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ABSTRACT 

 

Natural Organic Matter (NOM), a pervasive component of natural waters, presents many 

challenges for water treatment systems. Its complex and heterogeneous nature makes NOM 

difficult to characterize and highly variable in its effect in water treatment. Two specific water 

treatment challenges caused by NOM and dependent on its character are disinfection by-product 

(DBP) formation and organic fouling in pressure-driven membranes. Many NOM 

characterization methods exist and have shown success in highly controlled laboratory settings; 

however, evaluating their effectiveness in full-scale systems to predict DBP formation and 

membrane fouling remains an ongoing challenge. Fluorescence NOM Excitation Emission 

Matrices (EEM) are hypothesized to be effective in NOM characterization because they capture 

the complexity and heterogeneity of the NOM in data-rich measurements that are unique to each 

individual sample.  

 

The objective of this work was to assess the utility of fluorescence EEM and other NOM 

characterization techniques for predicting DBP formation and membrane fouling in full-scale 

treatment systems. The review of current literature on NOM characterization and use in 

predicting water treatment challenges revealed patterns among NOM characterizations and water 

treatment outcomes – namely, high molecular weight, hydrophobic, aromatic NOM leads to 

increased DBP formation, while hydrophilic NOM with low aromaticity leads to increased 

organic fouling. Multiple reports from laboratory studies indicating the success of fluorescence 

measurements in characterizing DBP formation and membrane fouling suggest evaluation at full-

scale treatment plants is warranted. The two field studies presented in this dissertation each 

address one of the major treatment challenges outlined – DBP formation and membrane fouling.  



iii 
 

The DBP formation field study incorporated source water and finished water samples from six 

treatment plants along the Monongahela River in southwestern Pennsylvania to create a regional 

watershed model. Fluorescence measurements of the source water were used successfully to 

classify finished water DBPs according to various targets using classification trees. The 

membrane fouling study incorporated samples of the raw source water and treated water at 

various treatment stages within a full-scale two-pass (two-stage) reverse osmosis membrane 

treatment plant. Fluorescence measurements were successful in distinguishing between high 

fouling and low fouling periods within the plant, however, they were not capable of tracking 

treatability of source water throughout the pre-treatment steps. The results of the two field 

studies indicate that fluorescence measurements have utility in NOM characterization for full-

scale treatment plant operations, but more research is needed in determining which specific 

signals are useful in online fluorescence detection and in assessing the broader applicability of 

these techniques to other geographical regions with different water qualities.  
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1 Chapter 1 

 

INTRODUCTION, PROBLEM IDENTIFICATION, AND RESEARCH OBJECTIVES 

 

1.1 Introduction 

Natural Organic Matter (NOM) is a universal component of natural aquatic systems, but presents 

significant challenges for water treatment operations. Not only does it degrade the aesthetics by 

altering the taste, color and odor, NOM contributes to the formation of toxic disinfection by-

products and increases the operational cost of membrane treatment due to fouling. NOM is a 

heterogeneous mixture of carbon-based materials that contains a range of molecular weights, 

functional groups, molecular structures, and elemental compositions (Wong et al., 2002; 

Matilainen et al., 2011; Owen et al., 1995). These different organic carbon compounds with 

diverse properties have highly variable effects on water treatment systems (Tran et al., 2015; 

Owen et al., 1995; Ivancev-Tumbas, 2014).  

 

In the present work, the presence of natural organic matter and its effect on water treatability is 

explored through consideration of disinfection by-product formation and membrane fouling 

control. Drinking water disinfection is a critical component of water treatment – inactivating 

most pathogenic microorganisms present in source waters and ensuring safe water is delivered to 

consumers.  However, the strong oxidizing agents used for disinfection react with organic matter 

that is not fully removed in treatment steps to form disinfection by-products (DBPs). DBPs are 

associated with adverse health effects, such as bladder cancer and low birth weight (Cantor et al., 

2010; Villanueva et al., 2004; Danileviciute et al., 2012; Kumar et al., 2014). Regulation of 

disinfection includes consideration of the balancing of risk from microbial contaminants and the 

risk from the DBPs that form (EPA, 2010). 
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Disinfection enables the use of freshwater sources for water consumption, but these sources are 

increasingly under stress due to global population growth and climate change. Membrane 

technology, specifically reverse osmosis membrane treatment, plays an important role in 

augmenting limited freshwater resources through desalination and treatment of brackish waters. 

The principal challenge facing the membrane separation process is fouling, generally 

characterized as a loss of performance in the membrane system.  Organic fouling, a reduction in 

hydraulic permeability due to accumulation of organic foulants on the membrane,  is a concern in 

all membrane treatment processes and often precedes more severe biological fouling.   

Membrane fouling increases operational costs through the additional pressure required to 

maintain a constant flux through the membrane despite reduced permeability. Overall, fouling 

adds to the already high costs of membrane treatment, limiting the use of membrane technology.  

 

The diversity of NOM structures and fractions makes it (1) difficult to characterize NOM simply, 

yet comprehensively and (2) difficult to connect NOM character to water treatment challenges. 

Significant research has attempted to address these issues, yet the challenge of developing a 

NOM characterization technique that can effectively capture its complexity and relate it to 

downstream problems in water treatment is ongoing. Accurate predictions of how the NOM in 

the source water will affect downstream water treatment operations could greatly improve the 

economical provision of safe and clean water to consumers. Specifically, understanding the 

connection between NOM character and adverse water treatment outcomes would help operators 

identify problems in advance and implement additional pre-treatments to remove harmful NOM 
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prior to treatment, making the finished water safer and the entire treatment system more cost-

effective.   

 

1.2 Problem Identification and Research Objectives 

There are many methods currently available for measurement and characterization of NOM; 

however, their utility for treatment system management and optimization is unclear.  NOM 

characterization must be improved in order to understand and control formation of harmful 

disinfection byproducts and fouling of reverse osmosis membranes.   

 

This dissertation assesses the utility of a specific NOM characterization technique, fluorescence 

Excitation Emission Matrices (EEM), in each of these different, but important water treatment 

challenges. Fluorescence EEM have been proposed to address these characterization challenges 

because they capture the fluorescence character of NOM with data-rich measurements that are 

unique to each individual sample (Stedmon and  Bro, 2008). Along with Parallel Factor Analysis 

(PARAFAC), EEM can be decomposed into a few representative components that can be 

incorporated into statistical models used to predict water treatment challenges (Stedmon et al., 

2003b; Stedmon and  Bro, 2008; Bro, 1997). Given the success of EEM-PARAFAC components 

in bench-scale and lab-scale water treatment studies (Pifer and  Fairey, 2012; 2014; Johnstone et 

al., 2009; Peiris et al., 2010b; Peiris et al., 2010a), it is expected that this NOM characterization 

technique will also provide useful results for full-scale treatment plants experiencing NOM 

challenges from natural waters. These results will be essential in making progress towards 

implementation of online fluorescence monitoring of influent water in full-scale systems.  

 

There are three research objectives: 
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1. To assess NOM measurement techniques, with an emphasis on fluorescence measurements, 

and their use in predicting DBP formation and membrane fouling through a review of published 

studies;  

2. To create watershed-level DBP formation prediction models using fluorescence NOM 

measurements that define treatability of the water source, with a focus on relevant regulatory and 

operational parameters; and  

3. To link fluorescence NOM measurements to observed fouling events in a full-scale membrane 

treatment plant and track changes in NOM due to pre-treatment using fluorescence.  

 

1.3 Structure of the Dissertation 

 The dissertation is made up of five chapters, including an introduction, a literature review, two 

research papers that are intended for publication in peer-reviewed journals (one has been 

accepted and one is in preparation), and a conclusion. Chapter 1, the introduction, provides the 

motivation for the research along with an overview of the dissertation. Chapter 2, the literature 

review, provides the background necessary for the two research papers, including an overview of 

natural organic matter characterization and how it has been used in disinfection by-product and 

membrane fouling studies. Chapter 3 focuses on predicting basin-wide finished water DBP 

targets based on source water NOM characterization using classification trees. Chapter 4 focuses 

on the application of NOM characterization for predicting fouling events and treatability under 

various pre-treatments in a full-scale reverse osmosis membrane treatment plant. Chapter 5, the 

conclusion, summarizes the major findings presented in the dissertation and the potential for 

future work.  
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2 Chapter 2 

 

REVIEW OF FLUORESCENCE ORGANIC CARBON CHARACTERIZATION FOR 

ENGINEERED WATER TREATMENT SYSTEMS  

2.1 Abstract 

Natural organic matter (NOM) in source water leads to many water treatment challenges, 

including disinfection by-product formation and organic fouling in membranes. Extensive 

research to minimize these two challenges is ongoing. However, given the highly complex and 

heterogeneous nature, characterizing NOM for application in water treatment systems remains a 

challenging task. This review provides an overview of NOM measurement and characterization 

techniques that are often used in water treatment plants and studies, with a focus on fluorescence 

measurements, and outlines current knowledge of how these relate to disinfection by-product 

(DBP) formation and membrane fouling. Patterns of NOM characterization found within the 

literature are described, including NOM fractions that are “highly reactive” in DBP formation 

and NOM fractions that are commonly identified as “foulants.”  Further, fluorescence 

measurements have shown success in many studies in characterizing DBP formation and 

membrane fouling in bench-scale and laboratory-scale studies. Pre-treatment, commonly used to 

reduce NOM in the treatment plant, is also discussed as well as how it affects various NOM 

fractions and how it has been employed in DBP and membrane fouling studies. Finally, this 

overview of NOM characterization for specific water treatment challenges highlights important 

gaps and inconsistencies where further research is needed.  
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2.2 Introduction 

Understanding the complex, heterogeneous nature of organic carbon in water and identifying 

specific organic components that can negatively affect treatment operations is a critical step in 

improving water treatment. Natural Organic Matter (NOM), a mixture of compounds, is found in 

all natural waters and varies in composition depending on the source (Frimmel, 1998 ; Baghoth 

et al., 2011; Cabaniss and  Shuman, 1987; Sierra et al., 1994; Nissinen et al., 2001; Goldman et 

al., 2014; Jacob Daniel Hosen et al., 2014). The character of NOM affects many water treatment 

processes, including conventional surface water treatment unit operations, the formation of 

carcinogenic disinfection byproducts, and organic fouling in membrane treatment plants (Bieroza 

et al., 2009; Sanchez et al., 2013; Pifer and  Fairey, 2012; Pisarenko et al., 2013; Rodriguez et 

al., 2007; Kennedy et al., 2008; Zhang et al., 2014; Shao et al., 2014; Yamamura et al., 2014).  

 

2.3 Natural Organic Matter Characterization 

One common method of analyzing organic carbon from natural samples is to measure the Total 

Organic Carbon (TOC). The Wet-Dry Combustion Method was first developed by Pickhardt et 

al. (1955), and today TOC is commonly measured on combustion or UV/persulfate analyzers by 

oxidizing samples and measuring the oxidation products. While TOC does not provide 

information about the character of the sample, it provides a quantitative measure of the organic 

carbon present in the sample. Dissolved Organic Carbon (DOC) is measured the same way on 

samples that have been filtered through a 0.45µm filter.  
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Ultraviolet (UV) absorbance and specific ultraviolet absorbance (SUVA; UV absorbance 

normalized by DOC) have long been used in NOM characterization because they provide more 

information about the character of the organic carbon (Weishaar et al., 2003; Traina et al., 1990; 

Chin et al., 1994; Korshin et al., 1997). Some studies have found high correlations between 

TOC/DOC and UV absorbance (Edzwald et al., 1985; Shao et al., 2014); however,  UV 

absorbance is related to the aromaticity rather than the quantity of the NOM (Weishaar et al., 

2003; Traina et al., 1990; Chin et al., 1994). In addition to UV and SUVA, other UV-based 

measurements, such as ratios of absorbance at different UV wavelengths, UV absorbance spectra 

slope, and differential absorbance provide additional information about the NOM character 

(Korshin et al., 1997; Roccaro et al., 2015; Louie et al., 2013; Lavonen et al., 2015; Roccaro et 

al., 2008; Roccaro et al., 2009).  

 

Since NOM is made up of many different components, fractionation is often the first step in 

analysis. Size exclusion chromatography (SEC), liquid chromatography (LC), or dialysis can be 

used to separate by size (Li et al., 2014b; Chen et al., 2014a; Vuorio et al., 1998; Rausa et al., 

1991; Nissinen et al., 2001; Gloor and  Leidner, 1979; Chin et al., 1994; Kennedy et al., 2008). 

High Performance SEC allows for determination of molecular weights and polydispersity of the 

NOM within the sample and can be used to determine the changes in size distribution that occur 

throughout water treatment (Gloor and  Leidner, 1979; Nissinen et al., 2001; Vuorio et al., 

1998). Hydrophobic and hydrophilic NOM fractionation is commonly performed using XAD 

resins and membrane separation (Hua et al., 2015; Hua and  Reckhow, 2007a; Gray et al., 2011; 

Kennedy et al., 2005; Kitis et al., 2002; Li et al., 2014a; Yamamura et al., 2014; He and  Hur, 

2015; Wong et al., 2002), and humic/fulvic fractionation is also performed using resins or other 
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centrifugation/acidification extraction techniques (Reckhow et al., 1990; Miller and  Uden, 1983; 

Babcock and  Singer, 1979; Coble, 1996; Hua et al., 2015). Wong et al. (2002) demonstrated the 

ability of size and hydrophobic/hydrophilic NOM fractionation to distinguish among multiple 

water sources.  

 

In an effort to capture the complexity of NOM in one comprehensive measurement, fluorescence 

characterization of NOM has become increasingly popular; the measurement provides a simple 

way to quickly characterize the NOM within each sample. Excitation-Emission Matrices (EEM) 

provide a unique fingerprint of the organic matter in a sample (Pifer and  Fairey, 2012; Pifer et 

al., 2011; Stedmon et al., 2003a; Stedmon and  Markager, 2005).  Fluorescence techniques for 

organic carbon characterization have been used in disinfection byproduct (DBP) studies (Hua et 

al., 2006a; Pifer and  Fairey, 2012) and in membrane fouling studies (Chen et al., 2014a; Choi et 

al., 2014; Peiris et al., 2010a; Peiris et al., 2010b; Peiris et al., 2013). Each water sample EEM 

provides fluorescence intensities for many pairs of excitation and emission wavelengths. And 

each EEM shows a three-dimensional plot of intensity values versus excitation wavelengths and 

emission wavelengths from the organic matter in the sample. 

 

Given the large amount of data captured within sample EEM, multiple analytical techniques have 

been developed to make fluorescence EEM data accessible for further data analysis, including 

(1) Peak Picking, (2) Fluorescence Regional Integration, (3) Principal Component Analysis, and 

(4) Parallel Factor Analysis. Peak picking is used as a way to extract a smaller amount of 

information from the fluorescence EEM by selecting the maximum of each main fluorescence 

signal (usually one or two) for each sample EEM. With peak picking, the fluorescence intensity 
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of the EEM maximum (peak) as well as the location of the peak can be used to describe sample 

fluorescence character. Peak picking has been used to evaluate differences in organic matter 

(Coble, 1996; He and  Hur, 2015), but results have a high level of uncertainty (Korak et al., 

2013). Fluorescence Regional Integration (FRI) was developed to summarize the total EEM 

signal by integrating the volume under the EEM plot (Chen et al., 2003). FRI has been used for 

advanced organic matter characterization and identifying specific fractions of interest (Li et al., 

2013; He et al., 2013; He and  Hur, 2015). Principal component analysis has also been used in 

some fluorescence EEM studies because it enables the use of the entire sample EEM while 

summarizing the whole fluorescence dataset into a few representative values. Principal 

component analysis of sample EEM has been used successfully to relate fluorescence signals to 

DBP formation and membrane fouling (Peleato and  Andrews, 2015; Chen et al., 2014a; Peiris et 

al., 2010a; Peiris et al., 2010b).   

 

Parallel Factor Analysis (PARAFAC) has become a widely-used statistical analysis tool for EEM 

data because it provides a summary of large datasets by determining a few representative 

components of the multi-dimensional dataset. Further, PARAFAC is able to handle three-

dimensional EEM data (Bro, 1997),  and PARAFAC components represent actual fluorophores 

present in the EEM dataset (Stedmon and  Bro, 2008). PARAFAC for EEM analysis can be used 

to determine variations in a multi-dimensional matrix and to specifically identify the independent 

variables responsible for variations in large sets of multivariate data (Harshman and  Lundy, 

1994; Bro, 1997). Equation 2.1 is the governing equation for PARAFAC, as used in EEM 

applications 
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𝒙𝒊𝒋𝒌 = ∑ 𝒂𝒊𝒇𝒃𝒋𝒇𝒄𝒌𝒇 + 𝒆𝒊𝒋𝒌
𝑭
𝒇=𝟏   2.1 

In Equation 2.1, xijk represents the fluorescence intensity of one element in the three way array, 

X. In terms of the EEM model, i is the sample, j is the emission wavelength, k is the excitation 

wavelength, a is the concentration, b is the emission spectra, c is the excitation spectra, f is a 

fluorophore (component), F is the total number of fluorophores, and e is the residual, or 

additional variability in the data set that is not captured in the model. The developed model aims 

to minimize the sum of the squared residuals (Stedmon et al., 2003b; Stedmon and  Bro, 2008). 

Essentially, the total signal is composed of the sum of the individual fluorophore signals, which 

are made up of the concentration, emission wavelength, and excitation wavelength. Multiple 

studies have developed classifications of the fluorescence signals as a means to distinguish them 

and identify NOM fractions that may be responsible for the signals.  Some of the commonly used 

classifications are presented in Table 2.1 

 

Table 2.1: Classification of EEM fluorescence signals by NOM fraction 

Region (EX/EM nm) Classification Reference 

EX = 200 – 250  

EM = 280 – 380 

Aromatic Protein (Chen et al., 2003) 

EX = 200 – 250  

EM = 380 – 540 

Fulvic Acid-like (Chen et al., 2003) 

EX = 250 – 330  

EM = 280 – 380 

Soluble Microbial By-Product 

Protein-like 

(Chen et al., 2003) 

(Coble, 1996) 

(Her et al., 2003) 

EX = 250 – 400  

EM = 380 – 540 

Humic Acid-like 

 

Fulvic Acid-like 

(Chen et al., 2003) 

(Coble, 1996) 

(Her et al., 2003) 

(Lochmuller and  Saavedra, 1986) 
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Although the groupings in Table 2.1 are widely used and are helpful in classifying fluorescence 

signals,  a fluorescence signal alone cannot confirm the presence of a specific organic fraction 

because a particular signal may be comprised of one or a sum of multiple organic fluorophores 

(Stedmon and  Bro, 2008; Coble, 1996). A major limitation in the EEM-PARAFAC method of 

characterizing organic carbon is the inability to link resultant components with specific NOM 

fractions.  Li et al. (2014b) used liquid chromatography and size exclusion chromatography 

along with EEM-PARAFAC analysis to determine that EEM-PARAFAC components could not 

be used to identify organic species in NOM because some compositionally different species 

exhibited the same fluorescent signals. Coble (1996) reported “humic-like” fluorescence signals 

come from a combination of different fluorophores. 

 

Although fluorescence EEM are limited in their fundamental characterization of NOM fractions, 

they have been used in differentiating among other NOM properties. Cuss and  Gueguen (2014) 

found that changes in fluorescence were associated with differences in molecular weight. 

Further, EEM-PARAFAC components are often correlated with DOC and UV254 (Baghoth et al., 

2011; Shao et al., 2014; Johnstone et al., 2009). In terms of using EEM signals for source 

identification, there have been some contradictory findings. Sierra et al. (1994) and Coble (1996) 

found that it ocean and freshwater samples showed distinct fluorescence signals, while 

McKnight et al. (2001) found very similar fluorescence peaks between ocean and freshwater 

fulvics.  EEM, however, have shown promise for water treatment studies, demonstrating the 

ability to track NOM changes throughout a treatment train, which is important in addressing 

treatability concerns associated with DBP formation and membrane fouling (Baghoth et al., 
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2011; Sanchez et al., 2013; Shao et al., 2014; Peleato et al., 2016).  Ratios of EEM-PARAFAC 

components also provide insight into the relative contribution of different NOM fractions 

(Baghoth et al., 2011; Shao et al., 2014).  Baghoth et al. (2011) used humic-like to protein-like 

component ratios to track the change in humic/protein NOM ratios throughout treatment and 

determine which NOM fractions were preferentially removed in each treatment process. Carstea 

et al. (2014) also used humic-like to protein-like component ratios to describe the relative 

contribution of rural to urban water sources and therefore the relative impact of anthropogenic 

activities. Given their ability to differentiate among multiple NOM samples, along with their 

relatively easy and inexpensive operation, EEM have potential for use in many engineering 

applications, including prediction of DBP formation and membrane fouling.  

 

2.4 Background on Disinfection By-Product Formation 

Disinfection is an important component in drinking water treatment because it keeps water safe 

for consumers by inactivating many pathogenic microorganisms found in the source water. 

However, as a result, toxic disinfection by-products (DBPs) form when disinfectants oxidize 

NOM in the source water. DBPs have been linked to adverse health effects, such as bladder 

cancer and low birth weight (Danileviciute et al., 2012; King and  Marrett, 1996; Kumar et al., 

2014; Villanueva et al., 2004). Further research has found that the ability to metabolize 

trihalomethanes and thereby increase the odds of developing bladder cancer is based on a 

specific gene that a portion of the population carries (Cantor et al., 2010).  
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Research has identified hundreds of different disinfection by-products (Richardson et al., 2007; 

Boorman et al., 1999; Richardson et al., 2000) and the specific DBPs formed in water treatment 

depend on many different variables, among them (1) the type of disinfectant used, (2) the 

presence of dissolved ions, and (3) the character of the NOM. Chlorine is a widely used 

disinfectant and leads to many halogenated DBPs, including trihalomethanes (THMs) and 

haloacetic acids (HAAs), two of the DBP classes currently regulated by the EPA (EPA, 2006; 

Durmishi et al., 2015; Rathburn, 1996b; Nokes, 1999; Liang and  Singer, 2003; Amy et al., 

1987; Singer et al., 2002). Additional chlorine disinfection by-products include haloacetonitriles, 

chloral hydrate, haloketones, and chlorophenols (Roccaro and  Vagliasindi, 2010; Miller and  

Uden, 1983; Reckhow et al., 1990; Oliver and  Lawrence, 1979; Chu et al., 2012). Despite the 

challenges associated with DBP formation,  chlorine remains the most commonly used 

disinfectant (Siedel et al., 2005).  

 

Alternative disinfectants, including chlorine dioxide, chloramine, and ozone, are used in some 

treatment plants in an effort to control THMs and HAAs (Richardson et al., 2000; Tian et al., 

2013; Lu et al., 2009; Richardson et al., 1994); however, these alternative disinfectants result in 

other species of disinfection by-products. Chlorine dioxide (ClO2) produces chlorite and chlorate 

from NOM oxidation, in addition to multiple species of carboxylic acids, chloro-benzenes, and 

halopropanones (Korn et al., 2002; Richardson et al., 2000; Richardson et al., 1994; EPA, 2010). 

Chloramination, the use of monochloramine (NH2Cl), leads to nitrogenous DBPs (N-DBPs), 

such as haloacetonitriles and nitrosodimethylamine (NDMA), which research has shown are 

more toxic than carbon-based DBPs (i.e. HAAs) (Sakai et al., 2015; Muellner et al., 2007). 

Chloramination also produces THMs and HAAs, but to a lesser extent (Tian et al., 2013; Lu et 



14 
 

al., 2009). Ozone (O3) is known to produce multiple species of aldehydes, ketones, and ketoacids 

instead of halogenated by-products (Richardson et al., 2000; Karnik et al., 2005), and leads to 

formation of bromate, a regulated DBP, in areas experiencing higher bromide loading, such as 

coastal areas (Gyparakis and  Diamadopoulos, 2007; Moslemi, 2012; EPA, 2010; Haag and  

Holgne, 1983). Additionally, increased concentrations of brominated DBPs have been observed 

when ozone and chlorine are used together (Mao et al., 2014).  

 

The presence of dissolved ions, especially bromide, in source waters is also a concern because 

bromide increases the rate of DBP oxidation reactions and leads to more toxic brominated DBPs 

(Plewa et al., 2002; Richardson et al., 2007; Richardson et al., 2003). As discussed previously, 

bromide is usually only a concern in coastal areas where ground waters and surface waters may 

experience sea water intrusion and as a result an increase in dissolved salts, including bromide 

(Gyparakis and  Diamadopoulos, 2007; Ged and  Boyer, 2014). However, with new energy 

extraction activities, such as unconventional hydraulic fracturing, that produce wastewater high 

in dissolved salts, there are new sources of bromide to inland waterways (Wilson and  Van 

Briesen, 2013; States et al., 2013). As a result, disinfection by-products formed in the region may 

show shifts towards more brominated forms since bromide in source water increases brominated 

DBP concentration (Nokes, 1999; Cowman, 1996; Chowdhury et al., 2010; Watson et al., 2015; 

Navalon et al., 2008).  In addition to bromide, iodide in the source water can lead iodide-

containing DBPs with even higher toxicity (Allard et al., 2015; Plewa et al., 2004; Hua et al., 

2006b; Criquet et al., 2012).    
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2.5 Natural Organic Matter and Disinfection by-Products 

Natural organic matter (NOM) is the main precursor to DBP formation and its character is also 

an important input variable in DBP formation and speciation.  The high level of NOM variability 

among sources has been shown to result in high variability of DBP formation and speciation 

(Weiss et al., 2013; Kitis et al., 2002).  While TOC and DOC are used to measure the amount of 

organic matter present, they rarely provide adequate quantitative prediction of DBPs formed.   

An extensive literature review by Chowdhury (2009) demonstrated the importance of TOC and 

DOC as model input parameters for DBPs – with most successful Trihalomethane (THM) and 

Haloacetic Acid (HAA) models incorporating either TOC or DOC.  However, there are many 

different reports of the relationship between TOC/DOC and DBP formation potential; some 

studies report  high correlations (Edzwald et al., 1985; Amy et al., 1987; Rook, 1976), while 

others’ results show that the two variables are uncorrelated (Li et al. (2014a) or that only some 

DBP classes are correlated (Chen and  Westerhoff, 2010).   The literature suggests that 

TOC/DOC is an important variable in determining DBP formation, but alone is not successful in 

making predictions.  

 

UV absorbance at 254 nm has also been used in many DBP studies to predict formation. Studies 

report correlation between UV absorbance and THM formation potential (Amy et al., 1987; Kitis 

et al., 2002; Roccaro et al., 2015; Roccaro et al., 2008);  however, changes in highly variable 

NOM limit its applicability (Abouleish and  Wells, 2015; Edzwald et al., 1985; Shao et al., 

2014). Models incorporate UV, SUVA, or even UV-TOC composite terms as input to generate 

DBP predictions (Korn et al., 2002; Amy et al., 1987; Chowdhury, 2009).  Research on the 

relationship between SUVA and DBP formation suggests aromatic carbon structures (NOM 



16 
 

fractions that also absorb UV) are more reactive with chlorine and therefore lead to increased 

DBP formation (Hua et al., 2015; Kitis et al., 2001; Kitis et al., 2002; Awad et al., 2016).  This 

is further confirmed by experimental results showing chlorine consumption increasing linearly as 

the percent of aromatic carbon increases in a treated water (Reckhow et al., 1990).  UV/SUVA, 

however, is limited as a DBP formation potential surrogate in low aromatic source water (Li et 

al., 2014a). Although not highly predictive of overall DBP formation, low SUVA values indicate 

another issue within DBP formation – bromine incorporation. Studies have found that under 

lower SUVA values, bromine experiences higher incorporation into DBPs (Kitis et al., 2001; 

Kitis et al., 2002).  UV absorbance may show improved THM formation potential prediction 

over DOC because it captures the NOM characteristics that are relevant to THM formation. 

 

Other UV absorbance parameters, such as ratios of absorbance at different UV wavelengths, the 

slope of the UV absorbance spectra and differential absorbance, have also been used successfully 

in DBP formation studies. The ratio of  absorbance at 253 nm to 203 nm wavelengths was found 

to be highly correlated with chloroform formation (Korshin et al., 1997). Further, the slope of the 

UV spectra  between 280 nm and 350 nm was found to be related to percent aromaticity and 

formation of total haloacetic acids (THAA) and total trihalomethanes (TTHM) (Roccaro et al., 

2015). The utility of UV spectral slopes in DBP formation studies agrees with other studies that 

show that differences in UV slopes indicate differences in NOM composition (Louie et al., 

2013). Differential absorbance has also been used to track DOM changes when DOC is low and 

in DBP predictive studies (Lavonen et al., 2015; Roccaro et al., 2008; Roccaro et al., 2009).   
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Fractionation of NOM (i.e. hydrophobic vs hydrophilic content, molecular weight, and humic vs 

fulvic fractions) has been used extensively to better understand the relationship between NOM 

character and DBP formation. Hydrophobic fractions are generally more reactive and therefore 

produce more DBPs than hydrophilic fractions (Kitis et al., 2002). More specifically, the 

hydrophobic fraction is more reactive with chlorine and therefore produces more chloroform and 

TCAA; whereas the hydrophilic fraction is more reactive with bromide and therefore produces 

more Br-DBPs (Li et al., 2014a; Hua and  Reckhow, 2007a).  The hydrophobic fraction, a 

halogenated DBP precursor, was also found to have a higher humic content and more aromatic 

structures (Hua et al., 2015; Wong et al., 2002). The hydrophilic fraction also contributes to DBP 

formation, but to different DBP classes and to a lesser extent than the hydrophobic fraction (Hua 

and  Reckhow, 2007a). Although the hydrophobic fraction produces more DBPs under 

chlorination and chloramination, contradictory results were found by Hua et al. (2015) whose 

experiments showed that hydrophilic fractions had higher chlorine demands than hydrophobic 

ones. Given than chlorine consumption is related to NOM-DBP reactivity, measured as aromatic 

content (Reckhow et al., 1990), it is expected that the more reactive hydrophobic fractions would 

have higher chlorine demands.  

 

Molecular weight (MW) and Humic/Fulvic fractionation also provide insight into DBP 

formation potential. Higher MW fractions were found to produce more DBPs (high MW 

fractions were more reactive), however there was higher bromine incorporation with lower MW 

fractions (Kitis et al., 2002). Like the hydrophobicity and chlorine demand results, Hua et al. 

(2015) also found unexpected molecular weight and chlorine demand results – higher chlorine 

demands were found with smaller MW NOM fractions.  There is also some disagreement about 
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the effect of humic and fulvic fractions on DBP formation and speciation.  Reckhow et al. (1990) 

found that humic acids produced more DBPs than fulvic acids due to a higher humic acid 

chlorine consumption, while Miller and  Uden (1983) found that fulvic acids produced more 

DBPs than humic acids, however, these contradictory results were due to the fact that the humics 

used in experimentation had fewer activated aromatic structures .  Chloroform concentration, as 

well as chlorine consumption, was found to increase linearly with humic acid concentration 

when excess chlorine was present, while less chloroform formation was observed with fulvic 

acids (Babcock and  Singer, 1979). The observed association between higher SUVA values, 

hydrophobicity, and higher molecular weight NOM fractions, suggests that there are more 

aromatic structures in hydrophobic and high MW NOM fractions (Hua et al., 2015).  

 

The accumulation of results from various NOM fractionation studies and their associated DBP 

formation potentials provides evidence for two main NOM fractions: (1) high reactivity and DBP 

formation potential and (2) low reactivity and DBP formation potential.  Figure 2.1 illustrates the 

relationship between NOM characteristics and resulting DBP formation from chlorine 

disinfection, based on general themes found in the literature.  
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Figure 2.1: Illustration of common NOM characterization and subsequent DBP formation 

patterns from chlorine disinfection found in the literature. According to the literature, 

aromatic, high molecular weight, hydrophobic and humic NOM leads to increase DBP 

formation, especially chlorinated forms. Whereas less aromatic, low molecular weight, 

hydrophilic and fulvic NOM fractions result in fewer DBPs overall, but produce more 

brominated species.  

 

High DBP reactivity is characterized by higher aromatic content (higher SUVA values), higher 

molecular weights and hydrophobicity while lower DBP reactivity is characterized by lower 

aromatic content (lower SUVA values), lower molecular weights and hydrophilicity (Li et al., 

2014a; Hua et al., 2015; Kitis et al., 2002). These differences in NOM character have also been 

found to result in differences in speciation of DBPs. Hua et al. (2015) found that high molecular 

weight, hydrophobic fractions (“high DBP reactivity”) are related to uncharacterized DBP 

species, while low molecular weight, hydrophilic fractions (“low DBP reactivity”) are related to 

regulated DBPs, such as THM and HAA acids. These reported relationships, however, are not 

constant across all water samples. For example, (Kitis et al., 2002) tested multiple source waters 

and found that one source water showed a clear relationship between aromaticity and molecular 

weight (i.e. an increase in SUVA was correlated with an increase in molecular weight), however, 



20 
 

the other source water did not exhibit the same trend. Inconsistencies such as these highlight the 

need to further investigate other methods for characterizing NOM. Current techniques lack the 

consistency and reliability necessary to provide input for process control.  

 

Fluorescence EEM offer another method of NOM characterization that provides data-rich 

quantitative measurements of NOM within an aqueous sample. While they are not perfect 

representations of NOM fractions, EEM NOM signals (from PARAFAC and PCA components), 

such as those identified in Table 2.1, have been used successfully to predict DBP formation in 

laboratory studies. Humic-like EEM-PARAFAC components have been found to be highly 

correlated with TTHM formation potential and higher chlorine reactivity (Pifer and  Fairey, 

2014; Yang et al., 2015b; Pifer and  Fairey, 2012; Ma et al., 2014). Meanwhile, Johnstone et al. 

(2009) found that both the marine EEM-PARAFAC humic-like and protein-like fluorescence 

signals were predictive of chloroform and trichloroacetic acid formation in treated water. 

Furthermore, EEM-PCA protein-like fluorescence signals were found to provide improved 

predictions of both THM and HAA formation in laboratory tests of natural samples (Peleato and  

Andrews, 2015).  

 

2.6 Background on Organic Fouling in Membranes 

Organic fouling is caused by a build-up of adsorbed natural organic matter (NOM) on the 

membrane surface or in the membrane pores, which, over time can lead to bacterial growth on 

the surface and eventually, biological fouling (Martínez et al., 2015; Arora and  Trompeter, 

1983; Herzberg and  Elimelech, 2007; Rukapan et al., 2015; Nam et al., 2013; Zhao et al., 2010). 



21 
 

The build-up of NOM on the membrane, and eventual bacterial growth, increases the osmotic 

pressure across the membrane, which reduces hydraulic permeability of the membrane.  

Additionally, the organic fouling layer that develops on the membrane surface reduces the solute 

rejection in reverse osmosis membranes, which are designed to remove dissolved mono-valent 

ions, resulting in lower quality permeate water (Hoek and  Elimelech, 2003; Hoek et al., 2002; 

Song and  Elimelech, 1995; Schäfer et al., 2000). In porous microfiltration (MF), ultrafiltration 

(UF), and nanofiltration (NF) membranes, organic fouling results from the build-up of organic 

matter in the membrane pores and on the surface; whereas with (non-porous) reverse osmosis 

(RO) membranes, organic fouling is a result of the organic build-up on the membrane surface 

(Rukapan et al., 2015; Nam et al., 2013). The abundance and composition of organic matter in 

source water affects the structure of the fouling layer and consequently, the amount of flux 

decline that occurs during fouling (Ang et al., 2011; Zhao et al., 2010; Tiraferri and  Elimelech, 

2012; Airey et al., 1998; Zhu and  Elimelech, 1997; Tang et al., 2007). 

 

In membrane systems that operate under a constant pressure, such as bench-scale systems in a 

laboratory setting, membrane fouling is observed as a loss of flux over time. However, in 

membrane systems that operate under a constant flux, such as full-scale plants that need to meet 

a daily water demand, fouling is quantified by the additional applied pressure required to 

maintain water flux. Backwashing and chemical cleaning are often used to reduce fouling in the 

membranes and are effective in prolonging the life of the membrane; however cleaning cannot 

regain all of the hydraulic permeability lost to fouling (Nam et al., 2013; Grelot et al., 2010; 

Rukapan et al., 2015; Ang et al., 2011). To reduce organic fouling in membranes, pre-treatment, 

such as coagulation and in the case of reverse osmosis membranes, ultrafiltration and 
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microfiltration, is commonly used (Brehant et al., 2002; Rukapan et al., 2015; Vial and  

Doussau, 2002; Bonnélye et al., 2008; Lorain et al., 2007; Guastalli et al., 2013).   

 

2.7 Natural Organic Matter and Membrane Fouling 

While NOM is well-known as the main driver of organic fouling in pressure-driven membrane 

systems, TOC and DOC are generally not good predictors of membrane fouling (Shao et al., 

2014; Yamamura et al., 2014; Pramanik et al., 2016).  Yamamura et al. (2014) found that 

various NOM fractions with the same TOC exhibited different fouling behavior, suggesting that 

organic fouling is dependent on the character of the NOM, rather than the quantity. Further, there 

is uncertainty of the relationship between membrane fouling and UV/SUVA.  UF membrane 

experiments show correlations of SUVA and salt rejection (Cho et al., 2000) while MF bench 

scale experiments did not show correlations between UV254 and membrane fouling resistance 

(Pramanik et al., 2016). Further, Myat et al. (2014) used UV254 values to track differences in 

membrane foulants, although Amy (2008) indicates that only low SUVA values are an indicator 

of high fouling potential.  Figure 2.2 provides an illustration of the relationship of various NOM 

fractions and membrane fouling. The figure shows which fractions have been linked to an 

increase in fouling based on studies in the published literature.  
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Figure 2.2: Illustration of the common NOM characterizations and subsequent organic 

fouling patterns found in the literature. According to the literature, less aromatic, 

hydrophilic, humic, high molecular weight and low molecular weight fractions have been 

associated with increased fouling in membranes.   

 

Investigating specific NOM fractions, such as hydrophobic/hydrophilic and different molecular 

weights, provides additional insight into the relationship between NOM and organic fouling.  

Bench-scale UF and MF experiments show that the hydrophilic fraction fouls membranes more 

than hydrophobic and transphilic fractions (Yamamura et al., 2014; Kennedy et al., 2005; Gray 

et al., 2011). Although the ability to reject hydrophilic/hydrophobic NOM fractions is dependent 

on the hydrophilicity/hydrophobicity of the membrane surface (Shan et al., 2016; Diagne et al., 

2012; Zodrow et al., 2009). Howe and  Clark (2002) found that smaller particles (colloidal) 

contributed more to fouling than larger particulate matter (> 0.45 μm) in UF and MF systems. In 

contrast, other studies have found that larger NOM fractions, such as biopolymer and humics, 

contributed more to fouling than smaller polymers (Pramanik et al., 2016; Gray et al., 2011).  In 

general, membrane fouling is exacerbated by the “low DBP reactivity” NOM fractions – those 

with low SUVA and more hydrophilic in nature (Yamamura et al., 2014; Kennedy et al., 2005; 

Amy, 2008).   
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In membrane fouling studies, protein-like EEM PARAFAC and PCA components have been 

identified as predictive of high fouling events (Shao et al., 2014; Chen et al., 2014a). However, 

in other fouling studies, tryptophan-like and microbial byproduct-like EEM-PARAFAC signals 

have been correlated with fouling (Yu et al., 2014; Choi et al., 2014).  Furthermore, Peiris and 

colleagues found that “colloidal/particulate matter” EEM-PCA components were correlated with 

reversible fouling, but that “humic-like” and “protein-like” components were correlated with 

irreversible fouling (Peiris et al., 2010a; Peiris et al., 2013).  Additionally, microbial humic-like 

and tryptophan-like EEM-PARAFAC components have been found to be associated with organic 

fouling in membrane bioreactors (Hur et al., 2014). Shao et al. (2014) used the humic-like to 

protein-like component ratios to determine the relative composition of foulants in a membrane 

system. 

 

2.8 Pre-treatment and mitigation of water treatment challenges 

Given that NOM is the cause of many water treatment challenges, including DBP formation and 

membrane fouling, removal of NOM is critical. Removal of NOM can be effective in mitigating 

DBP formation and membrane fouling, but should be used strategically since pre-treatment can 

add signficantly to the cost of clean water and different methods preferentially remove specific 

NOM fractions (Zhang et al., 2015; Sanchez et al., 2013; Kitis et al., 2001; Pifer and  Fairey, 

2012; Lavonen et al., 2015; Brehant et al., 2002; Babcock and  Singer, 1979; Owen et al., 1995; 

Peleato et al., 2016).  Figure 2.3 shows an illustration of preferential removal for three categories 

of pre-treatment – coagulation, activated carbon (granular, powder, and biological), and resins 

(ion exchange and mesoporous adsorbent). Overall, each of the pre-treatments reduce DOC of 
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the influent water, and subsequently DBP formation and membrane fouling, but each pre-

treatment also shows preferential removal of certain NOM fractions, as shown in the illustration. 

 

Figure 2.3: Illustration of preferential removal of NOM fractions by various pre-

treatments, based on the literature.  According to the literature, coagulation preferentially 

removes aromatic, high molecular weight and humic fractions, activated carbon 

preferentially removes aromatic and humic fractions, and resins remove aromatic, 

hydrophobic, hydrophilic, humic and fulvic fractions.  

 

Coagulation, a commonly used surface water treatment for removing particulate matter reduces 

NOM and DBP formation (Babcock and  Singer, 1979; Owen et al., 1995). Alum coagulation 

preferentially removes high SUVA NOM fractions (Kitis et al., 2001) and larger fractions at pH 

6 (Pifer and  Fairey, 2012). Coagulation removes some PARAFAC component signals better 

than others, particularly the humic-like signals associated with DBP formation (Sanchez et al., 

2013; Pifer and  Fairey, 2012; Lavonen et al., 2015).  Coagulation is also effective in removing 

polysaccharide-like and protein-like NOM that is responsible for membrane fouling (Amy 2008). 

Further, enhanced coagulation is used by many surface water treatment plants throughout the 

United States to meet DBP regulations (Archer and  Singer, 2006). Following the 1998 release of 

the Stage 1 Disinfection Byproduct Rule (DBPR), the EPA set “enhanced coagulation” as an 

NOM removal treatment technique for plants struggling to meet the Maximum Contaminant 
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Level (MCL) for DBPs (EPA, 1999). Studies show 9 – 73% removal of DOC with enhanced 

coagulation and improvements in DOC removal when enhanced coagulation is coupled with 

powder activated carbon (Uyak et al., 2007; Kristiana et al., 2011; Wang et al., 2013). Further, 

enhanced coagulation treatments show preferential removal of high MW and high UV absorbing 

compounds (Kristiana et al., 2011; Archer and  Singer, 2006; Uyak et al., 2007).  

 

Sorbents, such as activated carbon and anion exchange resins, are also sometimes used in 

treatment to remove NOM. Like alum coagulation, granular activated carbon (GAC) has shown 

preferential removal of NOM with high SUVA values (Kitis et al., 2001). Do et al. (2015) found 

that GAC was effective in removing “humic-like” EEM-PARAFAC signals that were correlated 

to DBP precursors.  Powder activated carbon (PAC) has demonstrated superior removal, 

compared to anion exchange and polymeric resins, in removing protein-like fluorescence signals 

in NOM that are associated with fouling in UF membranes (Shao et al., 2014).  However, Amy 

(2008) indicated that PAC is overall not very effective in reducing fouling. Biological activated 

carbon (BAC) was found to effectively remove biopolymers that primarily lead to organic 

fouling and therefore helps to mitigate fouling;  however over time the BAC showed reduced 

removal of humics (Pramanik et al., 2016).  

 

Additionally, ion exchange is effective in removing NOM, again with preferential removal of 

certain fractions (Shao et al., 2014; Sanchez et al., 2013; Hsu and  Singer, 2010; Jutaporn et al., 

2016). Ion exchange, specifically magnetic ion exchange (MIEX) resins, has been suggested as 

an effective pre-treatment for DBP control because it reduces both DOC and bromide 

concentrations (Hsu and  Singer, 2010), as well as humic-like substances (Bazri et al., 2016).  



27 
 

Ion exchange resins were also found to be effective in removing UV-absorbing NOM fractions, 

and were equally effective in removing charged hydrophobic and hydrophilic fractions as well as 

humic and fulvic fractions, but were not as effective in removing large NOM fractions (Bolto et 

al., 2002; Cornelissen et al., 2008).  Mesoporous adsorbent resin (MAR) was found to be more 

effective in mitigating organic fouling in ultrafiltration membranes than powder activated carbon 

because MAR removes the NOM fractions that deposit on the membrane surface (foulants) and 

reduce water permeability (Li et al., 2016).  

 

2.9 Application of Fluorescence NOM Characterization and Future Work 

Fluorescence EEMs have been used successfully in many applications requiring advanced 

characterization of NOM and show promise for implementation in full-scale water treatment 

systems, such as for online fluorescence detection of influent water. Stedmon et al. (2011) found 

that some EEM-PARAFAC fluorescent components were indicative of microbial contamination 

in ground water, and therefore fluorescence monitoring of influent water could alert operators to 

this issue. The use of online fluorescence detection has also been suggested by multiple DBP and 

membrane fouling studies (Roccaro and  Vagliasindi, 2010; Korshin et al., 1997; Shutova et al., 

2014; Jutaporn et al., 2016).  There has been some success in the development of accurate online 

fluorescence detectors and in the use of such devices in monitoring for upstream pollutants in a 

reservoir (Chen et al., 2014b; Liu et al., 2014).  

 

Given the many water treatment challenges associated with NOM, monitoring technologies to 

mitigate operational challenges are increasingly important.  Advanced warning of water 
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treatment challenges provides operators with a greater opportunity to preemptively mitigate these 

issues. Applying additional pre-treatment and/or changing operational conditions to address 

these issues on an as needed basis also allows for a more cost-effective method for delivering 

safe, clean water to consumers.  
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3 Chapter 3 

 

APPLICATION OF CLASSIFICATION TREES FOR PREDICTING DISINFECTION 

BY-PRODUCT FORMATION TARGETS FROM SOURCE WATER 

CHARACTERISTICS
1
 

 

 

3.1 Abstract 

Formation and speciation of disinfection by-products (DBPs) depends on source water 

constituents. Many studies have sought to model the formation of DBPs using both source water 

and in-plant operational data, and while sometimes highly predictive of DBP formation, these 

models are limited in their applicability. To create regional models that could apply to multiple 

plants within a watershed, classification trees were used to predict finished water DBP 

parameters from source water constituents collected at multiple locations in a watershed. Data 

were from a field study conducted in the Monongahela River in southwestern, PA from May, 

2010 to September, 2012 incorporating six different sites. Classification trees were used to 

predict violation of, or compliance with, four threshold values that have regulatory and 

operational significance, namely: the Total Trihalomethanes Maximum Contaminant Level 

(regulatory standard of 80 μg/L); 80% of the Total Trihalomethanes Maximum Contaminant 

Level (64 μg/L); a Bromine Incorporation Factor (BIF) of 0.75; and 50% Brominated 

Trihalomethanes by mass. The classification trees demonstrated accuracies of 76% to 83%. 

Fluorescence measurements were selected in all classification trees, demonstrating their utility in 

DBP predictive models. Further, model validation using data from each collection site 

demonstrated the potential use of classification models across this spatially variable region for 

                                                 
1 This chapter has been published in Environmental Engineering Science as Bergman, L., Wilson, J., Small, M., 

VanBriesen, J.M. (2016) “Application of classification trees for predicting disinfection by-product formation targets 

from source water characteristics.”  
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drinking water plants unable to collect their own source water data. Thus, classification trees 

provide a valuable tool for creating watershed-level source water-based DBP models.  

 

3.2 Introduction 

Drinking water disinfection protects consumers from waterborne pathogens; however, it 

contributes to the formation of harmful disinfection byproducts (DBPs). Disinfection by-

products form when natural organic matter (NOM), found in natural waters, is oxidized by 

disinfectants necessary for control of pathogenic microorganisms. The highly complex and 

variable NOM present in water poses a challenge for drinking water treatment because the nature 

of the NOM affects the speciation as well as the extent of DBP formation (Reckhow et al., 1990; 

Kitis et al., 2002; Liang and  Singer, 2003; Singer et al., 2002; Abouleish and  Wells, 2015).  

DBP formation is further complicated by the presence of other ions in the source water (Singer 

and Chang, 1989), most notably, bromide.  Source water bromide leads to increased formation of 

DBPs, among them brominated DBP species (Richardson et al., 2003; Chowdhury et al., 2010; 

Watson et al., 2015; Navalon et al., 2008), which are more toxic than the chlorinated forms 

(Plewa et al., 2002; Richardson et al., 2003; Richardson et al., 2007). DBP exposure, through 

ingestion of drinking water or inhalation of compounds volatilized during indoor use of 

disinfected water, has been linked to adverse health effects, such as bladder cancer (King and  

Marrett, 1996; Kumar et al., 2014; Danileviciute et al., 2012; Villanueva et al., 2004; Cantor et 

al., 2010).  To protect the public health, certain classes of DBPs are regulated by the US 

Environmental Protection Agency (EPA, 2006).    

 

The high observed variability of DBP formation and speciation in drinking water has been the 

subject of extensive research. Differences in the type of disinfectant used are responsible for 
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some of the  differences observed in DBP speciation (Mao et al., 2014; Pisarenko et al., 2013; 

Montesinos and  Gallego, 2013; Hua and  Reckhow, 2007b; Tian et al., 2013). Additionally, 

seasonal changes in temperature and chlorine demand, oxidant reaction time, and water residence 

time within the distribution system, all affect DBP formation (Rodriguez et al., 2007; Rodriguez 

et al., 2004; Hua and  Reckhow, 2012; Chen and  Weisel, 1998; Sakai et al., 2015; Allard et al., 

2015; Sohn et al., 2006). Furthermore, the variability in NOM,  particularly the humic/fulvic 

content, the aromaticity, and the hydrophobic and hydrophilic fractions, have been linked to 

variability in DBP formation and speciation (Reckhow et al., 1990; Kitis et al., 2002; Liang and  

Singer, 2003; Lu et al., 2009; Hua and  Reckhow, 2007a; Singer et al., 2002).  

 

Since disinfection byproduct formation and speciation is dependent on the nature of the organic 

matter present in the source water,  multiple methods for quantifying and characterizing NOM 

have been assessed, including: total organic carbon (TOC), dissolved organic carbon (DOC), and 

ultraviolet absorbance at 254 nm (UV254) (Chen and  Westerhoff, 2010; Amy et al., 1987; 

Harrington et al., 1992; Korn et al., 2002; Sohn et al., 2004; Abouleish and  Wells, 2015; Awad 

et al., 2016; Weishaar et al., 2003).  A composite term, SUVA254 (UV absorbance normalized by 

DOC) is frequently used in DBP studies (Edzwald et al., 1985; Kitis et al., 2002; Hua et al., 

2015) because it has been shown to be a good indicator of chlorinated DBP formation (Mayer et 

al., 2015; Li et al., 2014a; Kitis et al., 2001), and in some cases better than TOC in treatment 

plant operational control (Najm et al., 1994). However, UV254 and SUVA254 may be less useful 

for DBP formation and speciation prediction when NOM is of low molecular weight and low 

aromaticity (Ates et al., 2007; Li et al., 2014a). While SUVA254 may be predictive of certain 
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classes of DBPs, in some datasets, it has also shown weak correlations with trihalomethanes 

(THM), a commonly observed and regulated class of DBPs (Hua et al., 2015).  

 

Excitation Emission Matrices (EEM) are gaining attention as an improved method for predicting 

DBP formation because they provide a large amount of data to capture the complexity and 

heterogeneity of NOM (Pifer and  Fairey, 2012; Pifer et al., 2011; Stedmon et al., 2003a; 

Stedmon and  Markager, 2005; Baghoth et al., 2011; Awad et al., 2016).  Differential absorbance 

and fluorescence, as well as differential log-transformed absorbance and fluorescence have 

shown promise as DBP predictive tools as studies have shown high correlations between these 

NOM measurements and multiple DBP species (Roccaro et al., 2008; Roccaro et al., 2009; 

Roccaro and  Vagliasindi, 2010; He et al., 2015). To convert EEM for further analysis and use in 

predictive models, while incorporating all the data obtained from EEM, Parallel Factor Analysis 

(PARAFAC) is often used because it simplifies large, multi-dimensional data into a few 

representative components, similar to Principal Component Analysis (Harshman and  Lundy, 

1994; Stedmon and  Markager, 2005; Murphy et al., 2013).   Studies have shown promise for the 

use of EEM-PARAFAC components in predicting DBP formation (Yang et al., 2015a; Pifer and  

Fairey, 2014; Johnstone et al., 2009; Sakai et al., 2015; Yang et al., 2015b). Further, research by 

Pifer and  Fairey (2012) on EEM coupled with PARAFAC has demonstrated that EEM-

PARAFAC components may be better at predicting DBP formation than SUVA254. Other 

research has illustrated the unique ability of EEM-PARAFAC components to differentiate NOM 

among sources when using sampling from multiple sites (Cabaniss and  Shuman, 1987; Sierra et 

al., 1994; He and  Hur, 2015).  Pifer and  Fairey (2014)’s success in developing strong 

correlations between EEM-PARAFAC components and DBP formation potential of natural raw 
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water samples chlorinated and measured in the lab, provides motivation for using similar NOM 

characterizations for predicting DBP formation in full-scale treatment plants across a watershed.     

 

DBP formation has been modeled mainly using linear regressions (both with untransformed and 

log transformed variables) that are based on source water characteristics and in-plant operational 

data (Sadiq and  Rodriguez, 2004; Chowdhury, 2009; Ged et al., 2015).   The use of in-plant 

parameters and site specific attributes often limits the applicability of models to different sites or 

conditions (Ged et al., 2015; Chowdhury, 2009; Westerhoff et al., 2000; Nokes, 1999; Regli et 

al., 2015).  Recently, an extensive literature review and statistical analysis identified few models 

where the standard errors of the predicted DBP concentrations were less than the maximum 

contaminant level (MCL) allowable in drinking water (Ged et al., 2015).  Thus, while DBP 

models are useful to understand general trends in the relationships among source water, 

operational conditions, and DBP formation, they are not particularly useful to a utility in 

predicting their future compliance state should conditions in the source water change.   

 

 A watershed model that provides general predictions of DBP formation and speciation based on 

source water constituents would be a valuable tool, particularly for plants unable to develop their 

own site-specific models, and for assessing the impacts of source water changes on multiple 

drinking water plants within a region. Such wide-spread source water changes might occur due 

to anthropogenic discharges, such as those observed in the Allegheny River due to oil and gas 

wastewater discharges (States et al., 2013; Weaver et al., 2015), or due to climate change (Li et 

al., 2014c). A three year multi-treatment plant field study in the Monongahela River in 

southwestern Pennsylvania provided source and finished water quality data for the development 
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of models to assess the utility of extensive organic carbon characterization to predict DBPs under 

changing conditions. To avoid the use of in-plant data not regularly collected by these utilities 

and to increase the effectiveness of source water parameters as finished water predictors, 

multiple NOM characterization techniques were incorporated into the present analysis to more 

accurately capture the complexity of the NOM as a DBP precursor.  Source water constituents 

alone were used to create decision making models that provide broader, more widely applicable 

results. Trihalomethanes were the focus of the study because they are the most problematic class 

of regulated DBPs in the Monongahela River (Handke, 2008).   

 

The goals were (1) to create watershed-level models that broadly define the treatability of the 

source water, and (2) to provide generalized results so that they are more useful for decision 

makers (treatment plant operators and regulators) within the region.   To make the models useful 

for decision makers,  classification techniques were employed to make predictions of exceedance 

of four threshold values – the Total Trihalomethanes (TTHM) maximum contaminant level 

(MCL) of 80 μg/L, 80% of the TTHM MCL (64 μg/L), a Bromine Incorporation Factor (BIF) of 

0.75 (corresponding to a 25% molar concentration), and 50% THM brominated by mass.  

Classification trees were explored in this study because they are easy to interpret and can 

incorporate multiple trends within a dataset, unlike regression analysis which works when there 

is a single relationship throughout the dataset. The flexibility of classification trees to incorporate 

multiple trends is advantageous in a regional watershed model where many different source 

water constituents exhibit different behaviors. Classification trees have been used successfully to 

predict specific operational decisions in drinking water treatment plants, such as drinking water 

advisories (Harvey et al., 2015; Murphy et al., 2016) and coagulant use (Bae et al., 2006). 
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Additionally, regression trees (used to predict continuous variables) have been used in other DBP 

formation studies (Trueman et al., 2016) and in broad-scale prediction of multi-national disease 

burden (Green et al., 2009). Thus, the models described here are designed to enable assessment 

of how source water variability affects finished water quality and are designed to span a 

watershed rather than be specific to a single intake location. These techniques can be applied to 

other regions where anticipated source water changes have the potential to affect finished water 

DBPs.  

 

3.3 Materials and Methods 

Field Site and Sample Analyses   

Data for this analysis were from a field study that included six drinking water treatment plants 

along the Monongahela River in southwestern Pennsylvania (Wilson and  Van Briesen, 2013; 

Wilson, 2013).  Samples included in the current analysis (N = 111) span the period May, 2010 to 

September, 2012, and represent weekly to monthly sampling, depending on season. The six 

plants, labeled A through F, in order from upstream (southern-most site) to downstream 

(northern-most site), are shown in Figure 3.1. Two locations were sampled at each of the six 

plants – from the source water intake in the river and from the finished water leaving the plant 

after all treatment steps. All plants in the study use chlorine disinfection and two of the plants 

(Sites C and D) apply chlorine prior to coagulation (pre-chlorination).  
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Figure 3.1: Schematic of Monongahela River sampling locations. Schematic shows the bank 

location of six drinking water plants (A through F), the corresponding locations along the 

river (in kilometers) upstream of its confluence with the Allegheny River, and locations of 

lock and dam structures that control river flow. 

 

Source water geochemical data for this field study were previously published (Wilson and  Van 

Briesen, 2013), including concentrations of bromide, chloride, and sulfate.  In addition to those 

data, source water sample analyses included DOC, UV254, and EEM.  DOC was measured for 

samples that were passed through a 0.45 μm filter on a Total Organic Carbon Analyzer (O I 



37 
 

Analytical, College Station, TX) and UV254 was measured on a Cary 300 Bio UV Visible 

Spectrophotometer (Santa Clara, CA). EEM were measured on a Fluoromax-4 

Spectrofluorometer (Horiba, Kyoto, Japan).   For finished water, the four trihalomethane species 

(chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were measured 

using Standard Method 551.1 (EPA, 1995). Missing and below detection data were imputed 

using log-normal distributions of the known data (Helsel, 1990).   

 

Excitation Emission Matrices and Parallel Factor Analysis  

EEM were measured for the 111 samples with the excitation spectra ranging from 200 to 500 nm 

with a 2 nm step size and with the emission spectra ranging from 300 to 600 nm with a 5 nm step 

size. A blank sample (MilliQ water measured with the same EEM parameters) was subtracted 

from each sample EEM to remove the fluorescent signal from water. Any negative values 

generated in the blank subtraction (mostly from small variations in the water fluorescence) were 

set to zero. The fluorescence signal was calibrated by converting to Raman units – normalizing 

all elements in the EEM by the Raman water peak. Specifically, each fluorescence intensity was 

divided by the integral of the fluorescence intensities under the water peak (EX = 350 nm, EM = 

371 – 428 nm) (Lawaetz and  Stedmon, 2009). Once all the EEM data were processed, they were 

analyzed via PARAFAC using the DOMFluor toolbox 

(http://www.models.life.ku.dk/algorithms) created by Stedmon and  Bro (2008). Component data 

are provided in Table A1 Appendix A.  

 

PARAFAC can be used to simplify large, multi-dimensional datasets by identifying the 

independent variables responsible for variations in the data (Harshman and  Lundy, 1994; Bro, 

1997). The advantage of using PARAFAC for an EEM dataset, over other statistical techniques, 
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is that it can handle multi-dimensional data and produces components that represent real physical 

phenomena (Stedmon 2003, 2008). PARAFAC uses 3-way decomposition to identify the 

underlying fluorophores present in multiple EEM samples within the data set. In a simple, 

dataset with just a few fluorophores, a correct PARAFAC analysis identifies PARAFAC 

components that represent the individual fluorophores. However, in a more complex mixture, 

where there are likely many fluorophores, PARAFAC components represent groups of 

fluorophores with similar fluorescent activity (Stedmon 2003, 2008). Two outliers– Site D on 

9/7/2011 and Site A on 6/23/2011 – were identified in the PARAFAC model and removed, 

leaving 109 instances in the dataset. The validated PARAFAC model produced 3 components, 

which together sum to the total fluorescence intensity within each sample (Stedmon 2003, 2008).  

The components generated by the PARAFAC model are representative of the major organic 

carbon fluorescent groups within the dataset. The three resultant PARAFAC components are 

referred to as C1, C2, and C3, and the total fluorescence intensity is referred to as Fmax. The 

components (C1, C2, C3), the total fluorescence Fmax, and the ratios of each PARAFAC 

component to Fmax (C1/Fmax, C2/Fmax, C3/Fmax) are used as model inputs in the study to evaluate 

both the main fluorescence signals as well as the relative contribution of each fluorescence 

signal.  

 

 

Calculating DBP Composite Values  

From the experimental data, total trihalomethanes (TTHM) were calculated as the sum of the 

four individual Trihalomethane species – chloroform (CHCl3), bromodichloromethane 

(CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), each measured as 

concentrations in μg/L. 
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Two different methods were used to measure the relative contribution of brominated species to 

TTHM – Bromine Incorporation Factor (BIF) and percent brominated THM. BIF, a molar-based 

value, is measured and incorporated in the analysis because source water bromide (and 

subsequently hypobromous acid) is expected to increase the rate of TTHM formation (Acero et 

al., 2005; Gallard et al., 2003), thus, increasing the molar total THM present in the finished 

water.  Percent brominated THM by mass is also incorporated because the molar mass of 

bromide is higher than that of chloride, and thus brominated THMs by virtue of their higher mass 

increase the likelihood of exceedance of the mass-based TTHM standard by more than would be 

predicted on a molar basis.   

 

BIF was first developed by Gould et al. (1983) and is used frequently to describe the finished 

water quality, in terms of the DBPs formed (Rathburn, 1996a; Kawamoto and  Makihata, 2004; 

Elshorbagy, 2000; Francis et al., 2010; Tian et al., 2013; Chang et al., 2001).  BIF is calculated 

according to the equation (3.1) 

 

𝐵𝐼𝐹 =  
0∗ [𝐶𝐻𝐶𝑙3] + 1∗[𝐶𝐻𝐵𝑟𝐶𝑙2]+2∗[𝐶𝐻𝐵𝑟2𝐶𝑙]+3∗[𝐶𝐻𝐵𝑟3]

[𝐶𝐻𝐶𝑙3]+[𝐶𝐻𝐵𝑟𝐶𝑙2]+[𝐶𝐻𝐵𝑟2𝐶𝑙]+[𝐶𝐻𝐵𝑟3]
  (3.1) 

 

where each term represents the molar concentration of the species. BIF can range from 0 (all 

chloroform) to 3 (all bromoform), with values closer to 3 representing a more brominated TTHM 

sample.  A threshold of 0.75 (25% molar fraction of brominated THMs) was chosen to bisect the 

data.  
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Percent brominated THM (shown in equation 3.2) has been used recently to assess the relative 

contribution of brominated-DBPs to the total regulated TTHM (States et al., 2013).  

 

% 𝐵𝑟𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 =  
[𝐶𝐻𝐵𝑟𝐶𝑙2]+[𝐶𝐻𝐵𝑟2𝐶𝑙]+[𝐶𝐻𝐵𝑟3]

[𝐶𝐻𝐶𝑙3]+[𝐶𝐻𝐵𝑟𝐶𝑙2]+[𝐶𝐻𝐵𝑟2𝐶𝑙]+[𝐶𝐻𝐵𝑟3]
∗ 100%     (3.2) 

 

A threshold of 50% brominated THMs was chosen to bisect the dataset and provide a measure of 

the relative contribution of Br-THMs to TTHM, by mass. 

 

Statistical Analyses  

R (RCoreTeam, 2015), a statistical programming language was used to create regression and 

classification tree models. Regression models, both with untransformed and log-transformed 

variables, were used to predict numerical finished water characteristics of interest – TTHM 

concentration, CHCl3 concentration, CHBrCl2 concentration, CHBr2Cl concentration, CHBr3 

concentration, BIF, and percent brominated TTHM by mass as a function of source water 

parameters.  

 

A backward step-wise regression was used to choose a subset of variables based on the  Akaike 

Information Criteria (AIC) for both sets of regressions (Akaike, 1974). Regressions using log-

transformed variables were tested, in addition to those with untransformed variables, because 

environmental data are often highly skewed, exhibiting multiplicative, order-of-magnitude 

relationships, and previous DBP studies have shown success in creating log-transformed 

predictions (Amy et al., 1987; Rathburn, 1996b; Sohn et al., 2004).  Regressions were evaluated 

based on their adjusted R
2
 values and Residual Standard Errors (RSE).  
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Classification trees are used to classify instances within a dataset by the binary response variable 

through stratification of the dataset. The data are split for each predictive input variable, with 

branches chosen sequentially to minimize the misclassification rate in the resulting response 

variable subsets. The first split is based on the most predictive variable, and subsequent splits are 

added based on previous or new input variables if these variables are needed to improve the 

classification according to the response variable. Classification trees are especially useful when 

the relationship between response and input variables changes over different portions of the input 

domain, whereas regression models fit a single relationship over an entire domain.  Confusion 

matrices (4x4) and Receiver Operator Characteristic (ROC) curves are used to summarize the 

overall performance of each classification tree. The confusion matrices show the number of true 

positives, true negatives, false positives, and false negatives for each tree, which are used to 

calculate the sensitivity, specificity, and accuracy. The sensitivity (true positive rate), specificity 

(true negative rate), and accuracy (rate of correctly classified instances) provide an indication of 

the fit of the model. High sensitivity, specificity, and accuracy values, as well as relatively 

similar sensitivity and specificity values indicate a good fit and balanced result that minimizes 

both false positives and false negatives.  ROC curves show the trend of true positives 

(sensitivity) to false positives (1 – specificity). A greater the area under the curve (AUC), 

obtained from an ROC curve that approaches the top left corner of the plot more closely, 

indicates a more predictive model. The decision trees and ROC curves were created in R using 

the Rpart and ROCR packages (RCoreTeam, 2015; Chambers and  Hastie, 1992; Sing et al., 

2005). The decision trees were pruned using a minimum split of 25 (i.e. at least 25 observations 
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must be present in a node, otherwise any further downstream branches are pruned), and validated 

using a 10-fold cross validation, with instances randomly partitioned into each of the 10 subsets.  

 

Table 3.1: Summary of variables used in regression and classification models. Measured 

source water parameters are used as input variables. Measured finished water parameters 

serve as the basis for regression and classification model response variables. Threshold 

values are used to create binary response variables for classification models.   

Source Water Finished Water Threshold Values 

Br (mg/L) 

DOC (mg/L) 

UV254 (cm
-1

) 

C1 

C2 

C3 

Fmax 

Total Trihalomethanes (μg/L) – TTHM 

Chloroform (μg/L) – CHCl3 

Bromodichloromethane (μg/L) – CHBrCl2 

Dibromochloromethane (μg/L) – CHBr2Cl 

Bromoform (μg/L) – CHBr3 

 

TTHM MCL (80 μg/L) 

80% TTHM MCL (64 μg/L) 

BIF of 0.75 (25% Br-THM by mol) 

50% Brominated THM (by mass) 

 

 

A summary of the variables used in the regression and classification models is presented in Table 

3.1.  While fluorescence is not usually routinely monitored by plant operators, new research 

supporting online fluorescence monitoring of NOM may encourage future implementation of 

such technology by treatment plants (Roccaro et al., 2009; Roccaro and  Vagliasindi, 2010; 

Shutova et al., 2014). The four binary response variables were chosen because they provide 

important information about the quality of the water and can be used by operators and regulators 

to make decisions. The TTHM MCL is a threshold value that regulators have set as an allowable 

limit of TTHM concentration in drinking water at the point of consumption (EPA, 2006). As an 

enforceable regulation, operators must manage treatment plant operations so as to not exceed the 

TTHM MCL at all points in the water distribution system. Eighty percent of the TTHM MCL, 
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corresponding to a concentration of 64 μg/L, was also chosen as a threshold value because it is 

commonly used as a target for finished water TTHM in the plant to maintain regulatory 

compliance throughout the system (Roberson et al., 1995; Becker et al., 2013). BIF and percent 

brominated THM indicate the relative presence of brominated THM species, which may 

represent more significant health concerns (Plewa et al., 2002; Richardson et al., 2003).  The 

threshold values of BIF and percent brominated were set to represent a moderate distribution of 

brominated THMs.  BIF usually stays below 0.3 (on a 0 to 3 scale) in the Mississippi, Missouri, 

and Ohio Rivers (Rathburn, 1996a).  

 

3.4 Results and Discussion 

 

Variability of Finished Water Trihalomethanes  

 

TTHM were measured in the finished water at each of the six drinking water treatment plants. 

The boxplots in Figure 3.2 show the range of TTHM levels at each of the six sampling locations 

in the Monongahela River.  
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Figure 3.2: Boxplots of TTHM (μg/L) at each of the six sampling sites. Plots show median 

values, 75
th

 and 25
th

 quartiles (upper and lower ends of the box), minimum and maximum 

(non-outlier) values (ends of whiskers), and outliers (+ signs). 

 

Differences among sites are statistically significant (ANOVA test p-value of 1.05 x 10
-36

). Post-

hoc t-tests indicate significant (p < 0.05) differences between all site pairs except Sites C and D 

and Sites A and B. Sites C, D, and F have higher median levels of TTHMs as well as a larger 

ranges of TTHM levels.  The high variability in the river across many sites is not surprising, 

especially since  the river is navigationally-controlled by a series of locks and dams that create 

pools, which can show significant variation in source water quality (Wang et al., 2015). 
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Variation in TTHM at different sites has been widely reported in prior work (Obolensky and  

Singer, 2005; Obolensky and  Singer, 2008; Francis et al., 2009).  Sites C and D have some of 

the highest TTHM levels, as would be expected since these sites apply chlorine ahead of the 

coagulation and filtration steps. The TTHM levels in Sites C and D may also be similar because 

they are in the same pool of the river (see Figure 1), making their source water quality likely 

more similar to each other. 

 

Variability of Bromide in the Source Water  

The presumed consistency of the single river source was a primary reason for selection of the 

field study sites at multiple plants using similar processes and all using free chlorine for 

disinfection.  As discussed previously, bromide is an important source water component to 

consider because bromide in the source water leads to more brominated DBPs (Richardson et al., 

2003; Chowdhury et al., 2010; Watson et al., 2015; Plewa et al., 2002).  Bromide was expected 

to be fairly consistent across the six sites throughout the three-year field study; however, as 

reported by Wilson and  Van Briesen (2013), significant changes in bromide concentration were 

observed during 2011-2013 in this river.  
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Figure 3.3: Boxplots of source water bromide concentration (mg/L) at each of the six 

sampling sites along the Monongahela River. Plots show median values, 75
th

 and 25
th

 

quartiles (upper and lower ends of the box), most extreme non-outlier values (ends of 

whiskers, and outliers (+ signs).  

 

In addition to temporal variation, bromide in the river also shows spatial variation. Figure 3.3 

shows a high level of variability of bromide across the six sampling locations (ANOVA test p-

value of 2.9x10-5). The high variability of the bromide suggests that it is a potential cause of the 

high variability in the finished water TTHM, compounding the challenge in assessing the role of 

NOM characterization in TTHM prediction.  Although bromide is a known DBP precursor and 

plays an important role in DBP formation, bromide and TTHM levels across all sites 

demonstrate a poor linear relationship, with an R value of 0.06.  This is consistent with many 

prior studies that report bromide concentration alone is not predictive of finished water DBP 
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concentrations (Sakai et al., 2015; Chowdhury et al., 2010; Al-Omari et al., 2004; Kulkarni and  

Chellam, 2010).  

 

Variability in Organic Source Water Characteristics  

Organic precursors were analyzed, using commonly measured criteria, including DOC, UV254, as 

well as through fluorescence EEM, which were analyzed using PARAFAC analysis. Boxplots of 

DOC and UV254 throughout the 3-year study at each of the six plants can be found in Figure A1 

in Appendix A.  In general, DOC is very stable across the sites. UV254 appears to be slightly 

more variable, but an ANOVA test indicates that mean UV254 values are not significantly 

different across sites (p-value = 0.22). NOM is a well-known precursor for DBP formation, and 

UV254 and DOC are often included in DBP prediction models (Edzwald et al., 1985; Reckhow et 

al., 1990; Kitis et al., 2002). However, these parameters are not correlated with TTHM in this 

data set (R=0.12 for DOC, 0.08 for UV254)). While DOC and UV254 provide some insight into 

organic carbon, their stability across multiple sites and seasons suggests these parameters are not 

providing enough information about variability to account for variability in observed TTHM in 

finished water in the plants.  

    

Table 3.2: Fluorescence maxima (emission and excitation) for the three PARAFAC 

components - C1, C2, and C3.  

 

   Component  Emission Maxima (nm)  Excitation Maxima (nm)  

C1   440     346    

C2   385     314    

                        C3   495     394 
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The EEM-PARAFAC analysis of the 109 sample EEM yielded 3 components, C1, C2, and C3. 

Fluorescence maxima for the three components are shown in Table 3.2. All three components are 

found in the humic acid-like region, according to Chen et al. (2003).  Further, Sakai et al. (2015) 

found that EEM with fluorescence signals in the “humic acid-like” region are highly correlated 

with TTHM formation. The three plots in Figure 3.4 provide visual representations of the 

resultant PARAFAC components. Prior to considering the components as input modeling 

variables, their stability across sites was evaluated.  Boxplots that illustrate the variability of the 

PARAFAC components and total fluorescence intensity, Fmax, at each of the six sites throughout 

the three-year study can be found in Figure A2 in Appendix A. 

 

Figure 3.4:  EEM of 3 Components resulting from the EEM-PARAFAC analysis as follows: 

(a) C1, (b) C2, and (c) C3.  

 

The four fluorescence characterizations – C1, C2, C3, and Fmax – show some similar patterns at 

multiple sites. For example, Sites A and F and Sites D and E show similar central tendencies for 

each of the four fluorescence parameters. Overall, there is high variability in component values 

and Fmax across the six sites, which is confirmed by ANOVA tests for each of the four 

fluorescence characterizations.  ANOVA tests for C1, C2, C3, and Fmax across the sites produced 

significant p-values, 0.04, 0.003, 0.01, and 0.01, respectively. Although PARAFAC components 
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show promise as DBP predictive parameters individually, they demonstrate poor linear fits with 

TTHM (R
2
 values of 0.10, 0.14, 0.07, and 0.11 for C1, C2, C3, and Fmax, respectively).  Previous 

work by (Pifer and  Fairey, 2014) indicated high correlations between PARAFAC components 

and TTHM formation potential measured in the lab; however, direct prediction from a single 

component or Fmax was not successful with these field samples. 

 

Regression Analysis  

Source water constituents (i.e., NOM and bromide) are expected to influence DBP formation, 

and thus, have the potential to predict concentrations of THM species.  In the present work, the 

utility of expanded NOM characterization along with bromide to predict THMs was examined. 

Operational characteristics were specifically excluded from modeling to ascertain if models 

could be developed to account for source water variability throughout the region, independent of 

plant-specific operational characteristics.  

 

Linear regressions  were first developed for seven different response variables – TTHM, 

Chloroform (CHCl3), Bromodichloromethane (CHBrCl2), Dibromochloromethane (CHBr2Cl), 

Bromoform (CHBr3), BIF, and Percent Brominated – using multiple input variables, including 

bromide, DOC, UV254, and EEM-PARAFAC components. The untransformed and log-

transformed variable regression models were statistically significant (F statistic p-value < 0.05), 

but showed poor to moderate R
2
 values, ranging from 0.07 to 0.44 for untransformed variable 

regressions and 0.10 to 0.28 for the log transformed variable regressions.  Complete results and 

further discussion are presented in Appendix A.  
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Classification Trees 

 

Classification trees were used to predict whether four key threshold values related to finished 

water DBPs – the TTHM MCL, 80% of the MCL, a BIF of 0.75, and 50% Brominated THMs by 

mass – would be met. Two classification trees were created for each of the four binary response 

variables (based on the four threshold values) – one incorporating the three PARAFAC 

components (C1, C2, C3) and one incorporating the ratios of each PARAFAC component to the 

total fluorescence intensity (C1/Fmax, C2/Fmax, C3/Fmax) as well as the total fluorescence 

intensity, Fmax. ROC curves for all 8 classification trees are shown in Figure 3.5.   Figure 3.5a 

shows the ROC curves for the two THM threshold trees (TTHM MCL and 80% of the TTHM 

MCL) and Figure 3.5b shows the ROC curves for the two brominated threshold trees (0.75 BIF 

and 50% Br-THM).  

 

Figure 3.5: Plot of Receiver Operator Characteristic (ROC) Curves for the classification 

trees. The TTHM MCL and 80% TTHM MCL (64 μg/L) trees are shown in (a) and the 

0.75 BIF and 50% Br-THM trees are shown in (b).  The ROC curves for the component 

trees (C) are drawn in solid lines and the ROC curves for the component ratio (C/F) trees 

are drawn in dashed lines. Each response variable is designated by a different color, as 

shown in the legend. The dotted black line at Y = X shows a curve based on a random 

selection. AUC values are shown for the component trees in each plot.  
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The plots in Figure 3.5a show that incorporating component fractions provides stronger 

predictions than components for the two THM thresholds, and that when incorporating 

components, a better prediction is obtained for 80% of the TTHM MCL (64 μg/L) than for 

TTHM MCL. The plots in Figure 3.5b show that incorporating components provides a stronger 

prediction than with component fractions for the two brominated thresholds, and that a better 

prediction is obtained for 0.75 BIF than for 50% Br-THM. Overall, the 0.75 BIF component tree 

provides the strongest predictions of all eight trees, while the TTHM MCL component tree 

provides the weakest predictions. 

 

Table 3.3: Summary of Classification Tree Performance. The Table shows the AUC (area 

under the ROC curve) value, accuracy, sensitivity, and specificity for the classification 

trees that use components (C1, C2, C3) as fluorescence inputs and for the classification 

trees that use component ratios and total fluorescence (C1/Fmax, C2/Fmax, C3/Fmax, Fmax) as 

fluorescence inputs for all 4 response variables – TTHM MCL, 80% of the TTHM MCL, 

BIF of 0.75, and 50% Brominated THM.  

 

  COMPONENTS  COMPONENT RATIOS  

Response Var. AUC Acc. Sens. Spec. AUC Acc. Sens. Spec. 

TTHM MCL 0.730 0.83 0.25 0.96 0.867 0.83 0.8 0.84 

80% MCL 0.811 0.77 0.66 0.81 0.875 0.83 0.72 0.88 

0.75 BIF 0.924 0.83 0.61 0.96 0.894 0.8 0.53 0.94 

50% Br-THM 0.857 0.8 0.76 0.83 0.815 0.76 0.8 0.73 

 

A summary of the performance of all eight classification trees – component and component ratio 

trees for predicting exceedance of each of the four threshold values – is shown in Table 3.3.  The 

AUC values range from 0.730 to 0.924 and the accuracy values range from 0.76 to 0.83. Most of 

the trees have high and fairly similar sensitivity and specificity values (except for the component 



52 
 

TTHM MCL tree and the component ratio 0.75 BIF tree), which means that the trees provide 

fairly balanced results. To evaluate the added value of fluorescence measurements, AUC values 

were determined for trees without fluorescence measurements. Based solely on DOC, UV254, and 

bromide, AUC values are 0.60 for TTHM MCL, 0.561 for 80% TTHM MCL, 0.893 for 0.75 

BIF, and 0.759 for 50% Br-THM. All of these additional trees used the same minimum split as 

the 8 classification trees incorporating the fluorescence measurements (25), except for the 

TTHM MCL tree which used a minimum split of 15 because a tree could not be created beyond a 

single node at a larger minimum split. The AUC values for trees without fluorescence 

measurements are overall worse than those for trees that incorporate fluorescence measurements, 

except for the 0.75 BIF, which  gave similar results both with and without fluorescence 

measurements (AUC = 0.894 for the component ratio tree and AUC = 0.893 for the tree that 

omits fluorescence variables).  These results indicate that in general, fluorescence measurements 

improve classification tree predictions.     

 

Predicting TTHM Concentrations in Excess of the Maximum Contaminant level (MCL). 

The classification trees that predict exceedance of the TTHM MCL Regulation (TTHM 

concentration of 80 μg/L) are shown in Figure 3.6 – Figure 3.6a is the tree that uses components 

as inputs (C1, C2, C3) and Figure 3.6b is the tree that uses component ratios and total 

fluorescence (C1/Fmax, C2/Fmax, C3/Fmax, Fmax) as inputs.  
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Figure 3.6: Classification Trees created in R that predict whether the TTHM MCL 

Threshold is exceeded based on source water characteristics, including bromide, DOC, 

UV254, and component sub-groups: (a) the three PARAFAC components (C1, C2, C3); and 

(b) the component ratios and total fluorescence intensity (C1/Fmax, C2/Fmax, C3/Fmax, Fmax). 

The input parameters are drawn in ovals and the terminal nodes (indicating whether the 

TTHM MCL will be met or exceeded) are drawn in rectangles. Branches are labeled with 

the split of the input parameters and the number of instances (n) pertaining to the split. 

Terminal nodes are labeled with the overall outcome (“Meet” or “Exceed”) and the 

number of instances that actually meet (M) or exceed (E) the threshold. 

 

Classification trees provide good fits of the dataset, as demonstrated by the high accuracy values 

and generally high sensitivity and specificity values. Though the two trees performed similarly in 

accurately classifying instances, the component ratio tree (Figure 3.6b) is more balanced in its 

classified outcomes, with nearly equal sensitivity and specificity values. The component tree 

(Figure 3.6a), on the other hand has a very high specificity (true negative rate) and very low 

sensitivity (true positive rate) because the tree slightly under-predicts exceeding the MCL, 

according to Table 3.3.  The component classification tree classified very few instances as 

“exceed,” only 9 out of 109, though in reality 20 instances exceeded the MCL.  

 



54 
 

The classification tree that uses components as inputs identifies C2 and C3 as the most important 

variables in predicting TTHM MCL exceedance, with C2 being the dominant input variable. 

According to the tree, instances with low C2 values (< 0.04) are likely to meet the TTHM MCL. 

Outcomes for instances with high C2 values (≥ 0.04) depend on C3 values. Instances with high 

C2 values and high C3 values (≥ 0.02) are likely to meet the MCL, while instances with high C2 

values and low C3 values (< 0.02) are likely to exceed the MCL. The classification tree that uses 

component ratios and total fluorescence intensity as inputs identifies C1/Fmax, Fmax, bromide 

concentration, and DOC as the most important variables, with C1/Fmax being the dominant input 

variable. According to the tree, when the C1/Fmax ratio is high (≥ 0.54), instances are likely to 

meet the TTHM MCL. At lower C1/Fmax values (< 0.54), Fmax is used to determine the outcome. 

Low C1/Fmax and low Fmax values (Fmax < 0.11) generally meet the MCL. Instances are more 

likely to exceed the MCL when C1/Fmax is low, Fmax is high, and bromide concentration is high 

(≥ 0.10), or when Cl/Fmax values are moderate (0.51 – 0.54), Fmax is high, and DOC is low (< 

2.95).  

 

A major difference between the two trees is the set of input variables included in each tree. The 

component classification tree incorporates only two fluorescence measurements (C2 and C3), 

while the component ratio classification tree incorporates two fluorescence measurements 

(C1/Fmax and Fmax), DOC, and bromide concentration. Despite these differences, both trees show 

a preference for fluorescence NOM measurements over DOC and UV254, based on order of 

appearance in the tree and overall inclusion in the tree. Fluorescence measurements have also 

been found to be superior to SUVA in other studies when DOC is low (Lavonen et al., 2015). 

The inclusion of bromide in only one tree and at the bottom of the tree indicates that NOM 
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characterization is more important than bromide concentration in predicting TTHM regulatory 

outcomes in this system, despite significant variability of bromide in the source water. The 

behavior of TTHM formation due to bromide concentration (increased likelihood of exceeding 

the MCL at higher bromide concentrations) is consistent with previous studies that found that 

increases in bromide concentration result in increased TTHM (Chowdhury et al., 2010; Hua et 

al., 2006b; Navalon et al., 2008).   

 

Predicting TTHM in excess of 80% of the Maximum Contaminant Level (MCL). The 

classification trees that predict exceedance of 80% of the TTHM MCL (64 μg/L) are shown in 

Figure 3.7 – Figure 3.7a illustrates the component classification tree (incorporating C1, C2, C3) 

and Figure 3.7b illustrates the component ratio tree (incorporating C1/Fmax, C2/Fmax, C3/Fmax, 

and Fmax). 

 

Figure 3.7: Classification Trees created in R that predict whether the 80% of the TTHM 

MCL (64 µg/L) is exceeded based on source water characteristics, including bromide, 

DOC, UV254, and component sub-groups: (a) the three PARAFAC components (C1, C2, 

C3); and (b) the component ratios and total fluorescence intensity (C1/Fmax, C2/Fmax, 
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C3/Fmax, Fmax). The input parameters are drawn in ovals and the terminal nodes (indicating 

whether the TTHM MCL will be met or exceeded) are drawn in rectangles. Branches are 

labeled with the split of the input parameters and the number of instances (n) pertaining to 

the split. Terminal nodes are labeled with the overall outcome (“Meet” or “Exceed”) and 

the number of instances that actually meet (M) or exceed (E) the threshold. 

 

  

The 80% MCL (64 μg/L) classification trees look similar to the TTHM MCL trees in that most 

of the same input variables were used. Both of the component trees incorporate C2 and C3 and 

the C2 split occurs at the same cut-off value, however, the 80% MCL tree also incorporates 

DOC.  Both component ratio trees incorporate C1/Fmax, Fmax, and DOC, and the C1/Fmax and first 

Fmax splits occur at the same cut-off values, however, the TTHM MCL tree incorporates bromide 

while the 80% MCL ratio tree incorporates C3/Fmax. Of the four classification trees related to the 

regulatory TTHM MCL threshold (Figures 3.6a, 3.6b, 3.7a, 3.7b), only one incorporates 

bromide, indicating that it is not as important as NOM characterization in determining whether 

or not the regulatory thresholds will be met. Though bromide has been found to increase DBP 

formation, many of the studies that report bromide being an important precursor in DBP 

formation incorporate synthetic laboratory samples that have higher concentrations of bromide 

than those found in these natural waters (Richardson et al., 2003; Chowdhury et al., 2010; 

Watson et al., 2015; Hua et al., 2006b; Navalon et al., 2008; Hua and  Reckhow, 2012; Chang et 

al., 2001). Additional discussion of the 80% TTHM MCL classification tree is found in 

Appendix A. 

 

Predicting BIF Values in Excess of 0.75.  The classification trees that predict exceedance of the 

0.75 BIF threshold are shown in Figure 3.8 – Figure 3.8a illustrates the component classification 
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tree (incorporating C1, C2, C3) and Figure 3.8b illustrates the component ratio tree 

(incorporating C1/Fmax, C2/Fmax, C3/Fmax, and Fmax).    

 

Figure 3.8: Classification Trees created in R that predict whether the 0.75 BIF (25% molar 

bromination) threshold is exceeded based on source water characteristics, including 

bromide, DOC, UV254, and component sub-groups: (a) the three PARAFAC components 

(C1, C2, C3); and (b) the component ratios and total fluorescence intensity (C1/Fmax, 

C2/Fmax, C3/Fmax, Fmax). The input parameters are drawn in ovals and the terminal nodes 

(indicating whether the TTHM MCL will be met or exceeded) are drawn in rectangles. 

Branches are labeled with the split of the input parameters and the number of instances (n) 

pertaining to the split. Terminal nodes are labeled with the overall outcome (“Meet” or 

“Exceed”) and the number of instances that actually meet (M) or exceed (E) the threshold. 

 

The component classification tree (Figure 3.8a) identifies bromide concentration, C1, and C2 as 

the most important variables, while the component ratio classification tree (Figure 3.8b) 

identifies bromide and C3/Fmax as the most important variables. In both classification trees, 

bromide is the first variable, meaning that it is the most indicative of the outcome behavior – 

exceeding or meeting the 0.75 BIF threshold. The inclusion of bromide as the dominant variable 

in both classification trees is consistent with previous research that found that bromide in the 

source water contributes to increased BIF in finished water (Rathburn, 1996a).  
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Predicting THM Bromination in Excess of 50%. The classification trees that predict 

exceedance of 50% brominated THM (by mass) are shown in Figure 3.9. The component 

classification tree is illustrated in Figure 3.9a and the component ratio classification tree is 

illustrated in Figure 3.9b.  

 

Figure 3.9: Classification Trees created in R that predict whether the 50% Brominated 

THM (by mass) threshold is exceeded based on source water characteristics, including 

bromide, DOC, UV254, and component sub-groups: (a) the three PARAFAC components 

(C1, C2, C3); and (b) the component ratios and total fluorescence intensity (C1/Fmax, 

C2/Fmax, C3/Fmax, Fmax). The input parameters are drawn in ovals and the terminal nodes 

(indicating whether the TTHM MCL will be met or exceeded) are drawn in rectangles. 

Branches are labeled with the split of the input parameters and the number of instances (n) 

pertaining to the split. Terminal nodes are labeled with the overall outcome (“Meet” or 

“Exceed”) and the number of instances that actually meet (M) or exceed (E) the threshold. 

 

The component classification tree identifies bromide, UV254, C1, C2, and C3 as the most 

important input variables, and the component ratio classification tree identifies bromide, UV254, 

and C1/Fmax as the most important input variables for predicting whether the 50% brominated 

THM by mass threshold will be exceeded. The results indicate that exceedance of the 50% 
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brominated THM threshold is dependent on both bromide and NOM characterization, with 

bromide being the most important. Further, DOC is not included in either tree, indicating that the 

characterization of NOM is more important than the quantity in brominated THM formation (by 

mass), like the 0.75 BIF classification tree results.  Both 50% Br-THM classification trees show 

unexpected results– in three of the four the exceedance scenarios contain lower bromide levels (< 

60 μg/L). It was expected that exceedances would more often occur in the high bromide branches 

of the trees (≥ 60 μg/L) because higher bromide shifts DBP towards brominated species 

(Richardson et al., 2003; Watson et al., 2015; Chang et al., 2001). However, the unexpected 

results may be due to a more complex relationship between bromide and NOM in DBP 

formation.  

 

The inclusion of fluorescence measurements in all 8 classification trees, in addition to the higher 

AUC values for trees that include fluorescence measurements, demonstrates that fluorescence 

measurements are valuable parameters when classifying instances based on exceeding or 

meeting TTHM or Br-THM thresholds.  All four component trees (Figures 3.6a, 3.7a, 3.8a, 3.9a) 

include C2 and at least one other component (C1 or C3). In the TTHM component trees (Figures 

3.6a and 3.7a), C2 is the most important input variable. C2 has a similar peak to one of the two 

peaks in a PARAFAC component identified in another study (EM/EX = 381/219(304)), which 

was found to be highly correlated with chloroform formation in a multivariate linear regression 

(Johnstone et al., 2009). In the present study, chloroform is the dominant THM species. Three of 

the four component ratio trees (Figures 3.6b, 3.7b, and 3.9b) include C1/Fmax, and in all three of 

the trees, higher C1/Fmax ratios (≥ 0.54) increase the likelihood of meeting the threshold.  Finally, 

seven of the eight classification trees identify more than one NOM measurement as important 
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input variables. The use of multiple NOM characterizations within the classification trees 

demonstrates the need for multiple NOM characterization techniques for effectively capturing 

the complexity and heterogeneity of NOM for predictive models.  

 

Model Validation Across Sites 

 

To further evaluate the robustness of the classification trees across a spatially variable dataset, 

additional classification trees were created on subsets of sites. The additional models, referred to 

as Site Validations (SV),  were performed by creating models based on 5 of the 6 sites (training 

dataset)  and then tested on the one remaining site (testing dataset). Successful model generation 

from the site validations would suggest that a model created from multiple sites within a specific 

geographic region (such as the dataset used in this study) could be applied to other sites within 

the region that were not originally incorporated into the model. Table 3.4 presents a summary of 

the accuracy values within the testing dataset for the classification tree Site Validation models 

that use the components (C1, C2, C3) as inputs. Also contained in the summary are accuracy 

values for the models presented previously that were generated on the entire dataset (referred to 

as “initial”).  

Table 3.4: Summary of Accuracy Results for the Site Validation Classification Trees using 

components (C1, C2, C3). Results are shown for the initial models (Initial) and the six site 

validation (SV) models for each of the four response parameters. 

Model   TTHM MCL   80% MCL   0.75 BIF  50% Brominated 

Initial           0.83   0.77   0.83   0.80 

SV 1          0.75          0.75   0.81    0.50  

SV 2          0.82          0.74       0.82    0.65  

SV 3           0.68          0.53       0.26    0.63  

SV 4           0.60          0.50     0.75    0.70  

SV 5           0.70          0.80       0.60    0.50  

SV 6           0.50          0.20       0.70    0.80  
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Overall, the Site Validation models in Table 3.4 show fairly high accuracy results. Except for 

80% MCL SV 6 and 0.75 BIF SV 3 models, the accuracy values for the SV models are 0.50 or 

higher. Each of the four parameters have at least three Site Validation models that correctly 

classify 65% or more of the test instances.  

 

The same site cross validations were performed for the classification tree models that used the 

component ratios and total fluorescence (C1/Fmax, C2/Fmax, C3/Fmax, Fmax) as inputs. A summary 

of the results from these Site Validation Classification Models is presented in Table 3.5.  

 

Table 3.5: Summary of Accuracy Results for the Site Validation Classification Trees using 

component ratios and total fluorescence (C1/Fmax, C2/Fmax, C3/Fmax, Fmax). Results are 

shown for the initial models (Initial) and the six site validation (SV) models for each of the 

four response parameters.   

Model   TTHM MCL   80% MCL  0.75 BIF 50% Brominated 

Initial           0.83   0.83   0.80   0.76 

SV 1         0.56   0.63   0.81        0.44  

SV 2         0.88   0.74   0.76    0.65  

SV 3         0.68     0.53   0.32    0.32  

SV 4         0.65   0.60   0.70        0.65  

SV 5         0.80   0.80   0.50        0.50  

SV 6         0.40   0.50   0.80        0.80 

 

The Site Validation models in Table 3.5 also show fairly high accuracy results. With the 

exception of TTHM MCL SV 6, 0.75 BIF SV 3, 50% Brominated SV 1, and 50% Brominated 

SV 3, the accuracy results for the SV models are 0.50 or higher. Furthermore, each of the four 

parameters have at least two SV models that correctly classify 65% or more of the test instances. 

In general, the Site Validation models show lower accuracy values than the initial models 

because they are developed and tested on a subset of the data.  



62 
 

 

The site validation models demonstrate a reasonable level of accuracy; many of the site 

validations have accuracy values comparable to the initial models. Given that these models are 

fairly predictive across sites, there is potential for use of the models for other sites in the 

geographic region that were not originally included in the analysis. Additionally, this suggests 

the general method may provide insights in other geographic regions.  Creating a classification 

model using data from multiple sites in a region may enable application at other drinking water 

facilities throughout that region.  

 

3.5 Conclusions 

Classification techniques demonstrate an improvement in predictive capability compared to 

regression models for predicting finished water quality based on source water characteristics 

alone for the dataset used in this study, with 76% to 83% accuracy in correctly classifying 

instances.  The classification trees are able to partition the input space of the explanatory 

variables to provide predictions that vary across this space.  In addition, they are specifically 

structured and fit to provide optimal prediction of the threshold-defined categories for the 

dependent variables.  Both sets of inputs – components (C1, C2, C3) and component ratios 

(C1/Fmax, C2/Fmax, C3/Fmax, Fmax) – demonstrated high sensitivity, specificity, and accuracy 

results within the classification trees.  ROC curves indicated that the 0.75 BIF tree with 

component inputs was the best model overall.  

 

NOM fluorescence measurements were chosen preferentially over UV254 and DOC overall in the 

classification models, indicating their utility in DBP predictive models. C2 was identified as an 
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important input variable in all four component classification trees and C1/Fmax was identified as 

an important input variable in three of the four component ratio classification trees.  

Additionally, the use of multiple NOM characterizations within many of the models indicates 

that multiple NOM characterizations that describe different features of the NOM are necessary 

for creating robust predictive models. Bromide was used in all Br-THM models (0.75 BIF and 

50% Br-THM), but in only one of the TTHM models (TTHM MCL and 80% MCL), indicating 

that NOM may be more predictive of TTHM regulation than bromide in this region. 

 

The success of the classification trees demonstrates an alternative method for assessing overall 

treatability of source water within a basin and for broadly predicting the finished water quality 

from source water characteristics. Classification techniques can be used to create regional source 

water models for other areas experiencing source water changes to assess potential challenges for 

compliance with operational and regulatory thresholds of interest.  
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4 Chapter 4 

 

 

FLUORESCENCE CHARACTERIZATION OF ORGANIC MATTER AND FOULING 

IN A FULL-SCALE REVERSE OSMOSIS MEMBRANE TREATMENT PLANT
2
 

 

 

4.1 Abstract 

 

Organic Matter in source water is responsible for organic fouling in membranes, reducing water 

flux and leading to biological fouling. Previous research has demonstrated the need to 

characterize organic matter for fouling prediction because development of an organic fouling 

layer on the membrane is dependent on the specific characteristics of the organic matter. A field 

study was performed at a full-scale reverse osmosis treatment plant that treats secondary 

wastewater for power plant boilers. Samples were collected at various points within the treatment 

train and analyzed for multiple water quality measurements, including turbidity, total organic 

carbon (TOC), conductivity, and fluorescence Excitation Emission Matrices (EEM). Parallel 

Factor Analysis (PARAFAC) analysis was also performed on the EEM to generate representative 

fluorescence measurements of the organic matter. Results showed that TOC and fluorescence 

measurements, both EEM peaks and EEM-PARAFAC components, were effective in 

differentiating between two observed fouling periods – frequent spikes in differential pressure 

and steady differential pressure – at multiple locations within the treatment plant. However, none 

of the water quality measurements were effective in tracking treatability of organic matter 

throughout pre-treatment. The results provide important information about the relationship 

between fluorescence organic matter signals and membrane fouling that can be used in future 

online detection systems.  

                                                 
2 This chapter has been prepared as a manuscript that will submitted for publication as Bergman, L.E. and 

VanBriesen, J.M. “Fluorescence Characterization of Organic Matter and Fouling in a Full-Scale Reverse Osmosis 

Membrane Treatment Plant.” 
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4.2 Introduction 

 

Reverse osmosis (RO) membranes are an important technology in addressing water scarcity 

because they can effectively treat saline and low quality water. However, a major challenge for 

RO and other membrane separation processes is membrane fouling, characterized by a loss of 

water flux through the membrane (Arora and  Trompeter, 1983), which increases energy use, 

reduces salt rejection and increases cost (Hoek and  Elimelech, 2003; Hoek et al., 2002; Song 

and  Elimelech, 1995). In full-scale treatment plants, fouling is generally identified by an 

increase in the differential pressure across the membrane, and fouling associated with the 

sorption of organic matter to the membrane surface is a universal concern because natural 

organic matter (NOM) is ubiquitous in natural waters.  Organic fouling is also a concern in 

membrane systems because the organic layer formed on the membrane surface leads to biofilm 

development and subsequent biological fouling, which significantly reduces flux through the 

membrane  (Martínez et al., 2015; Arora and  Trompeter, 1983; Herzberg and  Elimelech, 2007; 

Rukapan et al., 2015). Further, organic fouling has been found to be the primary fouling 

challenge in full-scale RO membranes treating secondary effluent wastewater (Tang et al., 

2016).  

 

Due to the complex nature of organic matter, the extent and severity of organic fouling is 

dependent on the specific characteristics of the organic matter present in the membrane feed 

water. For example, polysaccharides have been identified as a major component in organic 

fouling in multiple bench-scale ultrafiltration (UF) membrane studies (Yu et al., 2014; Kennedy 

et al., 2005). Other bench-scale UF studies have found that mixtures of organics foul more than 

individual compounds (Myat et al., 2014; Ang et al., 2011; Gray et al., 2011). Biopolymers, 
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including carbohydrates and proteins, have also been identified as major foulants in 

microfiltration (MF), UF, RO, and membrane bioreactor studies (Yamamura et al., 2014; 

Kennedy et al., 2008; Zhao et al., 2010; Miyoshi et al., 2015). Similarly, microbial organic 

matter has been identified as a greater contributor to UF membrane fouling than terrestrial 

organic matter (Jutaporn et al., 2016). Additionally, hydrophilicity and hydrophobicity of 

foulants and membrane surfaces are reported to affect membrane fouling behavior (Kennedy et 

al., 2005; Yamamura et al., 2014; Junaidi et al., 2013). Even with the same amount of total 

organic carbon (TOC), various organic matter fractions have shown different fouling behavior, 

demonstrating that organic fouling is more related to the character of the organic matter than the 

quantity (Yamamura et al., 2014).  

 

Many studies have employed fluorescence measurements to characterize the fouling behavior of 

the influent water because it provides a more comprehensive characterization of organic matter 

than bulk parameters, such as TOC or turbidity. Both bench-scale and pilot-scale UF studies 

have linked protein-like fluorescence signals to increased fouling (Yu et al., 2014; Shao et al., 

2014; Peiris et al., 2010a; Peiris et al., 2013; Chen et al., 2014a). There have also been some 

conflicting results concerning humic-like fluorescence signals and bench scale UF foulants. 

Peiris et al. (2010a) found that humic-like signals were correlated to irreversible fouling, while 

Shao et al. (2014) found that foulants with humic-like signals do not contribute to fouling as 

much as foulants with protein-like signals.  In a full-scale RO plant study, the ‘microbial by-

product-like’ fluorescence signals in the brine were most correlated to fouling (Choi et al., 

2014). 
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Peiris and colleagues used the success of correlating fouling behavior to specific fluorescence 

signals to suggest future applications of online fluorescence monitoring of influent water to 

provide operators with early warnings of high fouling events about to occur (Peiris et al., 2010a; 

Peiris et al., 2010b; Jutaporn et al., 2016). Other research concerning online monitoring of UV 

absorbance spectra and fluorescence spectra have further developed the technology of real-time 

organic matter tracking within treatment plants (Roccaro et al., 2015; Shutova et al., 2014). 

Implementation of online fluorescence detection may enable  detection of real time changes in 

organic matter that affect membrane treatment, allowing operators to make real time pre-

treatment changes to optimize membrane treatment by removing high-fouling organic matter 

fractions on an “as-needed” basis. The next step towards online fluorescence monitoring in a 

full-scale membrane treatment plant for fouling control through pre-treatment changes would be 

to determine what information fluorescence measurements provide about the treatability and 

changes in fouling potential associated with pre-treatment steps in a full-scale RO plant.   

 

The goals of the present work were two-fold, (1) to link organic matter measurements, including 

fluorescence signals, to increased differential pressure at full scale through classification 

methods, and (2) to track changes in organic matter due to pre-treatment using fluorescence 

measurements.  Identifying the organic matter changes that can be tracked using fluorescence 

measurements will be an important part of determining whether fluorescence can track 

treatability in source water organic matter. Further, the use of classification methods in linking 

organic matter measurements to increased differential pressure events (i.e. fouling events) will 

enable a determination of which fluorescence parameters most effectively predict fouling and 

what target thresholds of source water fluorescence measurements should be monitored.  



68 
 

4.3 Methods and Materials  

 

Membrane Treatment Plant Operation 

 

The full scale membrane treatment plant operates with two trains, each with a two-pass system 

that operates in a two stage configuration, as shown in Figure 4.1.  The source water is 

secondary-treated wastewater effluent designed for reuse as boiler make-up water.  Reverse 

osmosis membrane treatment is designed to remove all dissolved and particulate contaminants, 

including monovalent ions, to produce high purity water. Aquatech International, the partners in 

this collaborative study, own and operate the membrane treatment plant.  
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Figure 4.1: Schematic of full-scale membrane treatment plant, from which samples were 

collected. The schematic illustrates the two-pass, two-stage operation of one of the two 

trains used at the treatment plant. The red circles indicate locations at which water 

samples were collected for the study. Feed and permeate flows are depicted by solid black 

lines and reject flows are depicted by dotted black lines.  

 

Source water (secondary treated wastewater) is first drawn into the plant and passed through two 

pre-treatments – a 100 μm cleaning filter and an ultrafiltration (UF) membrane. Following pre-

treatment, feed water goes through a cartridge filter that feeds the two membrane treatment 

trains. The plant contains two cartridge filters and two membrane treatment trains, but only one 

operates as a time. Within each treatment train, there are nine parallel membrane vessels that 

comprise the Stage 1 configuration and five parallel membrane vessels that comprise the Stage 2 

configuration. The reject streams from the nine Stage 1 membranes enter the five Stage 2 
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membranes as feed to minimize the volume of reject in the system. The permeate from the first 

pass RO set-up, containing permeate from both the Stage 1 and Stage 2 vessels enters the nine 

Stage 1 vessels in the second pass as feed.  

 

Sample Collection 
 

Samples were collected at the treatment plant from September 2014 to May 2015 at seven 

different points within the treatment system (see Figure 2) – at (1) the source water intake, (2) 

the cleaning filter effluent, (3) the ultrafiltration membrane permeate, (4) the first pass RO 

permeate (including permeate from both Stage 1 and Stage 2), (5) the first pass RO reject from 

Stage 2, (6) the second pass RO permeate (again, including permeate from both Stage 1 and 

Stage 2), and (7) the second pass RO reject from Stage 2. Sample collection began several 

months after the plant began operation so no samples were collected during the initial start-up 

time. Duplicate samples were taken at each sampling point. One set of sterile 125 mL bottles 

were pre-rinsed with each sample and then filled completely with the sample for EEM 

measurements. Sulfuric acid was first added to the other set of sterile 125 mL bottles to preserve 

samples, according to EPA Method 415.3(EPA, 2009). Bottles were then filled with sample 

water at each sampling point for TOC measurements.  Samples were shipped on ice to Carnegie 

Mellon University in Pittsburgh, PA and stored at 4°C and analyzed within allowable hold times.  

Turbidity and conductivity were measured on site by treatment plant operators as samples were 

collected. 
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Organic Matter Measurements 

 

TOC was measured at Carnegie Mellon using a Sievers InnovOx Laboratory TOC Analyzer (GE, 

Boulder, CO). Excitation Emission Matrices were measured on all samples collected using a 

Fluoromax-4 Spectrofluorometer (Horiba, Kyoto, Japan) with excitation wavelengths ranging 

from 200 nm to 550 nm with a 5 nm step-size, and emission wavelengths ranging from 250 nm 

to 650 nm with a 5 nm step-size. Raman scans and blank EEM were also measured on the same 

day as the sample EEM.  Raman scans were run at an excitation wavelength of 350 nm and 

emission wavelengths 371 – 428 nm at 1 nm intervals, according to Lawaetz and  Stedmon 

(2009). Blank EEM were measured on Milli-Q water under the same parameters as the sample 

EEM. Following measurement, blank EEM were subtracted from each sample EEM to remove 

the spectroscopic effects of water and negative values were set to zero. Blank-subtracted EEM 

were then converted to Raman Units by normalizing over the area under the Raman scan 

(Lawaetz and  Stedmon, 2009; Murphy et al., 2013). 

 

Parallel Factor Analysis, Classification Methods, and Wilcoxon Rank Sum Tests 

 

Parallel Factor Analysis was performed on EEM of the (1) source water, (2) cleaning filter 

effluent, (3) UF membrane permeate, (4) RO pass one reject from Stage 2, and (5) RO pass two 

reject from Stage 2 in Matlab using the DOMFluor Toolbox 

(http://www.models.life.ku.dk/algorithms) created by Stedmon and  Bro (2008) . All permeate 

samples – RO pass one permeate and RO pass two permeate – were excluded from the 

PARAFAC analysis because they showed almost no fluorescence signal due to their high purity 

(very low carbon content). Seventy-nine samples were incorporated into the PARAFAC analysis, 

which produced three components.  Classification Trees were created in R using the rpart library 

http://www.models.life.ku.dk/algorithms
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(RCoreTeam, 2015). The trees were cross validated and pruned using a minimum split of 4 

instances. Classification Trees are useful for operational decision making because they provide 

easy to understand results of how the input data affect the outcome of interest. In this dataset, as 

is characteristic of other environmental dataset, different patterns exist in different subsets of the 

data. Unlike commonly used regression techniques, classification trees can incorporate the 

various behaviors into one model. Tests of significance were also performed in R using the 

Wilcoxon Rank Sum tests (Ng and  Balakrishnan, 2004; Bauer, 1972). Wilcoxon Rank Sum tests 

were used because they are non-parametric, which was important to use in this data set due to the 

small number of instances and therefore the inability to meet the criteria necessary to use t-tests. 

The tests were used to determine whether two sample distributions were significantly different 

from one another. The R wilcox.test function provides outputs of (1) the Hodges Lehmann 

estimator (the estimate of the difference between the sample distributions), (2) the associated p-

value, and (3) the 95% confidence interval of the differences between the two sample 

distributions.  
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4.4 Results and Discussion 

 

Differential Pressure and Cleaning Events 

The plot in Figure 4.2 shows the pattern of differential pressure in stage 1 vessels of the first pass 

membrane treatment over time.  

 

Figure 4.2: Plot of differential pressure in the stage 1 pass 1 membrane vessels over the 

sampling period. Blue open dots show the differential pressure trend over time, while the 

red solid dots indicate differential pressure for the times at which samples were collected. 

The red horizontal line indicates a differential pressure of 25 psig, the cleaning threshold. 

The vertical purple dashed lines indicate when cleanings most likely occurred, based on the 

25 psig differential pressure limit followed by plant operators.  

 

The blue dots show the differential pressure for the whole study period and the red dots show the 

differential pressure for the dates at which water samples were collected and analyzed. The 

vertical black dotted lines show when cleaning is needed in the system, based on the general 

cleaning rule that is followed in this plant – membranes are chemically cleaned when the 
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differential pressure in the stage 1 pass 1 reaches 25 psig (shown by the horizontal red line).   

The threshold of differential pressure, 25 psig, was reached three times during the September, 

2014 to May, 2015 sample collection period.  

 

During this field study, there were two distinct periods observed – the first one spanning from 

September, 2014 to October, 2014 and the second one spanning November, 2014 to May, 2015. 

During the first period, September – October, 2014, a higher frequency of elevated differential 

pressure (above 25 psig) was observed, indicating that more frequent cleanings were needed. The 

second period showed more stable differential pressure.  From the available data, it is likely that 

few/infrequent cleanings were required during the second period from November, 2014 to May, 

2015. Missing data during November, 2015 and March, 2015 makes it impossible to say for 

certain that the differential pressure did not exceed 25 psig and require a cleaning during this 

period; however, even if cleanings occurred during the missing data periods, these would still be 

less frequent than in the earlier time period. These two distinct periods during sample collection 

will be referred to as Period 1 and Period 2 throughout the paper. Given that Period 1 and Period 

2 show very distinct fouling behavior, differences in source water characteristics were explored 

to assess whether source water changes were related to fouling changes.  

 

Turbidity, TOC, and Conductivity in Periods 1 and 2. Table 4.1 shows average turbidity, 

TOC, and conductivity values for the three pre-membrane samples – source water (SW), 

cleaning filter effluent (CF), and UF membrane permeate (UF) – within each fouling period – 

Period 1 and Period 2.  Turbidity and conductivity are frequently measured at membrane 

treatment plants to characterize source water for membrane treatment.  
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Table 4.1: Summary of average Turbidity, TOC, and Conductivity values for the three pre-

membrane samples (SW, CF, and UF) for both Period 1 and Period 2 

 

 

 

Turbidity, a bulk measure of optical density, does not differentiate between organic and 

inorganic constituents. Generally, turbidity is monitored because higher turbidity indicates higher 

fouling potential of the feed water (Guastalli et al., 2013; Brehant et al., 2002; Lorain et al., 

2007).  Wilcoxon Rank Sum tests indicate that for turbidity measurements, differences in the 

source water between Period 1 and Period 2 are significant at the α = 0.05 level. However, the 

CF and UF samples, which are closer to membrane treatment and therefore have a greater impact 

on fouling, do not have statistically significantly different turbidity measurements between the 

two periods. Therefore, it is not possible to attribute the difference in turbidity to the difference 

in fouling behavior because the turbidity of the water that enters membrane treatment is not 

significantly different between the two fouling periods. The full results of the Wilcoxon Rank 

Sum Tests can be found in Table B1 in Appendix B.  

 

TOC is also commonly measured in bench-scale studies because it can provide some indication 

of fouling potential since a higher level of organic matter in the influent is expected to contribute 

more to organic fouling (Yamamura et al., 2014; Schäfer et al., 2000; Tang et al., 2007).  TOC, 

however, shows statistically significantly different (p-value < 0.05) values between the two 

 Turbidity (NTU) TOC (mg/L) Conductivity (μS/cm) 

Sample P1 P2 P1 P2 P1 P2 

SW 

CF 

UF 

2.89 

3.96 

0.35 

15.60 

7.95 

0.43 

2.59 

2.53 

2.24 

2.03 

1.93 

1.84 

323.15 

357.35 

367.82 

438.44 

453.40 

453.22 
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periods for each of the three pre-membrane samples (see Table B2 in Appendix B), indicating 

this measurement might provide insight into TOC removal and fouling but not insight into how 

pre-treatment effectiveness alters fouling potential.  While in this study, higher TOC was 

associated with the higher fouling period, previous studies have not identified TOC as a good 

measure of membrane fouling potential. Shao et al. (2014) found even though increases in DOC 

contributed to increased membrane fouling, removal of DOC and reductions in UF membrane 

fouling were not proportional. Further, Yamamura et al. (2014) demonstrated that even with 

similar TOC concentrations, different NOM fractions (i.e. hydrophilic and hydrophobic) foul 

membranes differently.  

 

Conductivity, the measure of dissolved ions, also provides important information about the 

fouling potential of a given source water because ions contribute to inorganic fouling (scaling). 

Higher conductivity generally results in more scaling and more frequent cleaning. In the present 

case, scaling is not expected since the source water is low salinity secondary treated wastewater 

effluent.  Conductivity is considered here because previous work has shown that the increased 

presence of dissolved ions exacerbates flux decline due to organic fouling (Hong and  Elimelech, 

1997; Lee and  Elimelech, 2006; Saravia et al., 2006; Tang et al., 2007; Gray et al., 2011). 

Though an important parameter to consider, conductivity has limitations in predicting fouling in 

full-scale RO plants compared to NOM characterization techniques (Choi et al., 2014). In the 

present study conductivity does not provide statistically significant differences associated with 

differences in fouling behavior for any of the three pre-membrane samples (see Table B3 in 

Appendix B), and therefore is not predictive of fouling behavior.  
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Fluorescence Characterization of Organic Matter in Periods 1 and 2. Fluorescence 

characterization was also investigated to determine if it (1) showed statistically significant 

differences between the two periods, and (2) provided any additional information related to 

operational control of fouling.  Since organic fouling is dependent on the character of the organic 

matter that comes in contact with the membrane surface, it was expected that a more 

comprehensive measurement of  organic matter in the system that captures more information 

about the character of the organic matter, as opposed to a bulk measurement, would provide 

more insight into the unique characteristics of the organic matter that affected differential 

pressure and caused the two distinct periods. The EEM fluorescence peaks show differences in 

fluorescence behavior between Period 1 and Period 2; Figure 4.3 shows a plot of EEM peak 

fluorescence intensity for the pre-membrane samples (SW, CF, UF) over time, with Period 1 and 

Period 2 separated by a vertical dashed black line.  
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Figure 4.3: Plot of Peak Fluorescence Intensity of the EEM over time. The plot shows peak 

fluorescence for the pre-membrane samples – bars show the median value and the error 

bars represent the minimum and maximum. Also shown is a vertical black dotted line, 

indicating the separation of the two differential pressure periods. 

 

The peak fluorescence intensities overall show distinct differences between Period 1 and Period 

2, with Period 2 intensities appearing to be much higher overall. Wilcoxon Rank Sum tests 

(shown in SI Table S5) confirm the significant difference in peak fluorescence intensity between 

the two periods. Further, the location of the EEM peak is not indicative of pre-treatment organic 

matter removal or frequent increases in differential pressure. Most of the peaks occur between 

EX = 325 – 375 nm and EM = 410 – 450 nm. Further, there is no distinct difference in peak 

location for samples taken during each of the two differential pressure periods. Other studies 

have shown that peak location can be used for source identification (Cabaniss and  Shuman, 

1987; Sierra et al., 1994), and thus,  it is not surprising that peak location remained fairly 

consistent for this single source study.   
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PARAFAC analysis was then performed on the set of sample EEM to gain a more complete 

understanding of the fluorescence signals throughout the dataset. The PARAFAC analysis 

incorporated the three pre-membrane samples, SW, CF, and UF, and the two rejects, RO R1 and 

RO R2. All three PARAFAC components, referred to as C1, C2, and C3, have maximums within 

the humic-like region – EX/EM = 360/440 for C1, EX/EM = 395/505 for C2, and EX/EM = 

305/375 for C3 (Chen et al., 2003). Boxplots of fluorescence maximums for the three pre-

membrane samples, SW, CF, and UF for each of the three PARAFAC components, C1, C2 and 

C3, in Period 1 and Period 2 are shown in Figure 4.4. 
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Figure 4.4: Boxplots of component maximum ranges for the three pre-treatment samples 

(SW, CF, UF) for all three components in each of the two differential pressure periods. 

Plots shown are: (a) C1, (b) C2, and (c) C3.  
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Each boxplot contains all three pre-membrane samples (SW, CF, UF) because they showed 

similar behavior within each of the two fouling periods. The sets of boxplots in Figure 4.4 show 

a significant difference in component maximum fluorescence between the two fouling periods – 

each of the three PARAFAC components show much lower values in Period 1 than in Period 2, 

as suggested by the EEM peak fluorescence intensity plot (Figure 4.3).  

 

Wilcoxon Rank Sum Tests (SI Table S6) confirm that differences in component fluorescence 

between Period 1 and Period 2 are statistically significant. These are somewhat unexpected 

results (i.e. lower fluorescence during increased fouling) given that fluorescence is related to 

concentration; however, there are many other organic matter characteristics that also affect the 

fluorescence activity, such as the molar absorptivity, quantum efficiency, aromatic content, and 

molecular weight (Stedmon and  Bro, 2008; Chen et al., 2003; Cuss and  Gueguen, 2014).  The 

distinct differences in EEM-PARAFAC component fluorescent activity between the high fouling 

period (Period 1) and the low fouling period (Period 2) indicate that organic matter fluorescence 

characterization can be used to track changes in organic matter that affect membrane 

performance.  In addition to EEM-PARAFAC components, EEM fluorescence peak intensities 

also show significant differences between Period 1 and Period 2 (SI Table S5).  
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Classification of Instances Based on Source Water Organic Matter. Given the significant 

differences in EEM-PARAFAC components between the two periods, classification methods 

were used to determine if fluorescence characterization could be used for operational control and 

fouling management. Online detection of organic matter fluorescence for improved operation of 

treatment systems has been proposed by other researchers (Roccaro et al., 2015; Shutova et al., 

2014). For online detection to be useful, it is also necessary to determine threshold values within 

the various measurements that indicate to operators when to expect a change in organic matter 

character and subsequent membrane behavior. To determine these threshold values, classification 

trees were employed. Classification trees were used to classify instances based upon when 

cleanings need to occur. According to general plant operation/protocol, cleanings occur when the 

differential pressure in stage 1 pass 1 reaches 25 psig. Using the same Period 1 and Period 2 

division, a cleaning binary response variable was created in order to classify instances as 

“frequent cleanings” or “infrequent cleanings,” based on source water characteristics. The 

classification tree model allows for the determination of which source water characteristics can 

be used to classify the cleaning frequency behavior in the membrane, and the appropriate 

division of the source water parameter for each cleaning classification.   

 

Classification trees were created using the three components – C1, C2, and C3 – as well as 

turbidity and TOC from the three pre-membrane sets of samples – SW, CF, and UF. Only 

parameters measuring the organic matter were used (i.e. conductivity was excluded) because it is 

expected that organic matter is the main source of differential pressure increases in this plant. 

Multiple subsets of input parameters were tested, and it was determined that multiple individual 

parameters could accurately classify all of the instances as “frequent cleaning” or “infrequent 

cleaning.” Table 4.2 shows a summary of the input parameters that correctly classify all the 
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instances through a single division of the data, along with the inequality values that separate 

Period 1 and Period 2.  

     

Table 4.2: Summary of Single Parameter Classifications of the Two Fouling Periods. 

Input Parameter      Frequent Cleaning     Infrequent Cleaning 

 SW C1            < 0.077            ≥ 0.077 

 SW C2            < 0.028            ≥ 0.028 

 SW C3            < 0.055                   ≥ 0.055 

 CF C2            < 0.027            ≥ 0.027 

 CF C3            < 0.047            ≥ 0.047 

 CF TOC           ≥ 2.22            < 2.22 

 UF C2            < 0.024            ≥ 0.024 

           UF C3                                              < 0.045            ≥ 0.045 

 

For each of the input parameters in Table 4.2, there is a range of values that the parameter takes 

within each of the two periods. For example, SW samples associated with “frequent cleaning” 

have C1 values below 0.077 while SW samples associated with “infrequent cleaning” have C1 

values that equal or exceed 0.077. Within this particular dataset, plant operators could use the 

range limits as threshold values to serve as an indicator in an online monitoring system. These 

results support the concept that online fluorescence monitoring could be feasible in a full-scale 

RO plant; however, without widespread sampling of treatment plants with different source 

waters, it is impossible to know if the particular input parameter and threshold results generated 

from this study could be applied to other treatment plants. Nevertheless, the method 
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demonstrated here with field data collection and classification methods could be used at other 

sites to determine their own thresholds.  

 

These results are in general agreement with those from the Wilcoxon Rank Sum tests and the 

EEM-PARAFAC Component boxplots. The only input parameters that were selected by the 

classification trees to make a single parameter tree with one branch split were EEM-PARAFAC 

components and TOC, which were also the only parameters that showed statistically significant 

differences between Period 1 and Period 2 using the Wilcoxon Rank Sum test (TOC) and the 

boxplots. Turbidity and conductivity, which did not show clear differences between the two 

periods, were not selected by the classification trees. The classification trees, however, showed 

more selectivity than the other analyses. Although TOC from all three pre-membrane samples 

(SW, CF, UF) showed statistically significant differences between the periods, only TOC of the 

CF samples could classify Period 1 and Period 2 with a single division.  

 

Further, C1 is capable of dividing the instances into “frequent cleaning” (Period 1) or “infrequent 

cleaning” (Period 2) only when assessed in the source water.   Overall, the classification results 

show that monitoring organic matter provides similar information when undertaken at multiple 

locations within the treatment plant.  SW, CF, and UF fluorescence measurements all show 

distinct divisions of the Period 1 and Period 2 data with clear threshold values. The results 

support monitoring any of the fluorescence signals at the intake, which is advantageous because 

it is the furthest from membrane treatment and therefore allows additional time for operational 
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changes, including incorporating additional pre-treatment steps, to be made prior to membrane 

treatment. 

 

Tracking Organic Matter Changes throughout Pre-treatment 

 

Given the success of EEM-PARAFAC components and TOC to classify instances based on their 

fouling behavior, the organic matter characterization techniques were also investigated for their 

ability to track organic matter changes throughout pre-treatment. Pre-treatments are used to 

remove organic matter and improve performance of membrane treatment, however, they exhibit 

preferential removal of certain organic matter fractions and therefore some are more effective 

than others depending on the character of the organic matter (Kitis et al., 2001; Shao et al., 2014) 

. The ability to track organic matter removal throughout pre-treatment using organic matter 

characterization would aid in making online organic matter monitoring more effective.   

 

Turbidity, TOC, and Conductivity throughout Pre-treatment. Table 4.1 shows differences in 

turbidity, TOC, and conductivity among the three pre-membrane samples (SW, CF, and UF) in 

addition to differences between Period 1 and Period 2. However, according to Table 4.1, the 

differences among pre-treatment samples are often less considerable than between the two 

fouling periods. Further, Wilcoxon Rank Sum Tests (results shown in Appendix B) reveal that 

many of the differences among pre-treatments are not statistically significant.  

 

Turbidity values showed statistically significant differences between CF and UF samples and 

between the SW and UF samples in Period 1 (at the α=0.05 level), however, the none of the 

changes in Period 2 were significant. The higher average turbidity in the CF samples than the 
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SW samples during Period 1 is unexpected, however these difference between SW and CF are 

not significant. Even though the samples were taken at the plant in order (i.e. SW was collected 

first, then CF, and so on), the discrepancy in the turbidity results may be due to the fact that the 

full-scale plant was operational during the sampling period and therefore it was impossible to 

ensure that the same column of water is being sampled throughout. Despite the much higher 

average turbidity in SW than CF for Period 2, there difference is not significant. The average SW 

Period 1 turbidity was impacted by one very high measurement on 5/16/2015, however the rest 

of the turbidity measurements are similar to those for CF samples.  

 

TOC concentrations (Table 4.1) show slight decreases throughout pre-treatment, however, the 

only significant change in concentration is the decrease from SW to UF in Period 1, a result of 

two pre-treatments. None of the decreases in TOC concentration across individual pre-treatments 

(i.e. SW to CF) show statistically significant differences. Like TOC, conductivity does not 

provide useful information about the changes to water quality throughout pre-treatment. 

Conductivity does not exhibit any statistically significant differences across pre-treatment; and 

further, shows unexpected increases with treatment.  

 

Fluorescence Characterization of Organic Matter throughout Pre-Treatment. Though 

turbidity, TOC, and conductivity did not track changes in source water quality throughout pre-

treatment, the broad selection of fluorescence measurements in classifying fouling periods (Table 

4.2) provides support for its use to track organic matter changes throughout pre-treatment as 

well. Previous studies have shown that EEM-PARAFAC component fluorescence intensities 
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decrease with additional treatments (Shutova et al., 2014; Baghoth et al., 2011). The more 

comprehensive organic matter characterization available with fluorescence measurements were 

expected to be able to better track changes with pre-treatment; however, like turbidity and TOC, 

neither the EEM peak fluorescence intensities nor the EEM-PARAFAC components reliably 

track organic matter changes throughout pre-treatment (see SI Figure S1). Only four sets of EEM 

peak fluorescence intensity grouped bars in SI Figure S1 (10/20/2014, 11/18/2014, 12/4/2014, 

2/10/2015) show a consistent trend in fluorescence throughout pre-treatment (in this case 

decreasing intensity), and none of the EEM peak fluorescence intensity measurements show 

statistically significant differences throughout pre-treatment (SI figure S1 and Table S5).  

Finally, the only differences in EEM-PARAFAC component maximum fluorescent values within 

pre-treatment that were statistically significant were C2 between SW and CF in Period 1, and C3 

in Period 1 between both subsequent pairs (SW to CF and CF to UF), as well as overall (SW to 

UF).  Thus, surprisingly, EEM analysis was not suitable for determining the effect of specific 

pre-treatment steps on TOC character or fouling potential.  

 

4.5 Conclusions 

  

The results of this study suggest implementation of online fluorescence monitoring of fouling 

potential could provide real-time information for process control. TOC, peak EEM fluorescence 

intensities, and EEM-PARAFAC component maximums show significantly different behavior in 

the two fouling periods – Period 1, characterized by frequent increases in differential pressure 

and need for cleaning, and Period 2, characterized by stable differential pressure and less need 

for cleaning. Further, classification techniques identified threshold values that should be 

monitored in an online detection system for multiple EEM-PARAFAC components at various 



88 
 

points in the treatment systems prior to membrane treatment, as well as TOC for the CF samples.  

All three EEM-PARAFAC components showed clear distinctions between Period 1 and Period 

2, with a specific threshold value at the intake. This result is important for implementation of 

online detection because it means that monitoring can occur at the intake, providing operators 

with more time to make an operational change in the plant once a fluorescent signal of concern is 

identified. Although multiple parameters show potential for prediction of fouling events, none of 

the organic matter characterization techniques were effective in detecting differences in organic 

matter throughout pre-treatment that were relevant for fouling control.  
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5 Chapter 5 

 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

Summary and Conclusions 

This research focused on fluorescence EEM-PARAFAC components, a NOM characterization 

technique, and investigated its utility in two water treatment applications – disinfection by-

product formation and membrane fouling – in two field studies. The literature review outlines the 

many different NOM characterization techniques along with their limitations, while the two 

research applications assess the utility of fluorescence NOM characterization for operational 

control. Three main conclusions are: 

 

1. Despite years of NOM characterization research, there is still disagreement in the literature 

about how the various NOM characterization techniques can track treatability in water treatment 

systems. Various patterns exist in the literature about which NOM fractions are the most reactive 

in DBP formation or have the highest propensity to foul membranes. Fluorescence EEM provide 

an advantage over other NOM characterization techniques in that the information-dense 

measurements provide unique fingerprints of the NOM character. The use of fluorescence EEM 

in DBP formation potential and membrane fouling studies has identified its utility in addressing 

water treatment challenges.    

 

2. Classification techniques and the use of fluorescence EEM-PARAFAC components as inputs 

can be used to create regional watershed models for general treatability concerns. Robust 

classification models were developed for four regulatory and DBP speciation targets – the 

TTHM MCL, 80% of the TTHM MCL, a BIF of 0.75, and 50% Br-THM. Fluorescence NOM 
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characterizations were important input parameters in all the classification trees, whereas bromide 

was only incorporated into the brominated THM (0.75 BIF and 50% Br-THM) trees, not the 

regulatory TTHM ones (TTHM MCL and 80% TTHM MCL).  Finally, site by site validation 

tests showed compelling evidence that these models can be applied to multiple sites within a 

geographic region. The models provided a method for (1) addressing treatability concerns and 

(2) predicting finished water quality within a regional watershed.   

 

3. Multiple organic matter characterizations – TOC, peak EEM fluorescence, and EEM-

PARAFAC components – can be used to track differences in membrane fouling behavior within 

a full-scale treatment plant. The use of classification techniques in determining threshold values 

of NOM fluorescence parameters that correspond to fouling behavior provides important results 

necessary for future implementation of online fluorescence detection. Further, organic matter 

fluorescence parameters at multiple locations within the plant showed clear divisions between 

the two main fouling behaviors, indicating that monitoring could occur at multiple locations, 

including the influent, which would provide the greatest opportunity for operational changes to 

occur. Although indicative of fouling behavior, none of the organic matter characterization 

techniques were successful in tracking organic matter changes due to pre-treatment in the plant.  

Other techniques may be necessary for addressing general treatability concerns of the water and 

pre-treatments.   

 

Overall, fluorescence EEM-PARAFAC components show promise for use in full-scale water 

treatment applications. They have proven to show distinct differences in intensities and some 

variation in signals among various water treatment outcomes – meeting or exceeding DBP target 



91 
 

values as well as indicating a general level of membrane fouling. This research is an important 

step in furthering the effort to apply EEM-PARAFAC components for operational control in 

water treatment systems through  online fluorescence detection.  

 

Future Work 

Future work is needed in expanding knowledge of fluorescence NOM characterization for 

implementation of online fluorescence detectors in full-scale water treatment plants, as well as in 

investigating the potential to track DBP formation and fouling propensity jointly within a system. 

Additionally, further work is needed to bridge the gap between lab studies and implementation in 

full-scale systems – specifically, in performing field studies with full-scale treatment plants. 

Further, the full-scale systems seeking to implement online detection must identify the specific 

fluorescence signals that are indicative of such water treatment challenges. More field studies 

incorporating full-scale plants in geographically diverse regions are needed to determine if there 

are universal fluorescence signals for DBP formation and membrane fouling prediction. 

Otherwise, work should be done to develop generalized models that can be calibrated to fit 

region-specific NOM parameters prior to implementation.  EEM-PARAFAC components also 

face limitations that should be addressed in future work, namely the lack of a strong fluorescence 

signal when the DOC concentration is too low or when the DOC is made up of simple organic 

structures. In these cases, EEM-PARAFAC should be coupled with another NOM 

characterization techniques that can accurately characterize these samples.  

 

The first priority is performing field studies at full-scale treatment plants that implement 

fluorescent monitoring of raw water and water following the various pre-treatment steps. Such 
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studies will enable a more robust assessment of the ability of fluorescence measurements to 

monitor treatability. Furthermore, conducting field studies at various treatment plants will 

provide more information on whether these methods are universally applicable (with site-specific 

validation) or whether there are limitations based on location. The second priority is to then 

conduct field studies with online fluorescence detection. Successful detection of water quality 

changes that indicate downstream treatment problems with the use of fluorescence monitoring 

will provide ample support for implementation of fluorescence detectors for routine monitoring 

in treatment plants.  

 

The combination of fluorescence detection of DBP formation and membrane fouling predictors 

also has implications for water reuse.  With fresh water resources becoming more strained due to 

population growth and climate change, there are increasing efforts to produce potable water from 

seawater (desalination) and wastewater (reuse).  Desalination and water reuse employ 

membranes for water treatment, and when the end product is potable water for consumers, 

disinfection and disinfection by-products must be considered. In these applications it is necessary 

to know the DBP formation potential of membrane treated water if it is for eventual human 

consumption.  If field studies (previously outlined) show successful implementation of online 

fluorescence detectors, future work should include analysis of fluorescence measurements for 

both membrane fouling potential and DBP formation potential for a membrane treatment plant.  
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6 Appendix A  

 

SUPPLEMENTAL INFORMATION FOR CHAPTER 3 – APPLICATION OF 

CLASSIFICATION TREES FOR PREDICTING DISINFECTION BY-PRODUCT 

FORMATION TARGETS FROM SOURCE WATER CHARACTERISTICS 

 

EEM-PARAFAC COMPONENT DATA 

 

TableA1: Summary of EEM-PARAFAC Component Data for 109 instances 

Date Site C1 C2 C3 Fmax C1/Fmax C2/Fmax C3/Fmax ILR1 ILR2 ILR3 

2/16/2011 A 0.053 0.028 0.018 0.099 0.534 0.282 0.184 0.007 -1.195 0.300 

4/27/2011 A 0.074 0.036 0.020 0.130 0.571 0.277 0.152 0.284 -1.044 0.424 

6/29/2011 A 0.111 0.072 0.052 0.236 0.473 0.307 0.220 0.251 -0.493 0.238 

7/13/2011 A 0.094 0.056 0.033 0.183 0.514 0.307 0.179 0.268 -0.730 0.382 

8/3/2011 A 0.103 0.073 0.035 0.210 0.488 0.346 0.166 0.289 -0.595 0.518 

8/11/2011 A 0.109 0.073 0.052 0.235 0.466 0.311 0.223 0.227 -0.485 0.236 

8/17/2011 A 0.079 0.043 0.025 0.147 0.538 0.293 0.169 0.233 -0.919 0.390 

10/5/2011 A 0.097 0.059 0.026 0.182 0.534 0.323 0.143 0.373 -0.761 0.574 

3/20/2012 A 0.052 0.030 0.012 0.094 0.556 0.316 0.128 0.128 -1.258 0.639 

5/2/2012 A 0.064 0.042 0.015 0.121 0.530 0.347 0.124 0.201 -1.043 0.728 

5/29/2012 A 0.063 0.035 0.015 0.114 0.556 0.308 0.136 0.209 -1.121 0.580 

7/5/2012 A 0.067 0.048 0.018 0.132 0.504 0.361 0.136 0.154 -0.946 0.692 

7/12/2012 A 0.066 0.048 0.018 0.132 0.497 0.368 0.135 0.138 -0.938 0.707 

7/23/2012 A 0.049 0.030 0.010 0.089 0.547 0.335 0.117 0.108 -1.284 0.744 

7/30/2012 A 0.095 0.056 0.032 0.182 0.519 0.308 0.173 0.287 -0.739 0.408 

8/14/2012 A 0.079 0.043 0.026 0.148 0.533 0.292 0.175 0.218 -0.906 0.363 

5/4/2010 B 0.051 0.025 0.014 0.091 0.563 0.280 0.157 0.074 -1.292 0.408 

5/18/2010 B 0.043 0.024 0.009 0.076 0.568 0.315 0.117 0.075 -1.426 0.700 

6/29/2010 B 0.057 0.030 0.019 0.106 0.536 0.286 0.178 0.058 -1.144 0.337 

7/13/2010 B 0.053 0.031 0.016 0.100 0.530 0.313 0.157 0.039 -1.177 0.486 

7/22/2010 B 0.072 0.051 0.024 0.147 0.488 0.348 0.165 0.111 -0.849 0.528 

7/27/2010 B 0.030 0.012 0.009 0.051 0.586 0.242 0.172 -0.169 -1.733 0.240 

8/17/2010 B 0.039 0.022 0.011 0.072 0.549 0.305 0.147 -0.063 -1.438 0.518 

8/24/2010 B 0.060 0.046 0.020 0.126 0.475 0.369 0.156 0.020 -0.940 0.609 

8/31/2010 B 0.059 0.041 0.016 0.116 0.510 0.354 0.136 0.104 -1.046 0.677 

9/7/2010 B 0.053 0.033 0.017 0.102 0.515 0.319 0.165 0.000 -1.143 0.467 

9/21/2010 B 0.051 0.034 0.018 0.103 0.497 0.329 0.174 -0.057 -1.114 0.450 

9/29/2010 B 0.047 0.026 0.014 0.087 0.538 0.299 0.164 -0.022 -1.288 0.425 

10/7/2010 B 0.050 0.030 0.013 0.093 0.538 0.324 0.138 0.058 -1.239 0.601 

10/19/2010 B 0.100 0.053 0.035 0.187 0.535 0.280 0.185 0.330 -0.741 0.295 
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10/28/2010 B 0.108 0.076 0.035 0.219 0.491 0.349 0.160 0.328 -0.570 0.551 

12/16/2010 B 0.076 0.044 0.027 0.146 0.518 0.299 0.183 0.162 -0.896 0.347 

1/19/2011 B 0.041 0.017 0.010 0.068 0.595 0.255 0.149 0.031 -1.533 0.380 

2/16/2011 B 0.034 0.013 0.010 0.057 0.601 0.223 0.176 -0.070 -1.668 0.164 

4/27/2011 B 0.046 0.018 0.012 0.076 0.605 0.240 0.155 0.108 -1.466 0.307 

5/25/2011 B 0.089 0.043 0.024 0.155 0.572 0.275 0.153 0.373 -0.923 0.418 

6/23/2011 B 0.090 0.047 0.039 0.175 0.511 0.269 0.220 0.208 -0.756 0.140 

6/29/2011 B 0.070 0.033 0.031 0.134 0.520 0.248 0.231 0.096 -0.962 0.050 

7/6/2011 B 0.110 0.063 0.036 0.208 0.528 0.300 0.172 0.379 -0.658 0.395 

7/13/2011 B 0.051 0.029 0.014 0.094 0.546 0.303 0.151 0.058 -1.242 0.493 

8/17/2011 B 0.099 0.066 0.029 0.195 0.509 0.339 0.152 0.328 -0.680 0.570 

8/31/2011 B 0.083 0.051 0.024 0.158 0.528 0.320 0.151 0.271 -0.854 0.531 

9/7/2011 B 0.040 0.021 0.020 0.081 0.497 0.259 0.244 -0.229 -1.285 0.043 

10/5/2011 B 0.068 0.031 0.017 0.116 0.585 0.270 0.145 0.277 -1.142 0.438 

10/21/2011 B 0.075 0.040 0.023 0.138 0.544 0.288 0.168 0.218 -0.971 0.378 

5/2/2012 B 0.042 0.025 0.010 0.077 0.543 0.328 0.129 -0.007 -1.380 0.659 

5/29/2012 B 0.067 0.032 0.020 0.119 0.566 0.266 0.169 0.203 -1.104 0.322 

7/23/2012 B 0.045 0.030 0.011 0.086 0.527 0.343 0.130 0.007 -1.282 0.686 

7/30/2012 B 0.083 0.041 0.029 0.153 0.544 0.266 0.190 0.250 -0.898 0.240 

8/14/2012 B 0.071 0.037 0.021 0.129 0.550 0.285 0.165 0.207 -1.025 0.390 

5/4/2010 C 0.063 0.032 0.015 0.111 0.571 0.291 0.139 0.226 -1.157 0.522 

6/29/2010 C 0.080 0.048 0.029 0.157 0.509 0.307 0.184 0.174 -0.832 0.364 

7/5/2010 C 0.092 0.061 0.032 0.185 0.497 0.331 0.172 0.240 -0.700 0.464 

7/22/2010 C 0.071 0.051 0.025 0.146 0.485 0.347 0.168 0.100 -0.848 0.515 

7/27/2010 C 0.084 0.052 0.029 0.165 0.510 0.312 0.178 0.208 -0.795 0.398 

8/17/2010 C 0.086 0.055 0.030 0.171 0.503 0.324 0.173 0.212 -0.763 0.441 

8/24/2010 C 0.074 0.055 0.026 0.155 0.475 0.356 0.169 0.101 -0.792 0.527 

8/31/2010 C 0.078 0.063 0.021 0.162 0.481 0.387 0.132 0.209 -0.770 0.760 

9/7/2010 C 0.069 0.053 0.024 0.146 0.473 0.364 0.163 0.077 -0.831 0.567 

9/21/2010 C 0.084 0.053 0.027 0.164 0.511 0.322 0.168 0.220 -0.803 0.462 

9/29/2010 C 0.079 0.054 0.029 0.162 0.487 0.334 0.178 0.142 -0.778 0.444 

10/7/2010 C 0.070 0.035 0.027 0.131 0.530 0.265 0.205 0.125 -0.987 0.182 

10/19/2010 C 0.103 0.057 0.040 0.200 0.516 0.285 0.199 0.300 -0.670 0.253 

10/28/2010 C 0.077 0.057 0.028 0.162 0.477 0.349 0.174 0.120 -0.763 0.493 

11/3/2010 C 0.099 0.069 0.043 0.211 0.469 0.327 0.204 0.197 -0.564 0.334 

12/16/2010 C 0.082 0.045 0.036 0.163 0.504 0.276 0.220 0.151 -0.798 0.160 

1/19/2011 C 0.053 0.029 0.010 0.093 0.572 0.318 0.110 0.210 -1.287 0.753 

5/19/2011 C 0.094 0.045 0.034 0.173 0.545 0.258 0.197 0.309 -0.812 0.194 

5/25/2011 C 0.081 0.039 0.032 0.151 0.535 0.256 0.209 0.207 -0.893 0.141 

5/4/2010 D 0.068 0.041 0.016 0.125 0.544 0.327 0.129 0.240 -1.039 0.657 

5/18/2010 D 0.070 0.027 0.017 0.113 0.617 0.235 0.148 0.348 -1.198 0.328 

1/19/2011 D 0.044 0.020 0.013 0.076 0.576 0.258 0.166 0.014 -1.430 0.311 

2/16/2011 D 0.056 0.027 0.018 0.102 0.550 0.269 0.181 0.070 -1.192 0.279 
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6/17/2011 D 0.064 0.040 0.014 0.119 0.540 0.339 0.121 0.226 -1.067 0.727 

6/29/2011 D 0.069 0.039 0.024 0.132 0.525 0.294 0.181 0.133 -0.976 0.344 

7/6/2011 D 0.083 0.048 0.021 0.152 0.548 0.317 0.136 0.333 -0.905 0.600 

8/3/2011 D 0.079 0.044 0.022 0.145 0.546 0.303 0.151 0.273 -0.938 0.490 

8/11/2011 D 0.090 0.066 0.027 0.184 0.491 0.361 0.149 0.261 -0.692 0.627 

8/24/2011 D 0.095 0.061 0.029 0.185 0.513 0.332 0.155 0.304 -0.723 0.537 

8/31/2011 D 0.094 0.063 0.025 0.182 0.515 0.347 0.138 0.337 -0.737 0.653 

9/20/2011 D 0.113 0.059 0.041 0.212 0.530 0.276 0.193 0.373 -0.648 0.252 

4/17/2012 D 0.029 0.012 0.007 0.048 0.605 0.248 0.147 -0.115 -1.795 0.371 

5/2/2012 D 0.049 0.032 0.010 0.092 0.535 0.351 0.113 0.107 -1.246 0.800 

5/29/2012 D 0.086 0.046 0.019 0.152 0.567 0.305 0.127 0.398 -0.931 0.618 

7/5/2012 D 0.060 0.040 0.017 0.116 0.515 0.341 0.144 0.099 -1.055 0.610 

7/12/2012 D 0.057 0.035 0.014 0.107 0.536 0.330 0.134 0.127 -1.141 0.635 

7/23/2012 D 0.068 0.046 0.016 0.130 0.523 0.355 0.123 0.223 -0.985 0.751 

7/30/2012 D 0.065 0.040 0.020 0.124 0.521 0.319 0.160 0.119 -1.013 0.489 

8/14/2012 D 0.088 0.053 0.028 0.169 0.518 0.316 0.167 0.256 -0.791 0.452 

5/4/2010 E 0.046 0.028 0.010 0.084 0.543 0.336 0.122 0.058 -1.317 0.718 

5/18/2010 E 0.066 0.039 0.021 0.126 0.519 0.312 0.169 0.109 -1.000 0.433 

1/19/2011 E 0.036 0.023 0.005 0.064 0.563 0.362 0.075 0.138 -1.541 1.109 

4/27/2011 E 0.064 0.033 0.015 0.112 0.570 0.297 0.133 0.237 -1.152 0.568 

5/11/2011 E 0.070 0.043 0.015 0.128 0.545 0.338 0.117 0.286 -1.022 0.751 

6/8/2011 E 0.071 0.046 0.017 0.134 0.529 0.341 0.130 0.234 -0.972 0.684 

7/30/2012 E 0.060 0.038 0.018 0.116 0.516 0.328 0.156 0.080 -1.053 0.528 

8/6/2012 E 0.081 0.045 0.027 0.153 0.531 0.293 0.176 0.225 -0.882 0.362 

8/14/2012 E 0.096 0.051 0.036 0.184 0.525 0.279 0.196 0.284 -0.743 0.248 

9/5/2012 E 0.075 0.050 0.024 0.149 0.506 0.333 0.161 0.169 -0.864 0.512 

5/4/2010 F 0.046 0.028 0.013 0.088 0.526 0.321 0.154 -0.032 -1.265 0.521 

5/18/2010 F 0.046 0.025 0.012 0.083 0.555 0.301 0.144 0.032 -1.341 0.522 

1/19/2011 F 0.044 0.040 0.013 0.097 0.453 0.415 0.132 -0.110 -1.088 0.807 

4/27/2011 F 0.075 0.043 0.023 0.142 0.531 0.304 0.165 0.204 -0.934 0.433 

5/11/2011 F 0.069 0.042 0.017 0.128 0.537 0.327 0.136 0.217 -1.015 0.621 

5/19/2011 F 0.101 0.056 0.031 0.189 0.537 0.298 0.165 0.362 -0.739 0.416 

6/8/2011 F 0.080 0.055 0.020 0.155 0.514 0.355 0.131 0.270 -0.848 0.707 

7/30/2012 F 0.090 0.059 0.032 0.180 0.498 0.327 0.175 0.225 -0.717 0.442 

8/14/2012 F 0.096 0.059 0.037 0.191 0.501 0.307 0.192 0.244 -0.681 0.332 

9/5/2012 F 0.079 0.065 0.027 0.170 0.462 0.379 0.159 0.135 -0.705 0.617 
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SOURCE WATER ORGANIC MATTER 

 

Figure A1: Boxplots of (a) DOC (ppm) concentration, and (b) UV Absorbance at 254 nm at 

each of the six sampling sites. Plots show median values, 75
th

 and 25
th

 quartiles (upper and 

lower ends of the box), most extreme non-outlier values (ends of whiskers), and outliers (+ 

signs). 
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Figure A2: Boxplots of each of the individual PARAFAC Components and the total 

fluorescence, Fmax, as follows: (a) C1, (b) C2, (c) C3, (d) Fmax. Plots show median values, 

75
th

 and 25
th

 quartiles (upper and lower ends of the box), minimum and maximum (non-

outlier) values (ends of whiskers), and outliers (+ signs). 

 

REGRESSION ANALYSIS 

Results of the linear and log transformed regressions are shown in Table A2 and Table A3, 

respectively. PARAFAC components (C1, C2, C3), total fluorescence intensity (Fmax), and 

component fluorescence ratios (C1/Fmax, C2/Fmax, C3/Fmax) were all considered as possible 

fluorescence input variables. Multiple variations of input values were evaluated to avoid high 

collinearity among the fluorescence measurements (i.e. C1, C2, and C3), and the best fit model 

was chosen.  Though the R
2
 values do not indicate strong linear relationships, the residual 
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standard error (RSE) values indicate that most of the linear and log transformed regression 

models are comparable to those identified by Ged et al. (2015) to be best available models.  

 

For example, the RSE for TTHM is 32.7 μg/L for the linear regression and 50.1 μg/L for the log 

transformed regression, which are both less than 60 μg/L, similar to the best TTHM models 

determined by Ged et al. (2015).  However, the errors of 32.7 μg/L and 50.1 μg/L are still 

substantial compared to the TTHM MCL of 80 μg/L. Models with this level of error would not 

be useful for operators who need to maintain regulatory compliance.  The results of the 

regression analysis in the present work are thus similar to prior work with regression models 

(Ged et al., 2015; Obolensky and  Singer, 2008; Westerhoff et al., 2000; Kulkarni and  Chellam, 

2010), indicating that organic carbon characterization does not provide enough additional 

information to create regression models with adequate predictive power for DBP species-specific 

concentrations.  

 

Table A2 provides a summary of the best linear regressions for each quantitative DBP parameter, 

including the adjusted R
2
 and residual standard error (RSE) of the model. Both sets of 

component inputs (C1, C2, C3 and C1/F, C2/F, C3/F, F) were tested and the best model overall 

was chosen. 
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Table A2: Results of the Linear Regression Analyses of the source water constituents 

(bromide and NOM) and finished water parameters – TTHM (μg/L), CHCl3 (μg/L), 

CHBrCl2 (μg/L), CHBr2Cl (μg/L), CHBr3 (μg/L), BIF, and percent brominated.  

 

Model              Adjusted R
2
 RSE 

𝑇𝑇𝐻𝑀 = 908.05 𝐶2 + 8.87             0.13  32.66 

 

𝐶𝐻𝐶𝑙3 =  −53.84𝐵𝑟 + 322.30 𝐶1 +  3.12       0.13  17.64 

 

𝐶𝐻𝐵𝑟𝐶𝑙2 = 324.95 𝐶2 + 2.23        0.07  15.90 

 

𝐶𝐻𝐵𝑟2𝐶𝑙 = 75.02𝐵𝑟 − 82.33𝑈𝑉254 − 74.61
𝐶1

𝐹𝑚𝑎𝑥
     0.37  6.83 

 

𝐶𝐻𝐵𝑟3 = 21.42𝐵𝑟 − 19.28 
𝐶1

𝐹𝑚𝑎𝑥 
+ 10.96       0.34      1.97 

 

𝐵𝐼𝐹 = 3.46𝐵𝑟 − 4.55
𝐶1

𝐹𝑚𝑎𝑥
− 2.45𝐹𝑚𝑎𝑥 + 3.26      0.44  0.27 

 

%𝐵𝑟𝑜𝑚 = 130.86𝐵𝑟 − 251.94 
𝐶1

𝐹𝑚𝑎𝑥
− 97.76𝐹𝑚𝑎𝑥 + 187.46     0.29  16.42 

 
  

 

Table A3 shows the results of the log transformed regression analyses, including the regression 

model, adjusted R
2
, and residual standard error (RSE).   

 

Table A3: Results of the Linear Log Transformed Function Analyses of the source water 

constituents (bromide and NOM) and finished water parameters – TTHM (μg/L), CHCl3 

(μg/L), CHBrCl2 (μg/L), CHBr2Cl (μg/L), CHBr3 (μg/L), BIF, and percent brominated.  

Model          Adjusted R
2
 

 RSE𝑇𝑇𝐻𝑀 =  5.99(𝑇𝑂𝐶)0.19(𝐹𝑚𝑎𝑥)1.25      0.22 

 50.06 

 

𝐶𝐻𝐶𝑙3 =  3.93(𝐵𝑟)−0.13(𝐷𝑂𝐶)0.17(𝑈𝑉254)−0.30(𝐹𝑚𝑎𝑥)1.29    0.25  29.06 

 

𝐶𝐻𝐵𝑟𝐶𝑙2 = 10.96(𝑇𝑂𝐶)0.72(𝐹𝑚𝑎𝑥)1.42(
𝐶3

𝐹𝑚𝑎𝑥
)3.71     0.10  23.21  

 

𝐶𝐻𝐵𝑟2𝐶𝑙 = −6.45(𝐵𝑟)1.57(𝑈𝑉254)−3.08      0.12  1.37x105 

 

𝐶𝐻𝐵𝑟3 = −13.30(𝐵𝑟)0.83(𝑈𝑉254)1.49 (
𝐶1

𝐹𝑚𝑎𝑥
)

−30.08

     0.26  3.82x108 

 

𝐵𝐼𝐹 = 3.24(𝐵𝑟)0.19(𝐷𝑂𝐶)0.37 (
𝐶3

𝐹𝑚𝑎𝑥
)

1.82

      0.28  7.31 

 

%𝐵𝑟𝑜𝑚 = 7.39(𝐵𝑟)0.12(𝐷𝑂𝐶)0.41 (
𝐶3

𝐹𝑚𝑎𝑥
)

1.92

     0.28  540  
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CLASSIFICATION TREES  

Predicting TTHM in excess of 80% of the Maximum Contaminant Level (MCL) 

The component classification tree (Figure 3.7a) has a sensitivity of 0.66, a specificity of 0.81, 

and an accuracy of 0.77. The component ratio classification tree (Figure 3.7b) has a sensitivity of 

0.72, a specificity of 0.88 and an accuracy of 0.83. Sensitivity, specificity, and accuracy values 

were calculated using the confusion matrices in Table A4. In both cases the classification trees 

are fairly balanced (sensitivity similar to specificity) and show good fits of the data (high 

sensitivity, specificity, and accuracy values), however the component ratio tree (Figure 3.7b) 

shows a slightly better fit of the data set. According to the component classification tree (Figure 

3.7a), instances are likely to exceed 64 μg/L TTHM when either the C2 value is high (≥ 0.04) 

and the DOC is high (≥ 4.0 mg/L), or when the C2 value is high (≥ 0.04), the DOC is low (< 2.9 

mg/L), and the C3 value is high (≥ 0.03). In both cases, higher fluorescence intensity of the 

component signals are related to increased exceedance of the 64 μg/L threshold. 

 

The component ratio classification tree (Figure 3.7b), on the other hand identifies three cases in 

which there is a likelihood of exceeding the threshold – (1) C1/Fmax is low (< 0.54), Fmax is 

moderate (0.16 – 0.18), DOC is low (< 2.9 mg/L), and C3/Fmax is high (≥ 0.16), (2) C1/Fmax is 

low (< 0.54), DOC is low (< 2.9 mg/L), and Fmax is high (≥ 0.18), and (3) C1/Fmax is low (< 

0.54), Fmax is high (≥ 0.11), and DOC is high (≥ 4.0 mg/L). In both the component and 

component ratio trees there are cases where lower DOC contributes to an increased likelihood of 

exceeding the 64 μg/L threshold. These results are somewhat counter-intuitive because NOM is a 

known DBP precursor. However, in all of these cases, there are at least 2 other NOM 

characterizations (mostly fluorescence measurements) that contribute to the increased likelihood 
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of exceedance outcome. The results indicate that in some cases the character of the NOM 

(described here by fluorescence character) may be more influential in meeting or exceeding a 

regulatory threshold than NOM quantity.  

 

Predicting BIF Values in Excess of 0.75 

The component classification tree has a sensitivity of 0.61, a specificity of 0.96, and an accuracy 

of 0.83, while the component ratio tree has a sensitivity of 0.53, a specificity of 0.94, and an 

accuracy of 0.80. Both trees show fairly good fits – high specificity and accuracy values and 

lower, but still reasonable sensitivity values. The lower sensitivity values indicate that the trees 

slightly under-predict exceeding the 0.75 BIF threshold.  According to the component 

classification tree (Figure 3.8a), there is a likelihood of exceeding the 0.75 BIF threshold if the 

bromide concentration is high (≥ 40 μg/L), C1 is low (< 0.09), and C2 is high (≥ 0.05), or if 

bromide is high (≥ 40 μg/L), C2 is low (<0.05), and C1 is very low (<0.06). According to the 

component ratio classification tree (Figure 3.8b), there is a likelihood of exceeding the 0.75 BIF 

threshold if the bromide concentration is high (≥ 40 μg/L) and the C3/Fmax ratio is high (≥ 0.16).  

 

Predicting THM Bromination in Excess of 50% 

The component classification tree (Figure 3.9a) has a sensitivity of 0.76, a specificity of 0.83, 

and an accuracy of 0.80, and the component ratio classification tree (Figure 3.9b) has a 

sensitivity of 0.80, a specificity of 0.73, and an accuracy of 0.76. Both trees show fairly balanced 

results (similar sensitivity and specificity values), as well as overall good fits, as demonstrated by 

the relatively high accuracy, sensitivity, and specificity values. According to the component 
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classification tree (Figure 3.9a), there is a likelihood of exceeding 50% brominated THM (by 

mass) in three separate scenarios: namely when (1) the bromide is low (< 60 μg/L) and the UV254 

is low (< 0.03); (2) the bromide is low (< 60 μg/L), UV254 is high (≥ 0.03), C2 is low (< 0.05), 

and C3 is high (≥ 0.02); and (3) bromide is high (≥ 60 μg/L) and C1 is low (< 0.08). The 

component ratio tree (Figure 3.9b) identifies only one scenario in which there is a likelihood of 

exceeding 50% brominated THM – low bromide (< 60 μg/L), low C1/Fmax ratio (< 0.55), and 

low UV254 (< 0.04).  Overall, the classification trees performed very well, correctly classifying 

76% to 83% of the 109 instances (accuracy values ranging from 0.76 to 0.83). Further, most 

classification trees had sensitivity and specificity values ranging from 0.53 to 0.96, indicating 

high true positive and true negative rates. 
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Confusion Matrices for all Classification Trees 

Table A4: Confusion Matrices for Classification Trees for each of the four parameters –

The left column shows matrices for the trees using components as inputs (C1, C2, C3) and 

the right column uses component ratios and total fluorescence intensity as inputs (C1/Fmax, 

C2/Fmax, C3/Fmax, Fmax). E row/column headings indicate “exceed”, M row/column headings 

indicate “meet,” rows show actual values (subscript “A”), and columns show predicted 

outcomes (subscript “P”). Each matrix shows the number of instances classified as true 

positive (top left), true negative (bottom right), false positive (bottom left), and false 

negative (top right), where positive is taken to be “exceed” and negative is taken to be 

“meet.” 

 C1, C2, C3 C1/Fmax, C2/Fmax, C3/Fmax, Fmax 

TTHM MCL 

 

 

 EP MP 

EA 5 15 

MA 4 85 

 

 EP MP 

EA 16 4 

MA 14 75 

80% MCL 
 

 EP MP 

EA 19 10 

MA 15 65 

 

 EP MP 

EA 21 8 

MA 10 70 

0.75 BIF 
 

 EP MP 

EA 23 15 

MA 3 68 

 

 EP MP 

EA 20 18 

MA 4 67 

50% BrTHM 
 

 EP MP 

EA 35 11 

MA 11 52 

 

 
EP MP 

EA 37 9 

MA 17 46 
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7 Appendix B  

 

SUPPLEMENTAL INFORMATION FOR CHAPTER 4 – FLUORESCENCE 

CHARACTERIZATION OF NATURAL ORGANIC MATTER AND FOULING IN A FULL-

SCALE REVERSE OSMOSIS MEMBRANE TREATMENT PLANT 

 

Significance Tests for Differences between Sample Distributions: Turbidity, TOC, 

Conductivity 

 

The following three tables show the results of the Wilcoxon Rank Sum Test for differences 

between two sample distributions. The results were obtained using R. The tables show the two 

sample distributions that are being compared in the left-most column (i.e. SW Period 1 and SW 

Period 2 are written as “SW (P1 vs P2).”  When the same type of samples are being compared 

between the two periods, i.e. SW Period 1 and SW Period 2, the samples are not paired. 

However, when the samples are from the same period, but come from two different sampling 

locations, i.e. SW Period 1 and CF Period 1, the samples are paired. The tables also contain p-

values to determine statistical significance (significant if p < 0.05), the Hodge-Lehmann 

estimator (the non-parametric difference between the two sample distributions), and the 95% 

Confidence Interval. Results are shown for Turbidity (Table B1), TOC (Table B2), and 

Conductivity (Table B3).  
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Table B1: Results of Wilcoxon Rank Sum Tests for Turbidity 

Sample  P-value Hodges-Lehmann 

estimator 

CI (95%) 

SW (P1 vs P2) 0.009 -4.30 [-24.40, -1.36] 

CF (P1 vs P2) 0.052 -2.83 [-8.86, 2.52] 

UF (P1 vs P2) 0.647 -0.11 [-0.45, 0.41] 

SW v CF (P1) 0.438 -0.71 [-4.91, 0.69] 

CF v UF (P1) 0.031 3.16 [0.89, 9.26] 

SW v UF (P1) 0.03125 2.49 [1.21, 4.35] 

SW v CF (P2) 1.0 0.05 [-1.19, 23.65] 

CF v UF (P2) 0.0625 6.03 [3.17, 12.24] 

SW v UF (P2) 0.0625 9.12 [4.51, 26.82] 

 

Table B2: Results of Wilcoxon Rank Sum Tests for TOC 

Sample  P-value Hodges-Lehmann 

estimator 

CI (95%) 

SW (P1 vs P2) 0.030 0.53 [0.07, 0.95] 

CF (P1 vs P2) 0.004 0.59 [0.29, 0.95] 

UF (P1 vs P2) 0.017 0.41 [0.11, 0.70] 

SW v CF (P1) 0.399 0.06 [-0.07, 0.17] 

CF v UF (P1) 0.059 0.35 [0.30, 0.40] 

SW v UF (P1) 0.031 0.34 [0.14, 0.43] 

SW v CF (P2) 0.584 0.11 [-0.05, 0.46] 

CF v UF (P2) 0.201 0.12 [-0.02, 0.18] 

SW v UF (P2) 0.313 0.16 [-0.07, 0.61] 
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Table B1: Results of Wilcoxon Rank Sum Tests for Conductivity 

Sample  P-value Hodges-Lehmann 

estimator 

CI (95%) 

SW (P1 vs P2) 0.052 -146.4 [-221.7, 13.0] 

CF (P1 vs P2) 0.178 -119.85 [-232.4, 27.9] 

UF (P1 vs P2) 0.429 -128.2 [-194.8, 70.6] 

SW v CF (P1) 0.063 -33.75 [-75.3, 7.8] 

CF v UF (P1) 1.0 -5.90 [-58.1, 11.5] 

SW v UF (P1) 0.063 -48.30 [-89.4, 12.4] 

SW v CF (P2) 0.813 -18.25 [-82.3, 45.8] 

CF v UF (P2) 1.0 1.15 [-66.8, 75.3] 

SW v UF (P2) 0.438 -18.65 [-49.5, 35.9] 

 

Fluorescence EEM-PARAFAC Results 

 

Table B2: Summary of the Fluorescence EEM-PARAFAC Results 

Sample 

ID 

Date Sample 

Location 

C1 C2 C3 

1 9.1.2014 SW 0.035518 0.01737 0.018311 

2 9.1.2014 CF 0.032823 0.016243 0.015593 

3 9.1.2014 UF 0.036563 0.016329 0.015226 

4 9.1.2014 RO R1 0.110594 0.069161 0.081583 

5 9.1.2014 RO R2 2.07E-15 0 1.17E-13 

6 9.4.2014 SW 0.032557 0.016955 0.017077 

7 9.4.2014 CF 0.032321 0.016785 0.015957 

8 9.4.2014 UF 0.035424 0.017139 0.015215 

9 9.4.2014 RO R1 0.103502 0.065691 0.076728 

10 9.4.2014 RO R2 0 0 6.84E-15 

11 9.24.2014 SW 0.056398 0.021879 0.040313 

12 9.24.2014 CF 0.056633 0.019535 0.037412 

13 9.24.2014 UF 0.064795 0.020113 0.031849 

14 9.24.2014 RO R1 0.194008 0.093276 0.130279 
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15 9.24.2014 RO R2 0.0017 0.000819 0 

16 10.3.2014 SW 0.064605 0.026585 0.039923 

17 10.3.2014 CF 0.084327 0.025659 0.029103 

18 10.3.2014 UF 0.081766 0.023571 0.027716 

19 10.3.2014 RO R1 0.21217 0.104893 0.135992 

20 10.3.2014 RO R2 0 1.48E-06 0 

21 10.20.2014 SW 0.063718 0.027446 0.050437 

22 10.20.2014 CF 0.063634 0.025638 0.045091 

23 10.20.2014 UF 0.061385 0.021483 0.042403 

24 10.20.2014 RO R1 0.194611 0.105746 0.147476 

25 10.20.2014 RO R2 0 4.13E-05 0.000137 

26 10.23.2014 SW 0.063851 0.027052 0.04922 

27 10.23.2014 CF 0.067589 0.026965 0.045618 

28 10.23.2014 UF 0.061751 0.022385 0.042585 

29 10.23.2014 RO R1 0.195827 0.106614 0.14638 

30 10.23.2014 RO R2 0 1.15E-05 4.43E-05 

31 11.18.2014 SW 0.089279 0.028074 0.059362 

32 11.18.2014 CF 0.075797 0.027533 0.047464 

33 11.18.2014 UF 0.072295 0.024943 0.047728 

34 11.18.2014 RO R1 0.2098 0.110577 0.150441 

35 11.18.2014 RO R2 0.001766 0.001102 0 

36 12.04.2014 SW 0.108466 0.040181 0.075455 

37 12.04.2014 CF 0.103492 0.040808 0.068001 

38 12.04.2014 UF 0.094774 0.034128 0.059949 

39 12.04.2014 RO R1 0.223741 0.147583 0.19268 

40 12.04.2014 RO R2 0 6.6E-06 0 

41 1.27.2015 SW 0.100713 0.037528 0.061075 

42 1.27.2015 CF 0.086064 0.032756 0.057122 

43 1.27.2015 UF 0.086715 0.028975 0.052341 

44 1.27.2015 RO R1 0.199999 0.125055 0.164642 

45 1.27.2015 RO R2 4.99E-06 1.51E-05 1.31E-06 

46 2.10.2015 SW 0.115241 0.045381 0.082141 

47 2.10.2015 CF 0.115146 0.043607 0.079998 

48 2.10.2015 UF 0.114311 0.039504 0.076701 

49 2.10.2015 RO R1 0.258388 0.15944 0.221221 

50 2.10.2015 RO R2 0.003157 0.001369 0.007446 

51 5.16.2015 SW 0.139583 0.049401 0.095883 

52 5.16.2015 CF 0.146698 0.050323 0.089127 

53 5.16.2015 UF 0.140434 0.047517 0.083983 

54 5.16.2015 RO R1 0.26843 0.180095 0.234006 

55 5.16.2015 RO R2 0.011471 0.002549 0.005783 
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Table B5: Wilcoxon Rank Sum Tests for Peak EEM Fluorescence Intensities 

Sample  P-value Hodges-Lehmann 

estimator 

CI (95%) 

SW (P1 v P2) 0.004 -0.067 [-0.103, -0.040] 

CF (P1 v P2) 0.017 -0.060 [-0.103, -0.015] 

UF (P1 v P2) 0.009 -0.054 [-0.098, -0.013] 

SW v CF (P1) 0.688 0.001 [-0.026, 0.004] 

CF v UF (P1) 1.0 5.84E-07 [-0.010, 0.006] 

SW v UF (P1) 0.688 -0.001 [-0.021, 0.005] 

SW v CF (P2) 0.188 0.009 [-0.006, 0.019] 

CF v UF (P2) 0.125 0.005 [-0.000, 0.012] 

SW v UF (P2) 0.063 0.012 [0.002, 0.023] 
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Figure B1: Plot of EEM peak fluorescence intensity for pre-membrane samples (SW, CF, 

UF) throughout field study. Period 1 and Period 2 are divided by vertical black dotted line. 
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Table B6: Wilcoxon Rank Sum Tests for EEM-PARAFAC Components 

Sample  P-value Hodges-Lehmann 

estimator 

CI (95%) 

C1 (P1 vs P2) 2.314E-08 -0.051 [-0.067, -0.033] 

C2 (P1 vs P2) 5.785E-08 -0.017 [-0.022, -0.011] 

C3 (P1 vs P2) 2.314E-08 -0.037 [-0.046, -0.026] 

C1 P1 (SW v CF) 0.6875 -0.0005 [-0.0197,0.0027] 

C1 P1 (CF v UF) 0.6875 -0.0006 [-0.008, 0.006] 

C1 P1 (SW v UF) 0.3125 -0.003 [-0.017, 0.002]  

C1 P2 (SW v CF) 0.3125 0.005 [-0.007, 0.015] 

C1 P2 (CF v UF) 0.125 0.004 [-0.001, 0.009] 

C1 P2 (SW v UF) 0.125 0.008 [-0.001, 0.0169] 

C2 P1 (SW v CF) 0.031 0.001 [0.0001, 0.002] 

C2 P1 (CF v UF) 0.438 0.002 [-0.001, 0.005] 

C2 P1 (SW v UF) 0.063 0.003 [-0.0002, 0.006] 

C2 P2 (SW v CF) 0.625 0.0006 [-0.0009, 0.005] 

C2 P2 (CF v UF) 0.063 0.004 [0.003, 0.007] 

C2 P2 (SW v UF) 0.063 0.005 [0.002, 0.009] 

C3 P1 (SW v CF) 0.031 0.004 [0.001, 0.011] 

C3 P1 (CF v UF) 0.031 0.002 [0.0004, 0.006] 

C3 P1 (SW v UF) 0.031 0.007 [0.002, 0.012] 

C3 P2 (SW v CF) 0.063 0.007 [0.002, 0.012] 

C3 P2 (CF v UF) 0.125 0.004 [-0.000, 0.008] 

C3 P2 (SW v UF) 0.063 0.010 [0.005, 0.016] 
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