SpecInfer: Accelerating Generative Large Language Model Serving with Speculative Inference and Token Tree Verification
The high computational and memory requirements of generative large language models (LLMs) make it challenging to serve them quickly and cheaply. This paper introduces SpecInfer, an LLM serving system that accelerates generative LLM inference with speculative inference and token tree verification. A key insight behind SpecInfer is to combine various collectively boost-tuned small language models to jointly predict the LLM’s outputs; the predictions are organized as a token tree, whose nodes each represent a candidate token sequence. The correctness of all candidate token sequences represented by a token tree is verified against the LLM in parallel using a novel tree- based parallel decoding mechanism. SpecInfer uses an LLM as a token tree verifier instead of an incremental decoder, which significantly reduces the end-to-end latency and computational requirement for serving generative LLMs while provably preserving model quality. Our evaluation shows that SpecInfer outperforms existing LLM serving systems by 1.3-2.4x for distributed LLM inference and by 2.6-3.5x for offloading- based LLM inference, while preserving the same generative performance. SpecInfer is publicly available at https://github.com/flexflow/FlexFlow/tree/inference
History
Date
2024-01-01Degree Type
- Master's Thesis
Department
- Information Networking Institute
Degree Name
- Master of Science (MS)