an average of 8.49 tokens per sample. Relatively long sentences, auto-
extracted from transcripts [20], were rejected more often in the review process, as
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Table E.7: Example findings in ImaGenome which would make grounding of phrases
difficult.

Sentence Difficulty Annotated Finding

“Even though Mediastinal veins are more dis- Multiple findings, un- Pneumonia
tended, previous pulmonary vascular conges- certainty, different sub-

tion has improved slightly, but there is more parts of lung

peribronchial opacification and consolidation

in both lower lobes which could be atelecta-

sis or alternatively results of recent aspiration,

possibly progressing to pneumonia.”

“Moderate right pleural effusion and bilateral Multiple findings, dif- Pneumonia
heterogenous airplace opacities, concerning for fering laterality
pneumonia.”

“It could be an early infection” Region unclear Pneumonia

“There is also a new small left-sided pleural Differential diagnosis, Effusion
effusion.” there could be another
effusion

they often describe multiple clinical findings located in different image regions. This
observation further emphasizes the importance of a review process of annotation pairs
by the domain experts.

Patient Demographics. As shown in Table [E.5 the average age of subjects in
MS-CXR is higher than the average for all subjects in MIMIC-CXR. This observation
can be explained with the fact that studies from healthy subjects that do not display
any anomalous findings are not sampled for MS-CXR , and these are statistically likely
to be younger. Similarly, it is not expected that gender bias is present due to the
sampling strategy, as none of the pathologies that were sample are gender-specific.
Overall MS-CXR does not deviate far from the MIMIC-CXR distribution.

E.4 Additional Related Work

This section provides additional related work to complement the related work of the
main document, which focused on weak supervision.

Biomedical VLP Representation Learning. Several studies [124, 128|166}, (194,
292] have explored joint representation learning for paired image and text data in the
medical domain. Contrastive VIsual Representation Learning from Text (ConVIRT)
[292] uses a contrastive learning formulation for instance-level representation learn-
ing from paired medical images and text. The authors uniformly sample sentences
and maximize their similarity to true augmented paired images via the InfoNCE con-
trastive loss [205], while reducing similarity between negative pairs in the same batch.
(128, |194] both introduce approaches that combine instance-level image-report con-
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trastive learning with local contrastive learning for medical data. In contrast, [166]
use a local-only objective in an approach that approximates the mutual information
between grid-like local features of images and sentence-level text features of medical
data. The formulation learns image and text encoders as well as a discriminator
trained to distinguish positive and negative pairs. While most related approaches use
no ground truth, [40] study a semi-supervised edema severity classification setting,
and [116] assume sets of seen and unseen labels towards zero-shot classification on
CXR data. [165] evaluate pretrained joint embedding models—general domain VLP
representation learning models that use a transformer to learn a joint embedding—by
fine-tuning the models on CXR data.

Multiple CXR datasets exist that enable a partial evaluation of phrase ground-
ing, but all come with some limitations which the MS-CXR dataset (see Section
aims to mitigate. VinDr [199], RSNA Pneumonia [237], and the NIH Chest X-ray
Dataset [266] are datasets that provide bounding-box image annotations, but lack
accompanying free-text descriptions. REFLACX [20] provides gaze locations cap-
tured with an eye tracker, dictated reports and some ground truth annotations for
gaze locations, but no full phrase matches to image regions. Phrase annotations for
MIMIC-CXR data released in [248] are of small size (350 studies), only contain two
abnormalities, and for some samples have shortened phrases that were adapted to
simplify the task. ImaGenome [271] provides a large number of weak local labels for
CXR images and reports, with a focus on anatomical regions. However, its ground-
truth set is smaller (500 studies), bounding-box regions annotate anatomical regions
rather than radiological findings. Furthermore, ImaGenome sentence annotations are
not curated, see Table for some examples. Sentences often contain multiple dis-
eases as well as uncertain findings, making an accurate, largely noiseless grounding
evaluation difficult. Some sentences also contain differential diagnosis and temporal
change information, which cannot be grounded without access to prior scans.

Language Modeling in Radiology. Most recent general domain VLP work relies
on transformer based contextual word embedding models, in particular BERT [79],
pretrained on general domain data from newswire and web domains such as Wikipedia.
But specific domains often exhibit differences in linguistic characteristics from general
text and even related domains, such as between clinical and non-clinical biomedical
text as noted in |4], motivating the use of more specialized language models in most
related work with a focus on the medical domain. Here, related multi-modal work
commonly uses publicly available models including BioBERT [157], Clinical BERT [4],
BioClinical BERT [4], or PubMedBERT [107], which are either trained from scratch
or fine-tuned via continual pretraining using a Masked Language Modeling (MLM)
objective. Sometimes additional objectives are added such as adversarial losses [173]
or Next Sentence Prediction. [107] provide evidence that training language models
from scratch for specialized domains with abundant amounts of unlabeled text can
result in substantial gains over continual pretraining of models first fit to general
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domain text. The specialized corpora these biomedical and clinical domain models
use include PubMed abstracts and PubMed Central full texts, and de-identified clin-
ical notes from MIMIC-IIT [137]. All the aforementioned language models have a
pre-specified vocabulary size consisting of words and subwords, usually 30,000 words
in standard BERT. The in-domain vocabulary plays a particularly important role in
representative power for a specialized domain. A vocabulary that is not adapted will
break up more words into subwords and additionally contain word pieces that have
no specific relevance in the specialized domain, hindering downstream learning (see
e.g. [107]). As [107] highlight, BERT models that use continual pretraining are stuck
with the original vocabulary from the general-domain corpora.

Other closely related tasks in the CXR domain that share similar NLP challenges
include report summarization |61, [291], automatic report generation |51, (170} (189),
and natural language inference for radiology reports [189]. Finally, while the name
implies close similarity to CXR-BERT, CheXbert [242] is a BERT based sentence
classification model developed for improving the CheXpert [132] labeler, and the
model does not have a domain-specific vocabulary like CXR-BERT or PubMed BERT.

Note that most related work on self-supervised multi-modal learning on CXR
data neither explores text augmentation, nor maintains text losses such as MLM
during multi-modal training. An exception is found in [194], who use the Findings
and Impression/Assessment sections of radiology reports, and randomly change the
sentence order by swapping pairs of them.

E.5 Model Details

E.5.1 CXR-BERT Pretraining Details

The CXR-BERT text encoder is based on the BERT (base size) architecture [256]. An
implementation available via the Huggingface transformers library [269] is adopted
for this purpose. The model weights are randomly initialized and pretrained from
scratch. As described in Section [4.2.1, CXR-BERT is pretrained in three phases
before the joint pretraining phase. For Phase (I), the Huggingface tokenizer libraryﬂ
is used to generate a custom WordPiece vocabulary of 30k tokens. For Phase (II),
the AdamW [178] optimizer with a batch size of 2048 sequences and a linear learning
rate schedule over 250k training steps with a 5% warm up period is used. A base
learning rate of 4e-4 is set. Following RoBERTa [174], multiple sentences are packed
into one input sequence of up to 512 tokens, and dynamic whole-word masking is
employed. In Phase (III), pretraining of the model is continued using only MIMIC-
CXR text reports. In addition to the MLM loss, the RSM loss is added to pretrain
the projection layer. The projection layer P is used to project the 768-dimensional
feature vector t to a 128-dimensional report representation t. The AdamW optimizer

Ihttps://github.com/huggingface/tokenizers
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Table E.8: Hyper-parameter values used for image data augmentations.

Image-Text Pretraining Image-only Pretraining Fine-tuning for Downstream Tasks

Affine transform — shear 15° 40° 25°
Affine transform — angle 30° 180° 45°
Color jitter — brightness 0.2 0.2 0.2
Color jitter — contrast 0.2 0.2 0.2
Horizontal flip probability - 0.5 0.5
Random crop scale - (0.75, 1.0) -
Occlusion scale - (0.15, 0.4)

Occlusion ratio - (0.33,0.3)

Elastic transform (o, «) [240] - (4, 34)

Elastic transform probability - 0.4

Gaussian noise - 0.05

with a batch size of 256 sequences and a linear learning rate schedule over 100 epochs
with a 3% warm up period is used. The base learning rate is set to 2e-5.

E.5.2 Image Encoder

Pretraining Details. For the image encoder, the ResNet50 [117] architecture is
chosen. The 2048-dimensional feature maps V of the ResNet50 are projected to 128-
dimensional feature maps V using a two-layer perceptron P, implemented with 1x1
convolutional layers and batch-normalization [131]. The global image representation
v is obtained by average-pooling the projected local features V. Prior to image-text
joint training, the model weights are randomly initialized and pretrained on MIMIC-
CXR images using SimCLR [45] — an image-only self-supervised learning approach.
A large-batch optimization (LARS) technique [281] is used on top of ADAM with a
batch size of 256 and a linear learning rate scheduler over 100 epochs with a 3% warm
up period. The base learning rate is set to le-3.

Augmentations. For each training stage, a different set of custom image augmen-
tations is applied in order to have a better control over the learned feature invariances
(e.g., laterality). During the image-text joint pretraining stage, affine transformations
(random rotation and shearing) and contrast and brightness color jitter are used.
Unlike ConVIRT [292] and GLoRIA [128], horizontal flips are not applied during the
joint training in order to preserve location information (e.g. “pneumonia in the left
lung”). During the image-only SSL (SimCLR) pretraining phase, additional image
augmentations are used including random occlusion, additive Gaussian noise, and
elastic spatial transforms [240]. Implementations available in the torchvision libraryﬂ
are used for this purpose. The image augmentation parameters and their correspond-
ing values are listed in Table [E.8] Before applying these transformations, the input
image intensities are normalized by re-scaling each color channel values to the [0, 255]
range. During inference, only center cropping and resizing is applied.

’https://pytorch.org/vision/stable/transforms.html
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