
Hybrid Planning in Self-adaptive Systems

Ashutosh Pandey

CMU-ISR-20-100

February 2020

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Garlan (Chair)

Jonathan Aldrich
John Dolan

Hausi Müller (University of Victoria, Canada)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

Copyright © 2020 Ashutosh Pandey

This work is supported in part by awards N000141310401 and N000141310171 from the Office of Naval
Research (ONR), and FA87501620042 from the Air Force Research Laboratory (AFRL). Government is
authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
the ONR, AFRL, DARPA or the U.S. Government.

Keywords: self-adaptive systems, formal model, automated planning, machine learning,
probabilistic model-checking

Abstract
Planning is one of the fundamental design considerations when building a self-

adaptive software system. Planning helps the adaptive system to determine an ap-
propriate course of action at run time that seeks to change the system’s behavior in
response to faults, changing environments and security threats. Therefore, having an
appropriate planner to find a plan is critical to a successful self-adaptation.

For many adaptive systems, an appropriate planner is the one that not only
finds a plan quickly, particularly, in urgent circumstances but also the plan provides
a near-optimal long-term performance. However, due to the fundamental trade-off
between quality and timeliness of planning, today designers often have to compromise
between an approach that finds a plan quickly and an approach that is slow but finds
a higher-quality plan.

To deal with this trade-off, this thesis proposes a hybrid planning approach for
self-adaptive systems that combines off-the-shelf deliberative and reactive planners to
find a balance between quality and timeliness. The key idea is to use reactive planning
to provide a quick (although potentially a sub-optimal) response, but simultaneously
invoke deliberative planning to determine quality plans. Once the deliberative plan is
ready, it takes over the execution from the reactive plan to provide a higher quality
adaptation thereafter.

Such a combination of planners can, in principle, reap the benefits of both worlds:
providing plans quickly when the timing is critical, while allowing (nearly) optimal
plans to be generated when the system has sufficient time to do so. Moreover, instead
of going through the non-trivial process of developing a new algorithm/heuristic,
hybrid planning combines off-the-shelf planners; therefore, hybrid planning does
not require software engineers to master the complexity of developing new planning
algorithms/heuristics.

This thesis demonstrates that, compared to its constituent reactive and deliberative
planners, hybrid planning can find a better balance between the timeliness and the
quality of planning, thereby improve adaptation effectiveness as measured by a multi-
dimensional utility function capturing different dimensions of a system’s goal. In
the process, the thesis makes contributions to both the theory and the practice of
hybrid planning in self-adaptive systems. Specifically, the thesis provides: (a) a
formal framework defining the problem of hybrid planning; (b) a practical approach
(grounded in the formal model) to apply hybrid planning to self-adaptive systems;
(c) informal guidelines and a quantitative approach to help engineers to select an
appropriate set of planners to instantiate hybrid planning for a given domain, and (d)
evaluation of hybrid planning using two realistic systems to bridge the gap between
theory and practice.

iv

To my mother and father for their selfless love and support.

Acknowledgements
I express the deepest gratitude to my advisor Prof. David Garlan for his guidance and support. He
helped me to inculcate the skill of thinking about a problem at the right level of abstraction and
switching between different abstraction levels as needed; this is perhaps the most important skill
needed for complex problem solving. He gave me the freedom to pursue my ideas, fail, and learn
from mistakes to eventually develop as an independent researcher. His patience as an advisor is
phenomenal – he remained patient when I was not able to make progress, even for months.

I am also thankful to my thesis committee. By asking profound questions, Prof. Jonathan
Aldrich helped me to refine the formal aspects of my thesis. The feedback provided by Dr. John
Dolan and Prof. Hausi Müller helped to improve the thesis from the perspective of artificial
intelligence and software engineering, respectively.

The credit of this thesis also goes to my mentors Dr. Bradley Schmerl and Prof. Javier Cámara.
Bradley is a deep thinker who always surprises me with his ability to identify subtle gaps in an
argument. His feedback helped to strengthen the thesis, but more importantly, my thought process
improved by working with him. Prof. Javier Cámara is not only my mentor but also a great friend.
Whenever I requested to meet him seeking his feedback on my research, despite being busy, he
provided a meeting slot even on short notice. He used to patiently listen to my ideas and ask
clarifying questions that helped me refine the ideas.

I am indebted to my bright colleagues and close friends – Dr. Gabriel Moreno and Dr. Ivan
Ruchkin. I was fortunate to have them ahead of me in the Ph.D. program; just by observing them
conducting their thesis research, I became a better researcher. For the thesis evaluation, rather
than building the systems from scratch, I used the systems build by Gabriel; he used to patiently
answer my questions related to the systems that enabled me to make progress rather quickly. Ivan
touched my life in various ways. All these years, Ivan has been the biggest critic of my research;
his honest (and sometimes harsh) feedback played a significant role in improving the overall
quality of the thesis. Moreover, he helped me with technical aspects such as formalizing the hybrid
planning problem, reviewing the design and analyzing the data of experiments, and co-authoring
papers. In addition, my philosophical discussions with Ivan had been a great source of learning
and intellectual flirtation. Ivan made me realize how all human beliefs are susceptible to change;
therefore, it’s worth being flexible with the beliefs. With this realization, now I am more open
to new ideas/cultures/experiences and do not feel obligated to defend my beliefs. However, the
biggest contribution of Ivan is taking me to a 10-day Vipassana meditation retreat, which changed
the way I see and experience life. I also acknowledge my colleagues Vishal Dwivedi, Selva
Samuel, and Cody Kinneer for their support during these years.

My special gratitude goes to my wife Varshika. This journey would not have been possible
without her support and sacrifices. All these years, she has been a silent contributor to my
graduation. While I was busy with my work, she took care of me and kids alone without
complaining. Honestly, no words are sufficient to express my gratitude to her. I also want to
mention my kids – Anushka and Saatvik for providing lovely stress-reducing moments during the
challenging times as a graduate student.

Finally, there are several other friends and family members who made this thesis possible
through their encouragement and support. My apologies for not being able to mention their names.

vi

Contents

1 Introduction 1
1.1 Motivating Example for Hybrid Planning . 4
1.2 Thesis . 7
1.3 Approach Overview . 8
1.4 Validation of the Claims . 11
1.5 Thesis Contributions . 12
1.6 Dissertation Outline . 13

2 Related Work 15
2.1 Approaches to Deal with the Trade-off between Timeliness and Quality of Planning 15

2.1.1 Using Precomputed Plans . 15
2.1.2 Search and Optimizing Algorithms/Heuristics 16
2.1.3 Reinforcement Learning . 17
2.1.4 Hierarchical Task Networks . 17

2.2 Different Notions of Hybrid Planning . 17
2.3 Hyper-Heuristics . 18
2.4 Other Similar Instantiations of Hybrid Planning 19
2.5 Summary . 20

3 The Problem of Hybrid Planning 21
3.1 Summary of the Formal Model . 22
3.2 Foundational Concepts . 26
3.3 Decomposition of the Hybrid Planning Problem 30

3.3.1 Path Selection . 31
3.3.2 Graph Construction . 33
3.3.3 Planner Assessment . 33
3.3.4 Problem Generation . 34

3.4 Applying the Formal Model . 35
3.4.1 Formal Model Applications . 35
3.4.2 Assumptions . 36
3.4.3 Implementation Barriers . 36

3.5 Summary . 38

vii

4 Solution to Hybrid Planning 39
4.1 Constructing a Reachability Graph . 42

4.1.1 Restricting the Number of Nodes . 42
4.1.2 Connecting the Nodes . 43

4.2 Finding a Path in a Reachability Graph . 46
4.2.1 Condition-based Approach . 47
4.2.2 Learning-based Approach . 47

4.3 Summary . 50

5 Design and Analysis of Hybrid Planning 53
5.1 The Hybrid Planning Algorithm . 53
5.2 Analysis of the Performance of the Hybrid Planning 55
5.3 Summary . 60

6 Validation 63
6.1 Validation Systems . 64

6.1.1 The Cloud-based Load Balancing System 64
6.1.2 A Team of Unmanned Aerial Vehicles . 69

6.2 Learning-based Approach Implementation . 73
6.2.1 The Offline Phase . 73
6.2.2 The Online Phase . 74

6.3 Claims Validation . 75
6.3.1 Effectiveness . 75
6.3.2 Generality . 80
6.3.3 Flexibility . 80

6.4 Other Findings: Influence of Constituent Planners on Hybrid Planning 81
6.5 Applications of the formal model . 83

6.5.1 Analysis of Hybridized Planner . 84
6.5.2 Comparison Between the Learning-based and the Hybridized Planner . . 87

6.6 Threats to Validity . 87
6.7 Summary . 89

7 Guidelines to Apply Hybrid Planning 91
7.1 Introduction . 91
7.2 Instantiating Hybrid Planning . 92

7.2.1 Informal Guidelines to Instantiate Hybrid Planning 92
7.2.2 Quantitative Approach to Instantiate Hybrid Planning 99

7.3 Choosing Between Condition-based and Learning-based Hybrid Planning 101
7.4 Implementing Learning-based Hybrid Planning 102
7.5 Summary . 103

viii

8 Discussion and Conclusion 105
8.1 Thesis Contributions . 105

8.1.1 Theoretical Contributions . 105
8.1.2 Practical Contributions . 106

8.2 Scoping Assumptions . 108
8.2.1 Assumptions to Make a Hybrid Planning Problem Tractable 111
8.2.2 Assumptions to Address the Planning Coordination Problem 113
8.2.3 Assumptions Related to Learning-based Hybrid Planning 113
8.2.4 Other Assumptions . 115

8.3 Future Work . 116
8.3.1 Short Term Projects . 116
8.3.2 Long Term Projects . 117

8.4 Conclusion . 118

A Formalization of Timing and Preemption Conditions for the Cloud-based System 121

B Plots of the FIFA Traces Used for Validation 123

ix

x

List of Figures

1.1 A notional representation of a space for planning approaches in domains with
uncertainty . 3

1.2 High-level view for the cloud-based system. 5

3.1 Illustration of the difference between a priori and a posteriori model. 23
3.2 An example of a Reachability Graph. 24
3.3 Decomposition of the hybrid planning problem. 31

4.1 Transition from a reactive plan to a deliberative plan 45
4.2 Evaluating a combination of reactive and deliberative plan. 49

6.1 Illustration of multiple patterns in a single web trace. 67
6.2 The number of traces having a specific pattern. 67
6.3 DART simulation overview . 69
6.4 Utility differences per trace/mission added up for all traces/missions. 77
6.5 Performance comparison of different planning approaches. 78
6.6 Performance of the hybrid planning modes improves with the performance of

deliberative planning mode. 82

7.1 Anytime algorithms are optimizing in nature. 95
7.2 Summary of potential techniques to relax a planning problem. 97
7.3 Illustration of how the planning search space can be reduced. 98
7.4 Evaluating a combination of reactive and deliberative plan to instantiate hybrid

planning. 100

xi

xii

List of Tables

4.1 Summary of the four subproblems of the hybrid planning problem. 40

6.1 Cost/capacity parameters for each server type. 68
6.2 Adaptation actions for the team of UAVs. 70
6.3 Influence of Manhattan distances on the performance of deliberative planning for

a UAV team. 73
6.4 Comparison between hybrid planning instantiations in the context of the formal

model. 88

8.1 Summary of Assumptions. 111

xiii

xiv

Chapter 1

Introduction

A typical control loop in many self-adaptive software systems has four fundamental computational
components: Monitoring-Analysis-Planning-Execution (MAPE) [61]. Based on information
collected by the monitoring component, if the analysis component decides that the system needs
to adapt to meet its goals, then the planning component determines an adaptation plan, which is
executed by the execution component.

The planning component determines an adaptation plan based on various factors such as the
current state of a self-adaptive system and its operating environment, a set of possible adaptation
actions, and the adaptation goal; such factors together constitute a planning problem. In other
words, the planning component takes a planning problem as an input and returns an adaptation
plan.

For the planning component, researchers in the self-adaptive community have proposed various
planning approaches to determine plans.1 Frameworks such as Rainbow [27] solve new problems
based on solutions to similar problems from the past. When adaptation is needed, Rainbow
chooses an adaptation strategy (i.e., a plan) from a predefined repertoire, which was created at
design time by domain experts based on their past troubleshooting experience; such a repertoire
can also be created in an automated manner [25]. In addition, researchers have demonstrated the
potential of other techniques, such as reinforcement learning [62, 97], case-based reasoning [107],
genetic algorithms [28], and fuzzy logic [53] that (similar to using expert knowledge) generate
adaptation decisions offline but choose them at run time. In contrast to generating adaptation
decisions offline, various automated planning techniques (e.g., model-checking [23, 85, 110],
reinforcement learning [62, 97], and genetic algorithms [28, 63])) have been explored to generate
adaptation plans at run time.

For the design of a MAPE-based system, an appropriate instantiation of the planning compo-
nent is both critical and non-trivial. An appropriate instantiation is critical since it impacts the
ability of a planning component to determine adaptation plans, and thus a system’s potential to

1We use the term "planning" in a broad sense, referring to any decision-making approach that could be used to
determine adaptation plans. Throughout the thesis, we use the term “planner” and “planning approach” interchange-
ably. As formalized in Chapter 3, both the terms refer to the black-box that takes a planning problem as an input and
returns a plan. This black box encapsulates various planning aspects such as the planning tool that implements a
planning algorithm/heuristic and its configuration options. Therefore, two instances of the same planning tool, but
with different configuration options, will be considered as different planners.

1

meet adaptation goals. An appropriate instantiation of the planning component is non-trivial since
there are numerous planning approaches, each having its own set of characteristics [44]; expertise
is needed to identify and implement an approach that best meets the requirements.

For many self-adaptive systems, quality and timeliness are two particularly important require-
ments to be considered when choosing a planning approach to instantiate the planning component.
Here “quality" of planning refers to the likelihood of a plan meeting the adaptation goals under
the assumption that the plan is available instantaneously, when required. For many domains, such
as safety-critical systems, quality of planning is important, especially since a bad plan could lead
a system to an irreparable failure state that endangers lives [65]. In other domains such as an
enterprise system, poor quality plans can hinder in meeting business goals.

In addition to quality, finding adaptation plans in a timely manner is another important
requirement for planning [103]. For instance, after detecting a malware (e.g., a trojan) attack, if
an enterprise system fails to determine a defense plan in a timely manner, the system risks being
compromised, resulting in a failure to meet the goal of self-protection.2

Many systems need both: quick planning in urgent circumstances and near-optimal long-term
performance. Ideally, such systems need a planning approach that can find optimal adaptation
plans in a timely manner. For instance, to remain effective, commercial systems such as Amazon
Web Services (AWS) have to maintain an up-time of at least 99.95% in any monthly billing cycle
as per the service level agreement,3 balancing it with other concerns such as cost minimization.
When service-level constraints are violated, a rapid response is required to drive the system back
to a desirable state (for AWS, maintaining availability). However, for long-term quality, adaptation
plans should be as close to optimal as possible by considering other metrics (e.g., operating cost).
Netflix is another example of such a system, where managing the overall latency of response to
clients is critical to good user experience, in spite of the desire to minimize resource usage, and
thus to lower operating cost.4

Unfortunately, for a planning approach, quality and timeliness are conflicting requirements.
Planning, in essence, is a search/optimization process performed over the space of possible plans
− more complete searches provide better quality guarantees, but require more time to complete.
Hence, for urgent situations an approach can either provide a sub-optimal plan at the moment
when it is needed, or provide a higher-quality plan, risking it being late. Moreover, this imbalance
between quality and timeliness increases significantly with the increase in a search space that
arises in the presence of large numbers of components, adaptation options, and multiple qualities
of interest.

As a consequence, when choosing an off-the-shelf planning approach, self-adaptive systems
today must compromise between one of the two requirements leading to systems that typically
can either respond quickly, or provide a high-quality adaptation but not both (refer to Figure 1.1).
Within the self-adaptive systems community, research has primarily focused on the quality of
planning; timeliness of planning, in general, has not been treated as a first class concern [77].

One direction, explored by the artificial intelligence (AI) community, is to develop customized
planning solutions applicable to a particular domain or a narrow class of planning problems,

2https://www.defenseone.com/technology/2019/02/russian-hackers-work-
several-times-faster-chinese-counterparts-new-data-shows/154952/

3https://aws.amazon.com/compute/sla/
4http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

2

https://www.defenseone.com/technology/2019/02/russian-hackers-work-several-times-faster-chinese-counterparts-new-data-shows/154952/
https://www.defenseone.com/technology/2019/02/russian-hackers-work-several-times-faster-chinese-counterparts-new-data-shows/154952/
https://aws.amazon.com/compute/sla/
http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using- aws.html

Desired
Region

Probabilistic Planning
Ex: MDP, POMDP

Instance-based Learning
Ex: Rainbow framework

Heuristic Planning
Ex: FF-Replan

Reactive Planning
Ex: Condition-action rules

Planning Time

Pl
an

ni
ng

 Q
ua

lit
y

Figure 1.1: A notional representation of a space for planning approaches in domains with
uncertainty. Ideally, one would like to move towards the desired region, i.e., high plan quality
with low planning time

since such solutions can exploit specific knowledge about the search space. While sometimes
successful [14, 49, 54], this approach is typically time-consuming and costly to develop since
it requires deep understanding of the operating domain and experience in planning technology.
Moreover, because these solutions are tailored to different domains, it is rare that successes are
directly transferable to other domains; hence, these approaches are not general – an undesirable
quality from a software engineering perspective.5

In contrast to inventing domain/problem-specific solutions, in this thesis we propose the
idea of hybrid planning for self-adaptive systems that combines multiple off-the-shelf reactive
planners with a deliberative one to address the trade-off between the timeliness and quality of
planning.6 The key idea is to use reactive planning to provide a quick (but potentially sub-optimal)
response to a problem, but simultaneously invoke deliberative planning that is likely to provide a
higher-quality plan (compared to reactive planning). Once a deliberative plan is ready, it takes
over execution from the reactive plan to provide a higher-quality adaptation thereafter. Such
a combination of planners can, in principle, reap the benefits of both worlds: providing plans
quickly when the timing is critical, while allowing (nearly) optimal plans to be generated when
the system has sufficient time to do so.

Hybrid planning has a number of potential advantages over custom planning solutions. Instead

5This fact is consistent with the No Free Lunch Theorem: for any search/optimization algorithm, performance
gains over one class of problems are paid for by performance losses over another class [117].

6Having multiple reactive planners provides the flexibility to pick the best (reactive) planner for an emergency
situation. For a complex system, it might be difficult to have a reactive planner that can deal with all (the possible)
emergency situations.

3

of going through the non-trivial process of developing a new algorithm/heuristic, hybrid planning
combines off-the-shelf planners. Using existing planners is likely to reduce development time
and cost, since software engineers do not have to be AI experts or master the complexity of
developing new algorithms/heuristics. In a sense, hybrid planning can be thought of as an instance
of meta-planning that operates on a set of off-the-shelf planning approaches [21]; therefore, it
raises the level of abstraction such that software engineers do not have to worry about developing
new custom solutions.

Even though hybrid planning is a promising idea, its successful implementation faces substan-
tial research challenges (as detailed later in Section 1.3):

• DEFINING HYBRID PLANNING (DEFHP) i.e., (formally) describing the hybrid planning
problem in a way that helps to understand its general nature and describes the ideal behavior
of a hybrid planner.

• INSTANTIATING HYBRID PLANNING (INSTHP) i.e., finding appropriate constituent ap-
proaches to instantiate hybrid planning such that quality and timeliness of planning can be
balanced.

• PLANNING COORDINATION (PLNCRD) i.e., guaranteeing a seamless transition between
plans determined by different constituent approaches.

• PLANNING SELECTION (PLNSEL) i.e., deciding which planning approach (among the
constituents) should be invoked to solve a particular planning problem with hybrid planning,
and when to stop using a plan produced by an approach and switch to a plan produced by
another approach.

The rest of this chapter introduces a motivating example that will be used throughout the
dissertation to present our approach, followed by the thesis investigated in this dissertation, an
approach to address the research challenges listed above, and how the thesis claims were validated.
Finally, the chapter lists the contributions from the thesis and provides organization for the rest of
the dissertation.

1.1 Motivating Example for Hybrid Planning
To explain our approach, this section presents an exemplar system inspired by RUBiS [29] —
an open-source benchmark application that implements the functionality of an auctions website
that is widely used to evaluate research ideas for cloud-based systems [33, 36, 52, 82, 85, 98].
The exemplar system is a cloud-based self-adaptive system, as shown in Fig. 1.2, with a typical
N-tiered architecture: a presentation tier, an application tier, and a database tier. Using the
presentation tier, a client sends a request to the application tier, which interacts with the database
tier to process the request. The system has different types of servers that cost more with increasing
capacity (i.e., the ability to handle a number of requests per second). The system’s workload
depends on the request arrival rate, which is uncertain as it depends on external demand.

The system needs to optimize profit (i.e., maximizing revenue and minimizing operating
costs) by means of various adaptation tactics. To maximize revenue, it is desirable to maintain
the response time for user requests below some threshold (say T), since higher perceived user
response time results in revenue loss [75]. Typically, an increase in request arrival rate causes a

4

1

Traffic P3

Traffic
 P1

Load-balancer

Server-A

Server-B

Server-C
Users

Database

Cloud System

Traffic P2

Figure 1.2: High-level view for the cloud-based system.

higher response time perceived by clients. In such situations, the system can add more servers
(using tactic addServer<type>) to handle the increased workload, but also increasing the operating
cost. To reduce costs, the system has an adaptation tactic (i.e., removeServer<type>) to deactivate
a server.

In addition to manipulating servers, system response time can be controlled through “brownout”
— reducing the amount of optional content (such as advertisements or product recommenda-
tions) [64]. Such optional content generates additional revenue, but requires more computational
power and network bandwidth, which in turn increases the response time [32]. The system
controls optional content with tactics increaseDimmer and decreaseDimmer, which respectively
raise or lower the probability that a request will contain optional content. In other words, the
number of requests with optional content decreases as the value of the dimmer setting decreases.7

Different variants of brownout have been applied to cloud-based systems and shown to be effective
in their respective contexts [118].

Since the system has servers of different capacity, a round-robin strategy for assigning client
requests to active servers would not be efficient: the number of client requests delegated to a
server should depend on its capacity. The load-balancer uses queueing theory [48] to decide on
the optimal load-distribution among the active servers. To distribute the load efficiently, there is a
tactic (i.e., divert_traffic<traffic_server1 ... traffic_servern>, where traffic_serveri is the traffic, in
terms of percentage of requests, for the i-th server, and n is the total number of servers), which
helps the load-balancer manage the percentage of client requests assigned to each server.

7This formulation of the brownout mechanism provides more flexibility to the system compared to RUBiS, which
is limited to a binary choice of having all or no responses include the optional content.

5

We assume there is a penalty, say P , for each request having a response time above the
threshold. Therefore, in case of a high response time, the system needs to react quickly either by
adding servers or decreasing the dimmer value. However, once response time is within acceptable
limits, the system should execute adaptation tactics to bring down the operating cost or increase
revenue in order to maximize long-term utility.

To summarize, the system needs to increase the revenue, keep response time below the
threshold to avoid penalty P , and minimize the number of active servers to reduce operating
cost. These objectives are captured in a multidimensional utility function shown in Formula 1.1;
the adaptation goal of the system is to maximize the utility calculated using this formula. If the
system runs for duration L, its utility function is defined as:

U = ROxO +RMxM − PxT −
n

∑
i=1

Ci∫
L

0
si(t)dt (1.1)

where RO and RM are revenue generated by a response with optional and just mandatory content
respectively; P is the penalty for a request having a response time above the threshold; xO, xM ,
and xT are number of requests with optional content, mandatory content, and having response
time above the threshold, respectively; Ci is the cost of server type i, and si is the number of
active servers of type i; n is the number of server types.

This multidimensional utility function captures conflicting requirements such as lowering
response time, increasing revenue, and decreasing operating cost. Such a utility function captures
both the quality and the timeliness of planning. The function captures quality since it has various
adaptation goals as its constituents. Timeliness is captured since there is a penalty for response
time above the threshold; in such a situation the system needs to react quickly to lower the penalty.

To determine adaptation plans for self-adaptive systems such as this cloud-based system,
researchers have suggested a diverse set of planning approaches such as rule-based adaptation
(RBA) [27], case-based reasoning (CBR) [107], fuzzy-logic [53], reinforcement learning [97],
stochastic search (e.g., genetic algorithms) [28], that, generally speaking, fall into the category of
reactive planning. These approaches determine an adaptation plan quickly because the plan is not
generated at run time, but rather selected from an existing set of plans; however, the selected plan
might not be optimal because it is difficult to have an optimal plan that was determined offline.
For instance, a system with a rule-based adaptation might have a hard-coded rule saying that
whenever the response time constraint is violated, add a server with the highest capacity. This
plan could be sub-optimal if the spike in client requests is temporary; by the time the newly added
server is active, response time would be below the threshold, but the system ends up paying an
additional cost for this server.

In contrast, researchers have also proposed various deliberative approaches, such as planning
based on Markov decision processes (MDP) to dynamically generate plans [23, 39]. Deliberative
approaches such as MDP and partially observable Markov decision processes (POMDP) [55]
planning at run time can be slower compared to the approaches discussed above, but they typically
provide high-quality adaptation plans for uncertain situations since planning considers factors
such as the current state of the system and its environment, predicted (but uncertain) values of
future request arrival rate, and timing of tactic latency [82, 85]. 8

8Compared to MDP, POMDP can additionally consider uncertainty in the underlying state.

6

For self-adaptive systems such as this cloud-based system, using a single (i.e., either a reactive
or a deliberative) planning approach can be problematic. For instance, a reactive approach such as
rule-based adaptation (RBA) might quickly provide a plan to a response time constraint violation,
and thus improve the system’s utility in the short-term.9 However, the plan is likely to be sub-
optimal due to uncertainty in the request arrival rate, which is difficult to predict/model at design
time (i.e., when formulating the rule).10 On the other hand, if a deliberative approach, such as
one based on MDPs, is used for planning it is likely to provide high-quality plans but at the cost
of having to wait, which would be an issue, particularly for situations such as a response time
constraint violation. To balance quality and timeliness, hybrid planning (HP) seems a promising
way to improve utility (e.g., Formula 1.1 presented above). For instance, hybrid planning can be
instantiated using a reactive (e.g., RBA) and a deliberative (e.g., MDP) planning approach. RBA
can provide a timely (i.e., quick) response to emergency situations (e.g., response time above the
threshold), whereas MDP planning can be used to provide higher-quality plans, thus balancing
quality with timeliness of planning.

1.2 Thesis

This research improves the current state of the art for planning in self-adaptive systems. Due
to the trade-off between timeliness and quality of planning, when choosing a single planning
approach, designers have two choices: (a) make an offline (i.e., at design time) compromise
between finding adaptation plans quickly and finding quality plans demanding longer computation
times, or (b) deal with the complexity of developing a customized planning approach that is likely
to consume time and resources. Therefore, rather than choosing a single approach, we propose a
hybrid planning approach that combines multiple off-the-shelf reactive planning approaches with
a deliberative one to find a balance between quality and timeliness without incurring the overhead
of developing a customized planning approach. In the context of self-adaptive systems, this thesis
demonstrates that hybrid planning can be applied with the following three qualities:

• Effectiveness: Hybrid planning improves the effectiveness of a self-adaptive system com-
pared to its constituent approaches used alone. Effectiveness is a measure of a system’s
ability to meet its adaptation goal. In this thesis, we assume that the system’s adaptation
goal is encoded in a multidimensional utility function (e.g., Formula 1.1) that captures both
quality and timeliness of planning. To validate effectiveness, we demonstrate that hybrid
planning provides higher utility.

• Generality: Hybrid planning is general enough to be applied (effectively) to self-adaptive
systems operating in domains that differ in: (a) quality dimensions of concern, (b) the cost
of poor/delayed actions, and (c) the ability to recover from poor/delayed actions.

• Flexibility: Hybrid planning can be instantiated (effectively) using different combinations

9Rule-based adaptation refers to a planning approach where adaptation plans are determined by predefined
condition-action pairs (i.e, rules) indicating the action to be taken for a given condition. Typically, the conditions
capture an abstract presentation of a system state.

10Theoretically, designers can formulate rules (at design time) for all the possible variations in the request arrival
rate that the system can observe at run time. However, this approach might not scale for realistic cloud-based systems.

7

of reactive and deliberative approaches. Two instantiations are considered different if any of
the constituent (reactive or deliberative) approaches are different between the instantiations.

Thesis Statement: We can improve the effectiveness of self-adaptive systems by using a hybrid
planning approach, which is general and flexible. This approach has the following elements:

• the use of off-the-shelf deliberative and reactive planning approaches to instantiate hybrid
planning that can take advantage of both planning approaches to find a balance between
quality and timeliness of planning;

• the ability to dynamically decide which constituent reactive planning approach should be
invoked along with deliberative planning.

1.3 Approach Overview

For a self-adaptive system such as the system presented in Section 1.1, hybrid planning seems
to be a promising way to improve effectiveness by balancing quality and timeliness of planning.
However, elaborating on what was said earlier, there are number of challenges in applying hybrid
planning to realistic systems:

• DEFINING HYBRID PLANNING (DEFHP): Understanding the hybrid planning problem in
its general nature is important in order to apply the idea realistically. When an arbitrary
number of planning approaches with different time-quality trade-offs are combined together,
currently, we lack answers to questions such as (a) what is a hybrid planning problem?, and
(b) what does it mean to solve the problem?, and (c) what are the intermediate steps to solve
the problem?
Approach: To answer such questions, this dissertation formally defines the problem of
hybrid planning in its general form (cf. Chapter 3). In addition, the formalization breaks the
complex problem of hybrid planning into four sub- problems. In Chapter 4, this formalism
is used to explain our approach to apply hybrid planning in a realistic context; solutions
grounded in a formal model give us confidence that all relevant challenges are addressed.
Moreover, as demonstrated in Chapter 6, this model can serve as a unifying evaluation
framework to analyze and compare different instantiations of hybrid planning, and thereby
understand their strengths and weaknesses.

• INSTANTIATING HYBRID PLANNING (INSTHP): Finding constituent approaches with the
appropriate time-quality trade-off is critical to an effective instantiation of hybrid planning.
However, for software engineers, finding such a set of approaches is a non-trivial process,
since there are numerous candidate approaches to be used for reactive or deliberative
planning [44]. Once we decide on constituent approaches, another obstacle to practical
adoption of hybrid planning is lack of application guidance: When will hybrid planning
outperform its constituent planning approaches for a given system?
Approach: To address these questions, this thesis provides guidelines (in Chapter 7) to help
software engineers to select planning approaches for instantiating reactive and deliberative
planning. In addition, this dissertation uses findings from two case studies (discussed in
Chapter 6) to provide data-driven guidance on appropriate conditions for using hybrid

8

planning. Specifically, we determine when hybrid planning is likely to be effective (i.e.,
outperform its constituent approaches).

• PLANNING COORDINATION (PLNCRD): To balance quality and timeliness, hybrid plan-
ning requires a smooth transition from a reactive plan to a possibly higher-quality delibera-
tive plan. Suppose the system observes a response time constraint violation. As a result,
assume reactive planning is invoked to provide a quick response to this problem. Now, for a
seamless transition from the reactive plan to the deliberative plan, the latter needs to have
provisioned for the system’s state after executing the reactive plan. This is challenging for
two reasons: (a) uncertainty about deliberative planning time makes it difficult to predict
when the deliberative plan will be ready to take over, and (b) uncertainty in the system’s
environment makes it difficult to predict the expected system state after executing the
reactive plan.11

Approach: To solve PLNCRD, our approach has two distinguishing characteristics: (a)
deliberative planning generates a universal plan (one containing state-action pairs for all the
reachable states from the initial state), where a mapping from a state (say s) to an action
(say a) indicates that a be executed in s [44], and (b) the operating domain is Markovian:
the state after a transition depends only on the current state — not on the sequence of states
that preceded it [78]. As explained in Chapter 4, these characteristics theoretically ensure a
smooth transition if reactive and deliberative planning use the same initial state. That is,
once the deliberative plan is ready, it can take over plan execution from the reactive plan
because any state resulting from executing the reactive plan will be found in the deliberative
plan.

• PLANNING SELECTION (PLNSEL): Assume that hybrid planning is instantiated using a
deliberative approach and a finite set of reactive approaches.12 For a planning problem,
solving PLNSEL refers to choosing the reactive approach (from the given set) that in
combination with deliberative planning will provide the highest utility.13 The set has a
special reactive approach that, for any planning problem, always suggests to wait until the
deliberative plan is ready; therefore, using this approach in combination with deliberative
planning is equivalent to using deliberative planning alone. This reactive approach is
required to ensure that hybrid planning does not underperform deliberative planning in
cases when none of the other reactive approaches (in the set) provides a better plan than
just waiting for the deliberative plan to be ready.
Approach: As the first approach to solve PLNSEL, we propose a condition-based (CB)
invocation of reactive planning where a system’s designer specifies up-front conditions (at
design time) under which (a particular) reactive approach should be invoked. For example,
whenever the response time constraint is violated for the cloud-based system, a reactive

11A state consists of system state and environment state.
12In this thesis, we restrict instantiations of hybrid planning to using a single deliberative approach to keep the

problem of hybrid planning tractable as discussed in Chapter 4. However, in certain ways, our approach allows hybrid
planning to be instantiated using multiple (reactive and) deliberative approaches as discussed in Chapter 8.

13As discussed in Chapter 4, the choice of using reactive planning not followed by deliberative planning is not
considered since if a deliberative plan is ready to take over, it will provide a higher utility compared to a plan
determined by any of the reactive approaches.

9

approach (from the given set of reactive approaches) can be invoked that might suggest to
add a server with the highest capacity. Invoking a reactive approach based on predefined
conditions is easy to apply when determining invocation conditions (e.g., emergencies)
is straight-forward at design time; invoking reactive planning on such conditions reduces
the risk of inappropriate quick decisions. However, the condition-based approach suffers
from three major drawbacks: (a) it requires domain expertise to identify the conditions that
should trigger reactive planning; (b) it relies on error-prone humans to identify the right and
comprehensive conditions; and (c) it hinders reuse of hybrid planning since such conditions
do not transfer to other systems/domains.
To overcome these drawbacks, this thesis also proposes a supervised machine learning-
based (LB) approach to decide which reactive planning approach (from a given set, which
includes waiting as a special case) in combination with deliberative planning would lead to
improved performance for a given situation. In the training phase, using planning problems
similar to those expected at run time, the approach trains a classifier to choose an appropriate
reactive approach for a given problem. At run time, depending on how the current situation
(i.e., the planning problem at hand) relates to problems in the training set, the classifier
decides on the reactive approach to be invoked. This approach overcomes the disadvantages
of condition-based (CB) invocation of reactive planning by removing the need for humans
to determine the specific conditions at design time and being applicable to a broad range of
systems/domains.
To train a classifier, one needs a set of labeled training problems such that the label of a
problem indicates the reactive approach which, in combination with deliberative planning,
will provide the best performance among the reactive approaches. To evaluate a combination,
labeling requires evaluating the performance of the reactive plan (determined by the reactive
approach for the problem) followed by the deliberative plan.
Obtaining sufficient and high-quality training data for a classifier is challenging on a real
system: to label one planning problem, one would have to repeatedly put the system and its
environment in the same exact state to test out different planning combinations. Further,
in domains with uncertain dynamics, the environment evolution and the outcomes of the
system’s actions may change between attempts, so one would have to perform multiple
trials of the same combination to determine the best average outcome.
We employ probabilistic model-checking that estimates the performance of a combination
(of reactive and deliberative planning) for all possible execution paths in a planning problem
with a single run of a model checker. For the estimation, we encode the combination
and the problem in a probabilistic model checker specification and use it to calculate the
performance assuming the specification represents the reality. Given a planning problem, a
finite set of reactive approaches and a deliberative approach, this process is repeated for
each reactive approach to evaluate its combination with the deliberative approach for the
problem. By comparing the performances of the combinations, one can choose the best
combination for the problem and label it accordingly.
Using a probabilistic model checker yields two benefits: (a) the probabilistic nature of the
model-checking helps in accounting for uncertainty when evaluating a combination of plans

10

determined by reactive and deliberative planning; and (b) (multiple) existing probabilistic
model checkers ease adoption, automation, and reuse of the learning-based approach by
software engineers.

1.4 Validation of the Claims

The thesis of this research claims that hybrid planning is effective, general, and flexible. The
dissertation uses two case studies (cf. Chapter 6 for details) to validate these claims. This section
briefly summarizes the validation approach.

• Effectiveness: The two case studies demonstrate that hybrid planning significantly improves
the effectiveness of a system in a variety of natural contexts. Specifically, in the case studies,
hybrid planning achieved the adaptation goals better (i.e., provided higher utility) compared
to its constituent planning approaches.14

• Generality: To validate generality, we apply hybrid planning on two different kinds of
system — the RUBiS-inspired cloud-based system (as discussed earlier) and a safety-critical
system (i.e., a team of unmanned aerial vehicles (UAV)). These systems differ in several
significant ways:

Quality dimensions of concern: The cloud-based system aims at lowering response
time, increasing revenue, and decreasing operating cost, whereas the UAV team intends
to avoid threats and detect targets;

The cost of poor/delayed actions: Poor/delayed actions could lead to destruction of
a UAV(s) in the team. Therefore, generally speaking, the (monetary) cost of such
actions is higher for the team compared to the cloud-based system;

The ability to recover from poor/delayed actions: Even if the cloud-based system
fails to maintain its critical constraint (i.e., response-time below the threshold) due
to poor/delayed actions, it can still recover to a desired state later. However, in the
case of the team of UAVs, a failure to avoid a crash (i.e., safety constraint) due to a
poor/delayed action, could lead to a mission failure.

• Flexibility: To demonstrate flexibility, we use different combinations of off-the-shelf
deliberative and reactive planning approaches for the two case studies. Specifically, the first
case study uses MDP and deterministic planning as the deliberative and reactive approach,
respectively. In contrast, the second case study uses MDP planning both as a deliberative and
reactive approach; however, the reactive version of MDP planning uses a shorter planning
horizon and only a subset of adaptation actions compared to the deliberative version of
MDP planning.

14Both condition-based and learning-based approaches are able to solve PLNSEL such that hybrid planning is more
effective compared to its constituent approaches. On comparing condition-based and learning-based approach in the
two case-studies, we find that (on average) learning-based approach is more (or at least equally) effective compared
to condition-based.

11

1.5 Thesis Contributions

The main contribution of this dissertation is to show that hybrid planning improves the current
state-of-the-art for planning in self-adaptive systems by finding a balance between quality and
timeliness of planning. More specifically, the dissertation contributes to both the theory and the
practice of hybrid planning in self-adaptive systems.

The contribution to theory is:

• a formal model characterizing the general problem of hybrid planning;
• an illustration of how the formal model can be used as a unifying evaluation framework to

compare/analyze instantiations of hybrid planning, and thereby understand their strengths
and weaknesses.

• a formal analysis of the performance of the hybrid planning algorithm.

The contributions to practice are:
• a practical approach to applying hybrid planning under certain assumptions/restrictions that

nonetheless apply to many self-adaptive systems;
• a demonstration of effectiveness, generality, and flexibility of hybrid planning for self-

adaptive systems using the proposed solution approach;
• methods/tools to apply hybrid planning to self-adaptive systems, including

evaluation of hybrid planning using two systems (i.e., the cloud-based system and
the UAV team) to illustrate how the proposed approach can be applied to realistic
self-adaptive systems,

an implementation of the hybrid planning algorithm using a widely accepted MAPE-
based self-adaptive framework (i.e., Rainbow [27]) to ease the adoption of hybrid
planning among software engineers,

guidelines and a quantitative approach to help engineers to select an appropriate set of
planners to instantiate hybrid planning for a given domain.

The research presented in this dissertation resulted in the following peer-reviewed publications:
1. Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara and David Garlan. Hybrid Planning

for Decision Making in Self-Adaptive Systems. In Proceedings of the 10th IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems (SASO 2016), Augsburg,
Germany, 12-16 September 2016.
This paper introduced the idea for hybrid planning and condition-based approach to solve
PLNSEL.

2. Ashutosh Pandey, Ivan Ruchkin, Bradley Schmerl, Javier Cámara and David Garlan. To-
wards a Formal Framework for Hybrid Planning in Self-Adaptation. In Proceedings of the
12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2017), Buenos Aires, Argentina, 22-23 May 2017.
This paper provides the initial formalization for the problem of hybrid planning.

3. Ashutosh Pandey, Bradley Schmerl and David Garlan. Instance-based Learning for Hybrid
Planning. In Proceedings of the 3rd International Workshop on Data-driven Self-regulating

12

Systems (DSS 2017) (in conjunction with SASO) , Tucson, AZ, USA, 18-22 September
2017.
This paper introduces the idea of the learning-based approach and provides initial evidence
for the effectiveness of the approach.

4. Gabriel A. Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. DARTSim: an ex-
emplar for evaluation and comparison of self-adaptation approaches for smart cyber-physical
systems. In Proceedings of the 14th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, May
25-31, 2019.
This paper presents the DARTSim exemplar that simulates the team of UAVs. Dartsim is
used as the second system for evaluating the thesis claims.

1.6 Dissertation Outline
The rest of the thesis is structured as follows. Chapter 2 discusses the related work relevant to
hybrid planning. Chapter 3 formalizes the problem of hybrid planning, and therefore covers
the theoretical aspect of hybrid planning. Moreover, the chapter lists (potential) applications of
the formal model. Chapter 4 outlines our approach to instantiate hybrid planning; the approach
is explained in the context of the formal model to ensure that all the relevant challenges are
addressed. Chapter 5 describes a general hybrid planning algorithm executed in hybrid planners,
and provides theoretical bounds on the performance of hybrid planning. Chapter 6 validates
the thesis claims using the two case studies (i.e., self-adaptive cloud-based system, and a team
of UAVs), and highlights the factors that influence the performance of hybrid planning. Also,
the chapter illustrates how the formal model can be used as a unifying evaluation framework to
compare/analyze instantiations of hybrid planning, and thereby understand their strengths and
weaknesses. Chapter 7 provides informal guidelines to select an appropriate set of planners to
instantiate hybrid planning; this chapter can, particularly, be useful for practitioners interested in
applying hybrid planning to realistic systems. Finally, the thesis concludes with Chapter 8 that
analyzes the contributions of the thesis, its limitations, and future work.

13

14

Chapter 2

Related Work

This chapter presents related work relevant to hybrid planning. To begin with, Section 2.1
compares and contrast hybrid planning with commonly used approaches that intend to deal with
the trade-off between timeliness and quality of planning. The section highlights benefits of hybrid
planning compared to the existing approaches. Once benefits of hybrid planning are discussed,
Section 2.2 differentiates our notion of hybrid planning from other notions of hybrid planning;
as discussed later, the term “hybrid planning” is being broadly used by researchers for their
planning solutions that combine multiple planners. Section 2.3 further clarifies our notion of
hybrid planning by discussing how our approach is inspired by the field of hyper-heuristics.
Finally, Section 2.4 compares our approach to other similar instances of hybrid planning and
discusses how the proposed approach is more general.

2.1 Approaches to Deal with the Trade-off between Timeli-
ness and Quality of Planning

This section discusses commonly used approaches to deal with the timeliness-quality trade-off of
planning and highlights the comparative benefits of hybrid planning. The section is structured as
follows: Section 2.1.1 presents the planning approaches that find timely plans by not generating
a plan at run time, but choosing it from a set of precomputed plans, thereby, reducing run-
time overhead; Section 2.1.2 discuss the approach to develop customized algorithms/heuristics;
Section 2.1.3 discusses reinforcement learning; and Section 2.1.4 presents hierarchical task
network (HTN).

2.1.1 Using Precomputed Plans
To determine adaptation plans, researchers have suggested a diverse set of planning approaches
such as rule-based adaptation [27], case-based reasoning [107, 115], that, generally speaking,
determine an adaptation plan quickly because the plan is not generated at run time, but rather
selected from an existing set of precomputed plans; however, quality (in a utility-theoretic sense) of
plans might be bad, since the set of precomputed plans may not be sufficient to handle unforeseen
problems or environments [1]. Similarly, fuzzy-logic determines plans in a quick time since it uses

15

a predefined set of rules to determine a plan [76]; however, the approach is not robust unless there
is a comprehensive set of rules, and having such a set is non-trivial, particularly, for domains with
uncertainty [8]. To summarize, approaches such as rule-based adaptation, case-based reasoning,
and fuzzy-logic can find a plan in a quick time but the plan might be of low quality. However,
since these approaches have potential to determine plans in a quick time, hybrid planning can
be instantiated with these approaches (as reactive planners) to provide a quick (but potentially
a sub-optimal) response to emergencies, and a deliberative planner that can handle uncertainty
better than these reactive ones.

2.1.2 Search and Optimizing Algorithms/Heuristics

The AI community has been working towards finding better algorithms and heuristics to deal
with the issue of planning delay. Generally speaking, these approaches reduce the planning time
by selectively exploring the plan search space, thereby trading off quality against timeliness.
For instance, many algorithms/heuristics have been developed to reduce the planning time for
deterministic domains [13, 14, 40, 49].

For probabilistic domains, the state-of-the-art planning approaches based on Markov decision
processes (MDP) [80], and partially observable Markov decision processes (POMDP) [55] can
provide quality plans by considering uncertainty. If an MDP/POMDP policy can be determined
offline (i.e., no run-time overhead), these approaches can provide a quick and a quality response
to a situation. However, for many realistic systems such as the ones used for the thesis evaluation,
offline planning is difficult because: (a) upfront consideration of all the possible states and
transitions for planning might not scale for the systems1, and (b) uncertainty in the operating
domain could lead to difficulty in upfront probabilistic modeling of uncertainty in a planning
problem specification used for the offline planning; imprecise modeling of uncertainty can
negatively impact the quality of planning.2 Therefore, for such systems, online MDP/POMDP
planning could be more suitable than offline planning; however the online planning might not be
quick enough to respond timely to emergency situations [73, 100]. Although various optimization
algorithms have been suggested to improve the planning time for MDP [78] and POMDP [96,
100, 106] planning, planning delay in probabilistic domains is still an ongoing challenge.

To balance timeliness and quality of planning, in contrast to developing algorithms/heuristics
that requires AI expertise, software engineers can use hybrid planning that combines off-the-shelf
planners with a different time-quality profile. Moreover, assuming that in future AI researchers
will develop better algorithms/heuristics to deal with the timeliness-quality trade-off, once they
are available, the algorithms/heuristics can be used as a constituent approaches to instantiate
hybrid planning. Therefore, hybrid planning helps software engineers benefit from such advances
in dealing with the trade-off between timeliness and quality without being an AI expert.

1For instance, POMDP planning specification can have an infinite state space.
2In the systems used for the thesis evaluation, instead of doing offline planning by considering all the possible

states and transitions over the entire execution period (for the systems), we do online planning with a shorter planning
horizon as detailed in Chapter 6.

16

2.1.3 Reinforcement Learning
Reinforcement learning is the other commonly used approach that can determine a plan in quick
time. The approach converges to an optimal MDP policy by trial and error over time, while
a system is under operation [109]. Reinforcement learning can handle uncertainty, and once
the optimal policy is determined, can provide a high-quality response to a situation in a quick
time, thereby, balancing the timeliness and the quality of planning. However, there are two key
drawbacks of reinforcement learning: (a) the trial and error approach might not be suitable for
safety-critical system, and (b) the time to converge to an optimal policy increases exponentially
with the increase in uncertainty in a domain; meanwhile, during the learning phase, the system is
at risk of making a fatal decision.

2.1.4 Hierarchical Task Networks
To deal with the trade-off between the quality and timeliness of planning, in contrast to our hybrid
planning approach where multiple planners plan at the same level of abstraction, researchers
have proposed planning frameworks that create an HTN −− which combines multiple planners at
different levels of abstraction and timing.

From the adaptive systems community, Kramer et al. [68] proposed a layered architecture
inspired by Gat [38], which deals with the problem of planning delay through the hierarchical
decomposition of the planning domains. Tajali et al. [112] extended the layered architecture
by suggesting two types of planning: application planning and adaptation planning. Since
hierarchical decomposition of a planning domain reduces the planning state-space at each layer,
such an architecture helps to reduce the planning time. However, such a decomposition requires
significant domain expertise to create a hierarchy and choose a planner for each layer. Our
approach does not require a hierarchical decomposition; in fact, the approach complements
hierarchical frameworks since hybrid planning could be deployed within a layer, for instance, to
deal with planning delays in that layer.

The AI community has proposed various execution frameworks that, in general, also rely
on the hierarchical decomposition of planning domains [67]. Quite different from these layered
architectures, Musliner et al. propose a framework that ensures the execution of tasks meeting a
specified deadline [90]. However, unlike hybrid planning, this framework requires hard deadlines
to be specified in the planning specification.

2.2 Different Notions of Hybrid Planning
Generally, the term “hybrid planning” refers to solving a planning problem by combining multiple
planning approaches/algorithms to benefit from their combined strengths. However, there is
no universally accepted definition of hybrid planning; researchers have used the same term for
different approaches. For example, some prior work interprets hybrid planning as combining
domain-dependent and domain-independent planning approaches. To exemplify this definition,
(as explained in Section 2.1.4) researchers combined hierarchical task networks (HTN), which
is a domain-dependent approach since human expertise is needed to create a hierarchy, with
domain-independent techniques from classical planning, such as partial-order planning (POP).

17

In that work, POP is modified to perform HTN planning [9, 57, 58, 104]. In contrast, Fox
uses the term “hybrid planning” for a combination of planning approaches having specialized
solvers, such as optimization algorithms and model-checking [35]. Quite differently, Li et al. [72]
understand hybrid planning as planning for hybrid systems, which require handling of discrete
and continuous action effects; therefore, the approach is not about combining multiple planning
approaches/algorithms.

Although we use the same term, our approach is different from existing work. Our notion
of hybrid planning combines multiple off-the-shelf planning approaches without a hierarchical
relationship, i.e., the approaches plan at the same level of abstraction but the size/region of the
planning state space may vary. For instance, the planning state space for one approach can be
a subset of another planning approach or approaches can use different algorithms to find a plan
in the same state space. These approaches are activated as necessary, ideally using the most
appropriate approach in each situation. This notion focuses on reaping benefits of different
constituent planning approaches at the right time and in the right context.

Specifically, this dissertation focuses on balancing timeliness and quality of planning by
instantiating hybrid planning using reactive approaches in combination with a deliberative planning
approach. As mentioned earlier, the reactive approaches provide plans quickly that could be useful
in emergency situations. While a reactive plan is executed, the deliberative approach refines the
reactive plan or provides a (different) higher-quality plan. This instance of hybrid planning is
inspired by human decision-making: depending upon factors such as available planning time,
humans apply different levels of deliberation to make real-life decisions [56]. Our notion assumes
domain knowledge only in identifying an appropriate set of constituent planning approaches that
can balance quality and timeliness. To help software engineers, Chapter 7 provides guidelines to
build such a set.

2.3 Hyper-Heuristics

Our notion of hybrid planning is inspired by the research field of hyper-heuristics, which focuses
on combining multiple lower-level heuristics (i.e., similar to constituent planning approaches
in hybrid planning) and developing search methods or learning mechanisms for selecting or
generating heuristics to solve computational search problems [20]. A hyper-heuristic is a high-
level heuristic that, given a particular search problem instance and a number of low-level heuristics
to solve the problem, selects and applies an appropriate low-level heuristic at each decision point.
The field of hyper-heuristics is influenced primarily by two foundational frameworks. The first
framework, formulated by Wolpert, suggests that it is impossible to devise a silver-bullet algorithm
since all optimization algorithms yield equivalent performance on average [117]; therefore, the
framework provides the reason to combine multiple heuristics. The second framework, suggested
by Rice, suggests using approximation theory to select an appropriate algorithm/heuristic (from a
set) for a given problem [99]; therefore, depending on the problem, the framework provides a way
to select an appropriate algorithm/heuristic from the given set.

Since planning generally fits into the category of search/optimization problems, researchers
have applied ideas from the field of hyper-heuristics to select a planning approach (from a set)
to solve a planning problem. For instance, Gratch et al. [46, 47] proposed a system that uses

18

hill-climbing search in the space of possible control strategies (which can be understood as
planning approaches) to solve scheduling problems (which constitutes a type of planning). But,
unlike our approach, their work is based on the assumption that control strategies can be structured
to facilitate a specific search method (e.g., hill-climbing), and therefore is limited to specific
control strategies. As another example of combining multiple approaches, Lamghari et al. [70]
(specifically) combine reinforcement learning [109] and Tabu search [45] to solve planning
problems under uncertainty.

However, unlike the existing works, our notion of hybrid planning is more general since it
is not limited to a specific search/optimization method. Moreover, for a planning problem, they
focus only on the quality (not the timeliness) of planning by picking a method that is likely to
provide the highest-quality plan; they evaluate their approach on a given set of offline problems
rather than on a running system where timeliness of planning can be critical. In contrast, we
explicitly deal with both timeliness and quality by applying a reactive and deliberative approach
to solve a problem. To demonstrate the effectiveness of our approach we evaluate it on a running
system (cf. Chapter 6).

2.4 Other Similar Instantiations of Hybrid Planning

Different research communities focused on self-adaptive software systems and AI have proposed
instantiations of (our notion of) hybrid planning to deal with the quality/timeliness trade-off.
However, these instantiations have been limited to a particular domain or a specific combination
of reactive and deliberative planning.

From the adaptive systems community, researchers have proposed various instantiations of
hybrid planning that use a condition-based approach to solve the planning selection problem
(PLNSEL), discussed in Chapter 1. For instance, Iqbal et al. [51] and Ali-Eldin et al. [3] proposed
hybrid controllers in the context of self-adaptive cloud systems; these instantiations of hybrid
planning use threshold-based rules to invoke reactive planning. Bauer et al.[6] extended this idea
with more sophisticated conditions. Broadly speaking, while these are instances of condition-
based hybrid planning, they are (a) specific to a particular domain — self-adaptive cloud systems,
and (b) limited to a particular combination of reactive and deliberative planning approach.

From the AI community, the instantiation proposed by Mausam et al. [79] works specifi-
cally with labeled real-time dynamic programming (RTDP) planning [15] and non-deterministic
planning using a Model-Based Planner (MBP) [11] as deliberative and reactive planning, respec-
tively. Beetz et al. [7] proposed an approach that projects the effects of contingencies on the
plan (generated by reactive planning) under execution and, if required, revises the plan using
a more deliberative planning approach. Their approach, again, assumes a specific combination
of reactive and deliberative planning. In addition, the approach is restricted to a particular plan
specification language to ensure a smooth transition from a reactive plan to a deliberative plan.
To solve PLNSEL, both Mausam et al. [79] and Beetz et al. [7] propose to always use reactive
planning and, if required, revise the plan using a more deliberative planning approach. In other
words, they assume that reactive planning will always improve the current situation. Perhaps
they made this assumption because their instantiation of hybrid planning is limited either to a
specific combination of reactive and deliberative planning or a particular domain. However, this

19

assumption might not always hold, since it depends on the quality of a reactive approach and the
nature of an operating domain. For instance, as we show later (cf. Chapter 6), invocation of a
reactive approach is sometimes worse than waiting for a deliberative plan.

Tallavajhula et al. [113] proposed a notion of hybrid planning that combines only reactive
planners (i.e., planning time is considered negligible), and thus only focuses on the quality of
planning. To solve PLNSEL, a learning-based approach is used that helps to choose the best
reactive approach for a planning problem. However, unlike our learning-based approach, since
there is no deliberative approach, combinations of reactive and deliberative planning are not
considered when choosing a reactive approach.

Researchers have also suggested a broad category of planning algorithms, based on the idea
of incremental planning, known as “anytime” planning. Typically, anytime planning algorithms
are optimizing (e.g., value iteration algorithm for MDP planning) in nature: the planning process
can be interrupted at any time to get a sub-optimal plan, and longer planning times lead to better
plans [122]. Anytime planning is a special case of hybrid planning, since anytime algorithms
utilize the execution time of a low-quality plan to devise an improved plan. Once ready, the
improved plan takes over the execution from the lower-quality plan. However, compared to
anytime planning, the idea of hybrid planning is more general since it allows us to combine
multiple search/optimization planning approaches.

2.5 Summary
The idea of combining multiple planning approaches has been suggested in various forms. How-
ever, existing works fall into (at least) one of these categories: they (a) require domain expertise for
decomposition a planning problem, (b) do not explicitly deal with the trade-off between timeliness
and quality of planning, and (c) are limited to a specific domain or a specific combination of
reactive and deliberative planning. In contrast, our notion of hybrid planning does not require
domain expertise to decompose a planning problem, explicitly deals with the timeliness-quality
trade-off, and is not limited to a specific domain or a combination of planning approaches.

In addition to proposing the idea of hybrid planning, this dissertation goes a step further to
formally define the problem of hybrid planning to describe its general nature (cf. Chapter 3) in
the context of our notion. In Chapter 4, this formalism is used to explain our approach to applying
hybrid planning in a realistic context. Moreover, Chapter 6 provides an example to demonstrate
how the formal model can be used to analyze and compare existing hybrid planning instantiations,
and thereby understand their strengths and weaknesses. In the rest of the thesis, the term “hybrid
planning” will refer to our notion of hybrid planning.

20

Chapter 3

The Problem of Hybrid Planning

Although hybrid planning is a promising idea potentially applicable to a wide variety of domains,
as discussed earlier, its successful implementation faces four substantial challenges: (a) defining
the problem of hybrid planning, (b) instantiating hybrid planning using constituent approaches
with an appropriate time-quality trade-off, (c) the planning coordination problem (PLNCRD) − i.e.,
guaranteeing a seamless transition between plans determined by different planning approaches,
and (d) the planning selection problem (PLNSEL) − i.e., deciding which planning approach(es)
should be invoked to solve a planning problem and when to stop using a plan produced by one
approach and switch to a plan produced by another approach. This chapter addresses the first
challenge: i.e., formally defining the problem of hybrid planning.

Suppose hybrid planning is instantiated using constituent planning approaches with an ap-
propriate time-quality trade-off, and PLNCRD and PLNSEL are addressed. However, it is not
known how to systematically analyze/evaluate such instantiations and compare them to other
planning approaches. Hybrid planners are sometimes compared favorably to their constituent
approaches [79], but that is a relatively conservative benchmark. Currently, any comparison
between different hybrid planner implementations is difficult because we lack a fundamental
description of the ideal behavior of a hybrid planner.

This dissertation takes a first step towards addressing the above challenge by providing a
formal model to describe the hybrid planning problem. The model splits the problem of hybrid
planning into four subproblems: (i) Problem-Planner Generation (PRBSEL), i.e., determining
the set of well-formed subproblems of the initial planning problem, (ii) Planner Assessment
(PLRAST), i.e., assessing constituent approaches (of a hybrid planner) on the generated problems,
(iii) Graph Construction (GPHCON), i.e., deciding what plans to combine, and (iv) Path Selection
(PTHSEL), i.e., selecting the optimal sequence of these plans. Moreover, the model connects these
subproblems back to PLNCRD and PLNSEL. As explained later, this formalization helps inform,
analyze, and compare hybrid planner implementations as approximations of the ideal solution to
each subproblem.

Furthermore, to demonstrate practicality (i.e., the potential of this formal model to represent
and analyze realistic instances of hybrid planning) of the formal model, we use the model to
explain our approach in Chapter 4, and analyze an existing instantiation of hybrid planning [79]
in Chapter 6. Our analysis not only provides insight into the strengths and weaknesses of these
instantiations, but also highlights the (often implicit) assumptions behind the designs. Moreover,

21

we use the central concepts of the formal model (a posteriori utility, preemption, and timeliness)
to formalize specific conditions for the hybrid planning instantiation to be valid. Violating these
conditions will result in an invalid instantiation, which can lead to loss of utility and potential
underperformance of the instantiation compared to its constituent approaches.

3.1 Summary of the Formal Model
This section summarizes the central concepts involved in our formalization of the problem hybrid
planning, which is presented later in Sections 3.2 and 3.3. The section uses the cloud-based system
discussed in Section 1.1 as an example to explain concepts from the formalism; nevertheless, the
applicability of the formal model is not limited to any particular system.

Intuitively, hybrid planning refers to finding a concatenation of plans determined by different
planners to solve a planning problem; the concatenated plan is known as a hybrid plan. To
explain further, suppose from the current state of a system, we model all post-execution paths
that result from executing (potentially) different hybrid plans; hybrid plans can be different if
their constituent plans are different (e.g., determined by different planners) or the same set of
constituent plans are concatenated in a different order. Hybrid planning is then equivalent to
finding the hybrid plan that leads to the execution path leading to the solution of the planning
problem.

The execution paths represented in such a model include all post-execution states resulting
from (possibly non-deterministic) state transitions. Moreover, once the post-execution details are
known, we can assume that planning time for a plan by a planner is also known. A model, such
as this, which assumes that we know the post-execution paths and planning times is referred to
as the a posteriori semantics for transitions. In contrast, an a priori semantics explicitly models
uncertainty both in state transition and planning time representing the fact that before executing a
sequence of transitions there is uncertainty in the action outcomes and planning times.

The a posteriori formalization is an appropriate theoretical model to formally define the
planning problem and its solution (as detailed later in this chapter). The a posteriori formalization
helps to characterize the hybrid planning problem and its solution, but solving a hybrid planning
problem requires dealing in the a priori semantics because when determining a plan to be executed
under uncertainty, it must be taken into account to estimate the effectiveness of the plan. Hence,
as we will see in Chapter 5, this thesis also analyzes hybrid planning using a priori semantics.

Figure 3.1 further illustrates the difference between a priori and a posteriori models in context
of the cloud-based system discussed in Section 1.1. Suppose at time t0, response time for the
system is above a predefined threshold (i.e., state S). In response to this emergency situation,
suppose the system adds a server at time t0 to bring the response time below the threshold.
However, due to the uncertainty in the request arrival rate, workload on the system can change
(i.e., increase or decrease). If the workload increases further then even after adding the server, at
time t1, suppose the response time still remains above the threshold (i.e., state S1). In contrast,
if the workload decreases, the response time can be below the threshold at time t1; suppose
the state is S2. As shown in Figure 3.1, due to uncertainty in request arrival rate, there are two
possible states at time t1 in the a priori model. In contrast, in the a posteriori model, once the
system’s actual state has been observed at time t1, we know whether the system is in state S1 or

22

S2; therefore, there is no uncertainty. In other words, only one transition (either leading to S1 or
S2) is possible in the a posteriori model.

Add-Server High-Load

Low-Load

High-Load
Add-Server

Add-Server
Low-Load

A Priori model A Posteriori model
S1

S2

S1

S2S

S

S

Timelinet0 t1 Timelinet0 t1

Response
Time Above
Threshold

Response
Time Above
Threshold

Response
Time Below
Threshold

Response
Time Above
Threshold

Response
Time Below
Threshold

Response
Time Above
Threshold

Response
Time Above
Threshold

Or

Figure 3.1: Due to uncertainty, there are two executions (i.e., state-transition) possible in the
a priori model. In contrast, only one execution is possible in the a posteriori model since we
know the resulting state post-execution. Therefore, in the a posteriori model, only one execution
is represented, i.e., the one that has been realized post-execution.

The formal model decomposes the hybrid planning problem into four computational subprob-
lems. Such a decomposition helps us tackle the complexity of hybrid planning by providing a
framework to solve hybrid planning problems using composable solutions of subproblems. We
start by introducing concepts that will be used later to explain the four subproblems.

A Planning Problem: A planning problem is a tuple consisting of: (a) the initial (i.e., current)
state of the system and environment, (b) a set of possible adaptation actions (e.g., addServer), (c)
a behavioral model of the environment informing which action (e.g., request arrival rate) will be
taken by the environment for a given state, (d) a transition function informing the resultant state
when a particular adaptation and environment action is applied to a given state, and (e) a utility
function (say, Ue) that takes a plan as input and returns a real number indicating quality of a plan
determined by a planner that takes a planning problem as an input.1 Solving a planning problem
(using a planner) means determining the plan that optimizes Ue.

Hybrid Planning and a Hybrid Plan: Given a planning problem and a set of planners, a hybrid
plan is a sequence of plans, possibly generated by different planners, that optimized Ue from the
planning problem; this sequence is known as a hybrid plan. As discussed later in Section 3.3.1,
hybrid planning is equivalent to finding a path consisting of nodes and edges in a reachability
graph. An example of such a path is illustrated in Figure 3.2.

1Ue is referred to as an a posteriori utility function, i.e., one that returns utility yielded after executing a plan.
This is different from the traditional understanding of a planning problem, where a utility function returns the a priori
(i.e., expected) utility and solving the problem means maximizing this utility.

23

Pb0 Pl0

Dl00

U1

E1

Pb2 Pl2

Dl22

E1
U1

Pb2 Pl3

Dl23

E2
U2 Pb3 Pl4

Dl34E2

U2

Pb4 Pl5

Dl45

E3

U3

En

Un

Pbi Plj
Dlij

Pb Planning problem
Pl Planner
E Execution
U A posteriori utility
Dl Deadline to trigger a planner

Problem-Planner node
Execution edge

Pb0 Pl1

Dl01

Pb1 Pl1

Dl11

Initial nodes

N8

N7

N6

N5

N4

N3

N2

N1

Figure 3.2: An example of a Reachability Graph. Red/green highlights indicate the selected path.

A Reachability Graph: A reachability graph is a directed graph, consisting of a set of nodes, a
set of edges, and a set of initial nodes. Figure 3.2 shows a reachability graph with the nodes (e.g.,
N4), the edges (e.g., E1 joining nodes N2 and N4), and the initial nodes (i.e., N1, N2, and N3).

A Node in a Reachability Graph: A node is a tuple (Pb,P l,Dl) consisting of a planning
problem (Pb), a compatible planner (Pl) that can solve Pb, and deadline (Dl), which is the
planning time for Pl to solve Pb. A problem-planner node (say (Pb′, P l′,Dl′)) in a graph
indicates that Pb′ is compatible (i.e., could be solved) with Pl′.

An Edge in a Reachability Graph: An edge originating from a node (Pb′, P l′,Dl′) represents
a complete or partial execution of the plan (say π′) determined by planner Pl′ for problem Pb′.2

In the context of the cloud system, assuming π′ has two actions (e.g., add a server then increase
the dimmer), an example of a partial execution is to execute only the first action (i.e., add a server),
whereas the complete execution would refer to executing both the actions in the plan. The utility
of an edge is the same as the utility of the corresponding (full or partial) execution. Initial nodes
V i indicate the potential starts of executions in a reachability graph. Informally, an edge between
a pair of nodes Na and Nb indicates that the plan for the problem-planner pair in Nb can take over
execution from the plan (after full/partial execution) for the problem-planner pair in Na; therefore
edges in a graph represent potential solutions to the planning coordination problem (PLNCRD).

2Before execution (i.e., a priori), the outcome of a plan might be uncertain due to uncertainty in an operating
domain (e.g., cloud-based system). Conversely, the a posteriori notion of utility has no uncertaintly, since the outcome
of a plan/action execution is deterministic post-execution. Therefore, a reachability graph does not contain a priori
uncertainty: edges represent actual executions rather than expected.

24

An edge can be constructed between Na and Nb if and only if the two reachability conditions are
met:

• Timing: the plan in Nb should be ready once the execution comes to it. Hence, the planner
for Nb has to be invoked with enough time (i.e., deadline) for the planner to solve the
problem before it is needed.

• Preemption: after executing the plan from Na, the system should reach the initial state of
the planning problem in Nb. Only then does the plan for Nb take over from the plan for Na.

Satisfying the reachability conditions is necessary for the correctness of a hybrid planning
instantiation; intuitively, by a correct instantiation we mean the one that performs a seamless
transition between its constituent plans. For a smooth transition from plan πa to πb, the timing
condition is necessary, since if it is violated πb will not be ready to take over from πa and the
preemption condition is necessary, since it if it violated the transition state will not be found in the
πb; in either case a transition between the two plans will fail. In the rest of the thesis, the term
“correctness” is used here to refer to the validity of a hybrid planning instantiation (i.e., one that
satisfies the reachability conditions).

Given a planning problem (say Pb0) and a set of planners (say {Pl0, P l1, P l2...}), now we
will walk through the corresponding reachability graph.

Suppose Pb0 is compatible with planners Pl0 and Pl1 that solve Pb0 in (the worst-case) time
Dl00 and Dl01 respectively. Therefore, the reachability graph (in Figure 3.2) has initial nodes N1

and N2, indicating that Pb0 could be solved by Pl0 and Pl1.
Figure 3.2 shows another initial node (i.e., N3) consisting of a modified problem (say Pb1) of

Pb0, a planner (say Pl1) compatible with Pb1, and deadline dl11. A planning problem could be
relaxed (i.e., modified) to reduce the state space to be searched for planning; in other words, only a
smaller part of the state space is considered when planning for a relaxed problem. Therefore, such
a modification helps reduce planning time. However, solving the relaxed (low-fidelity) problem is
likely to result in a sub-optimal plan, since the optimal plan might exist in the part of the state
space that has not been considered while planning. To exemplify, in the case of a constraint
violation for the cloud system, suppose Pb0 considers all the adaptation actions for planning. In
contrast, assume Pb1 considers only a subset of actions (e.g., addServer, increaseDimmer and
divert_traffic). In this example, planning with fewer actions will reduce planning time due to
the reduced search space; however, the plan is likely to yield a lower utility compared to the one
determined using all the actions.

Using node N2 as an example, we explain how a graph is expanded from an initial node.
Suppose planner Pl0 determines a plan π00 for problem Pb0. An edge originating from node
N2 would indicate a full or a partial execution of plan π00. Since different partial executions
from node N2 are possible for plan π00, there are multiple outgoing edges from N2 indicating
various executions such as E1 and E2. Suppose execution E1 takes the system to the initial state of
problem Pb2, which has two compatible planners Pl2 and Pl3. To capture a combination of Pb2

with both the compatible planners, the graph has nodes N4 and N5. However, an execution (e.g.,
E2) could also lead a system to different planning problems. Suppose execution E2 of plan π00

takes the system to planning problem Pb3. Node N6 represents the combination of problem Pb3

with a compatible planner Pb4. Since problem Pb3 could be modified, there is another reachable
node N7 that represents a modified problem (i.e., Pb4) along with a compatible planner (i.e., Pb5).

25

Using these possibilities the graph is expanded from all the nodes (including the initial nodes N1

and N3).
A path (consisting of nodes and edges) in a graph refers to a combination of plan executions

for different problem-planner nodes in the path. Such a combination that optimizes a posteriori
utility (i.e., Ue) is a hybrid plan. In other words, hybrid planning is about finding a sequence of
problem-planner nodes that yields optimal Ue. Since an optimal path informs the planning (i.e.,
combination of problem-planner) approaches (and their ordering) that needs to be invoked to
solve a planning problem, the path solves the planning selection problem (PLNSEL) (i.e., deciding
which planning approach(es) should be invoked to solve a planning problem and when to stop
using one and start using another)

To explain hybrid planning in the context of the cloud system introduced in Figure 1.2, suppose
RBA and MDP planning is used to instantiate hybrid planning. Assume a situation in which
the system needs to adapt in response to a constraint violation (say, planning problem Pb). To
handle this situation, there could be different paths in the reachability graph representing various
combinations of the two planning approaches. Examples of two such paths are: (a) use RBA
planning alone, and (b) initially use RBA planning but later switch to MDP planning. Assuming
the second path yields highest utility among all the possible paths then this path would be selected
to formulate a hybrid plan.

To deal with the complexity of constructing a reachability graph and identifying an optimal
path, the formal model breaks the problem of hybrid planning into four subproblems.

• Path Selection (PTHSEL): The Path Selection subproblem is, informally, to find a path in a
reachability graph that yields the highest utility. As discussed earlier, this path implicitly
solves the planning selection problem (PLNSEL).

• Reachability Graph Construction (GPHCON): The Graph Construction subproblem is to
evaluate the reachability conditions between each pair of nodes in a reachability graph. If
the reachability conditions are satisfied for a pair, the nodes are connected through an edge
to construct the graph ensuring a smooth transition between plans, i.e., solves the planning
coordination problem (PLNCRD).

• Planner Assessment (PLRAST): The Planner Assessment subproblem is, given a set of
compatible problem-planner pairs, for each pair rate the performance of the planner on
the respective problem. The metrics for the rating are execution utility (i.e., quality) and
planning time (i.e., timeliness). These ratings are used by PLRAST and PTHSEL to construct
the edges between nodes and to find an optimal path in a reachability graph, respectively.

• Problem-Planner Generation (PRBSEL): The problem-planner subproblem is, given a
planning problem and a set of planners, generate compatible and relevant problem-planner
pairs. Relevance means that problems are generated for a particular time t such that the
problems’ initial states are at time t. These pairs are used by PLRAST for assessment.

3.2 Foundational Concepts

This section defines the basic concepts needed to formalize hybrid planning.

26

Definition 3.2.1 (State). A state (s) is a vector of values of the system’s and environment’s
variables. Time is considered as a state variable. We denote the set of states by S .

Since time is a state variable, S is a potentially infinite set. Moreover, time imposes an implicit
total order on states in S . By default we consider time continuous, and also allow its discretization.
Definition 3.2.2 (State time). The function τ returns the time value of a state. Formally, τ ∶ S →
R≥0.
Definition 3.2.3 (Utility of state). The utility of a state is a real number defined as a function
Us ∶ S → R that maps state s to its valuation.

Our formalization propagates the value of utility from the ground truth (utility of a particular
state in a real system) to abstract notions that the MAPE loop manipulates (e.g., planners). We
use this notion to create a formal underpinning for every planning decision of a self-adaptive
system, rooted in the utility of the states that this action leads to. Although an obstacle for direct
implementations, this model is beneficial for formalizing the problem and its idealized solution. In
fact, by using information about the future (e.g., how much utility is accrued from an execution),
we can establish a theoretical baseline for evaluation of downstream engineering solutions. These
solutions will use relaxations (e.g., a priori utility or expected utility) of our utility notion to
construct approximations of the idealized solution as discussed in the two instantiations of hybrid
planning discussed in Chapter 4 and Chapter 6.
Definition 3.2.4 (Execution). An execution e is a potentially infinite sequence of states: e def= ⟨s1, s2, . . . ⟩.
We designate a set of executions by E .

We allow infinite executions to model reactive systems that can run indefinitely. To model
goal-oriented systems, the above sets and sequences can be made finite.
Definition 3.2.5 (Partial execution). For an execution e def= ⟨s1 . . . sj . . . sn⟩, a partial execution ejp
is a prefix of e ending with sj where 1 ≤ j ≤ n. That is, ejp

def= ⟨s1, . . . , sj⟩.
Definition 3.2.6 (Duration of execution). The duration of an execution is a function D ∶ E →
R≥0 ∪∞ that maps execution e def= ⟨s1 . . . sj . . . sn⟩ to its duration τ(sn) − τ(s1). For an infinite
execution e def= ⟨s1, s2, . . . ⟩, function D will return infinity (i.e., ∞).

For infinite executions, the duration will be infinite; however, for partial executions the duration
will be a finite value.
Definition 3.2.7 (Utility of execution). The utility of an execution is a real number defined as a
function Ue ∶ E → R that maps execution e to its valuation.

Even though an execution is a potentially infinite sequence of states, we assume its utility
would be a finite value. This assumption is needed so that we can use utility values for comparison
of planners. As an example, suppose Ue is defined as the utility of a state with the maximum utility
(among all the states in the execution); here, the utility of all executions would be a finite value.
In our model, we abstract away the particular function representing the utility of executions.
Definition 3.2.8 (Transition, action, and event). State transitions are characterized by a transition
function T ∶ S ×A × Z → S , where A is a set of the system’s actions, and Z is a set of external
events. An element � represents an empty action/event and is present in both sets: A ∩ Z = {�}.

A self-adaptive system is characterized by controllable actions (e.g., adding/removing a
server) and uncontrollable events (e.g., an arrival of a user request). Both actions and events
cause state transitions. T captures both asynchronous (some action along with � event, or vice

27

versa) and synchronous (neither the action nor the event are �) interactions of the system and
its environment. To represent several actions/events happening at the same time, one can use
composite actions/events. Since the model is a posteriori, the outcomes of actions and events are
deterministic after a transition takes place. Thus, T is a function instead of relation.

In our model, we only consider Markovian domains, i.e., those where the conditional prob-
ability distribution of future states of a system depends only upon the present state, not on the
sequence of states that preceded it [78]. We also assume that all transitions take time: the future
state’s time is always larger than that of the previous state’s.
Definition 3.2.9 (Plan). A plan π is a partial function π ∶ S → A. A mapping from a state s ∈ S
to an action a ∈ A suggests a to be executed in s. We denote a set of plans as Π.

Definition 3.2.9 of plan is general enough to capture different types of plans. For instance, some
planners (e.g., deterministic planners) determine plans that do not have an action corresponding
to every state in the state-space. Therefore, action for such a state (s ∈ S) will be undefined by
function π (i.e., s ∉ dom(π)). In contrast, universal plans (i.e., total functions), such as MDP
policies suggesting an action for every s ∈ S , can also be represented by partial function π (since
a total function is a special case of partial functions).
Definition 3.2.10 (Environment). The environment is a total function o ∶ S → Z encoding which
event happens in each state. A set of possible environments is designated as O.
Definition 3.2.11 (Realization). The realization function R ∶ Π ×O × S → E maps a plan π, an
environment o, and an initial state si ∈ S to the execution e produced by the system executing in
those conditions. That is, R(π, o, si) = e.
Definition 3.2.12 (Partial realization). The partial realization function Rp ∶ Π ×O × S × S →
E maps a plan π, an environment o, an initial state si ∈ S , and an end state sn ∈ S to the

partial execution enp
def= ⟨si, . . . , sn⟩ produced by the system executing in those conditions. That is,

Rp(π, o, si, sn) = enp such that si, . . . , sn ∈ dom(π).
We use partial realizations to represent carrying out a plan for a given part of the state space

from si to sn, after which execution switches to another plan. Thus, a realization is a potentially
infinite sequence of partial realizations.
Definition 3.2.13 (Utility of a plan). The utility of a plan is a function Uπ ∶ Π ×O × S × S → R
that, given an environment o, the initial state si, and the end state sn of execution enp of plan π,

returns the utility of that plan’s realization. That is, Uπ(π, o, si, sn)
def= Ue(Rp(π, o, si, sn)). If plan

π results in an infinite execution, the end state is specified as ∞.
This function can be used to calculate utility of the full or a partial execution of a plan. If

the end state of an execution is also the goal state of the planning problem corresponding to the
plan, the function Uπ returns utility of full execution of a plan. However, if the end state is some
intermediate state of an execution, then Uπ returns the utility of partial execution, which ends at
this state.

The function can also be used to calculate utility of plans corresponding to planning problems
with no explicit goal states. For instance, MDP planning could be done for an infinite horizon with
no explicit goal states. For such problems, execution of an MDP policy can happen indefinitely,
thereby it is not always possible to specify the end state of a plan execution. In case of full
execution ∞ needs to be specified as the end state; however, for a partial execution of such a
policy, the end state of the execution is to be specified.

28

By linking the utilities of plans and executions, we have extended the ground truth to reasoning
about planners. This bridge lets us establish utility-based comparison of concepts that normally
exist before execution happens. Thus, we trade direct implementability of this model for a
theoretical way of putting value on planning decisions.
Definition 3.2.14 (Planning problem). A planning problem ξ is a tuple (S , si,A, T, o,Ue), where
si ∈ S is the initial state. Solving a planning problem means providing a plan that maximizes Ue
for given S , si, A, T , and o. A set of planning problems is denoted by Ξ.

Self-adaptive systems have flexibility in the way an adaptation scenario is represented as a
planning problem. For instance, the system can choose its lookahead horizon (the time bound on
the future states to consider): should it consider a future of one minute or one hour ahead of the
current moment [108]? Therefore, the same scenario can be represented as different problems.
The space of such problems is encoded as Ξ.
Definition 3.2.15 (Planner). A planner is a function ρ ∶ Ξ→ Π that solves a planning problem ξ
and produces a plan π. We designate a set of potentially infinite planners by Ψ.

In this thesis, we use the term “planner” and “planning approach” interchangeably. Both the
terms refer to the black box that takes a planning problem as an input and returns a plan. This
black box encapsulates planning aspects such as the representation (e.g., relaxation) of a planning
problem, the planning tool that implements a planning algorithm/heuristic and its configuration
options. Two instances of the same planning tool will be considered as the different planners
(i.e., planning approach) if their configuration options and/or representation of the input planning
problems is different. To exemplify, as mentioned earlier in Section 6.3, the second case study uses
the same MDP planning tool (i.e., PRISM [69]) for reactive and deliberative planning, but they
have a different representation of a planning problem; reactive planning uses a shorter planning
horizon and only a subset of adaptation actions compared to the deliberative planning.

Most planner implementations allow numerous customizations (e.g., value iteration and policy
iteration used to solve an MDP). We formalize these customizations as individual planners without
loss of generality: each planner is evaluated independently and with respect to compatible problem
ξ (cf. Definition 3.2.16).
Definition 3.2.16 (Problem-Planner Compatibility Relation). A problem ξ and a planner ρ are
compatible if ρ can solve ξ, denoted (ξ, ρ) ∈ Υ, where Υ ∶ Ξ ↔ Ψ is a problem-planner
compatibility relation. Given problem ξ, Ψξ ⊆ Ψ is a set of planners that are compatible with ξ
(i.e., {ξ} ⊲ Υ = Ψξ)

In practice, some planners (e.g., deterministic ones) are not applicable to problems that
do not match their input format or algorithmic parameters (e.g., ones with non-deterministic
transitions). Conversely, several planners can often solve the same problem. For instance, several
decision-making approaches are applicable in self-adaptive cloud systems: rule-based adaptation
(RBA) [27], case-based reasoning (CBR) [107], MDP planning [85]. Υ encodes such restrictions,
naturally constraining the domain of planner functions in Definition 3.2.15.

Let us illustrate these definitions with the cloud-based system from Section 1.1. To adapt
that system, suppose Ψ contains two planners: one based on Markov Decision Processes (MDP,
ρmdp) and the other on a deterministic planner (Deterministic, ρdet). The planning problem set (Ξ)
consists of instances of ξdet and ξmdp. To exemplify, ξmdp considers (probabilistic) uncertainty in
request arrival rate whereas ξdet ignores uncertainty in request arrival rate by assuming the request

29

arrival rate remains constant at the current value.
For planning problem ξmdp, ρmdp is slow to plan but provides high-quality plans, since it

considers uncertainty in environment o. In contrast, ρdet determines a plan quickly, but the plan is
likely to be lower in quality (compared to the MDP plan), since it solves a relaxed problem instance
(i.e., considering a smaller state space) ξdet of ξmdp by ignoring uncertainty in the environment.
To carry out hybrid planning, the self-adaptive system will find the best combinations of ρdet and
ρmdp selecting appropriate ξ ∈ Ξ and assigning them to the highest-utility planner in advance (to
account for their planning delays).

3.3 Decomposition of the Hybrid Planning Problem
We start with one of the central concepts of the thesis — a hybrid plan.
Definition 3.3.1. [Hybrid plan] A hybrid plan is a total function ω ∶ S → A based on partitioning
of the full state space S into n partitions Si, each governed by a planner ρi.

∃n ∶ N ⋅ ∀i ∶ 1..n ⋅ There exists a number
∃πi ∶ Π,Si ⊆ S ⋅ Si ≠ ∅ ∧ of plans and state partitions
(⋃
j∶1..n

Sj = S) ∧ (⋂
j∶1..n

Sj = ∅) that partition the state space

such that the three following conditions hold:
Condition 1: actions in partitions are governed by their respective plans:

∀s ∶ Si ⋅ ω(s) = πi(s) ∧ dom(πi) ⊆ Si,

Condition 2: partitions are totally ordered in time:

∀k, l ∶ 1..n, s1 ∶ Sk, s2 ∶ Sl ⋅
k < l Ô⇒ τ(s1) < τ(s2),

Condition 3: the plans are solutions to some planning problems:

∃ξi ∶ Ξ, ρi ∶ Ψ ⋅ πi = ρi(ξi).

For example, suppose there is an emergency situation such as a constraint violation. If hybrid
planning is instantiated using RBA and MDP planners, let’s assume the best combination is to
execute the RBA plan until the MDP policy is ready. In such a case, there would be two partitions:
Srba containing the states whose time value is smaller than the time required to get the MDP policy
ready, and Smdp containing the states with time value after the policy is ready. A plan from ρrba
would provide actions for states in Srba, and a plan from ρmdp would provide actions in Smdp.

The rest of this section describes the steps required to obtain hybrid plan ω through Si, πi for
i ∶ 1..n in Definition 3.3.1.

30

Sequence of
nodes from the

reachability graph

Set of tuples consisting
of problem-planner pair,

deadline

Set of planners
and

Problem-Planner
Compatibility
Relationship

Reachability
Graph

GPHCON

PTHSEL

Planning
problem

Set of compatible
problem-planner

pairs

PRBGEN

PLRAST

Utility of plan
function

Figure 3.3: Decomposition of the hybrid planning problem.

Definition 3.3.2 (Hybrid Planning Problem). The Hybrid Planning Problem (HPP) is, given an
initial planning problem ξi, a set of planners Ψ, and a compatibility relation Υ, find a hybrid plan
that maximizes the utility of execution Ue.

The formal framework decomposes HPP into four subproblems (starting from the end, see
Figure 3.3):

1. Path Selection (PTHSEL): what is the sequence of planner invocations on planning problems
that yields the maximum utility?

2. Reachability Graph Construction (GPHCON): what planning problems are reachable by
solving other problems?

3. Planner Assessment (PLRAST): what are the quality and timeliness characteristics of each
planner on a given planning problem?

4. Problem-Planner Generation (PRBSEL): what planning problems can be solved at any
given time, given their compatibility with planners?

3.3.1 Path Selection

The Path Selection (PTHSEL) subproblem is, informally, to find the sequence of plans from
different planners that yields the highest utility. This sequence of plans constitutes a hybrid plan
ω according to Definition 3.3.1. The total number of plans in the sequence is n (possibly infinite).
A plan πi (i-th in the sequence), given an environment from the planning problem, can be realized

31

to an execution, which in turn can be mapped to a sequence of states. Therefore, each plan πi can
be mapped to the sequence of states.

The question posed in PTHSEL is where to end one execution in the sequence of states, and
begin another one. To answer this question, one has to provide a sequence of partitions Si that
determine each plan’s/execution’s boundary, according to Conditions 1 and 2 of Definition 3.3.1.
To satisfy Condition 3, we map these partitions to planning problems and planners. To construct
this mapping, we formalize an input structure to PTHSEL that encodes potential choices of
problems and planners.
Definition 3.3.3 (Reachability graph). A reachability graph Γ is a directed graph defined as a
tuple (V ,E ,V i). V is a set of nodes, where each node v is a tuple (ξ, ρ, d) combining a problem,
a planner, and a deadline d ∈ R≥0, which is the time instant when ρ needs to be invoked on ξ
(detailed in Section 3.3.3). The set of edges (E ⊆ V ×V) describes reachability between nodes
in terms of executions: an edge ε = (v1, v2) means that full/partial execution of plan v1.ρ(v1.ξ)
with v1.ξ.o reaches si of v2.ξ (formally defined in Sec. 3.3.2). Initial nodes (V i ⊆ V) indicate the
potential starts of executions in Γ.

Paths (i.e., sequences of edges) in Γ mimic executions of the system, guided by a sequence of
plans. A path indicates a sequence of switches between planning problems, which can be mapped
to plans πi and partitions Si in Definition 3.3.1. PTHSEL selects a path based on the utility of its
execution. We introduce several auxiliary concepts to express that selection.
Definition 3.3.4 (Edge execution). Edge execution is a function η ∶ E → E that maps an edge ε
to its partial execution e. Edge ε = (v1, v2) maps to a partial execution from the initial state of
planning problem in the first node to the initial state of the planning problem in the second node:
η(ε) =Rp(v1.ρ(v1.ξ), v1.ξ.o, v1.ξ.si, v2.ξ.si).
Definition 3.3.5 (Path execution). Path execution is a function η ∶ En → E that maps a path to
its execution. A path κ = ⟨ε1, . . . , εn⟩ maps to an execution composed of concatenation of edge
executions: η(κ) = η(ε1) ⌢ . . . ⌢ η(εn).

The utility of a path in Γ builds upon the utilities of its edges, which in turn build on the
utilities of its executions.
Definition 3.3.6 (Utility of edges and paths). The utility of an edge ε is a function Uε ∶ E → R that
maps ε to the utility of the edge’s execution. Formally, Uε(ε)

def= Ue(η(ε)). Similarly, the utility of
a path κ = ⟨ε1, . . . , εn⟩ is a function Uκ ∶ En → R that is defined as Uκ(κ)

def= Ue(η(κ)).
Utility of an edge is same as the utility of the execution linked to that edge. To calculate utility

of a execution, function Uπ (Definition 3.2.13) is used. As discussed in Section3.3.3, this function
is one of the outcomes of solving subproblem PLRAST.

Now we formalize the path selection (PTHSEL) subproblem.
Definition 3.3.7 (PTHSEL). The Path Selection (PTHSEL) subproblem is, given a reachability
graph Γ, to find a maximal-utility path starting from an initial node:

PTHSEL(Γ) def= arg max
κ∈En

Uκ(κ).

Among the four subproblems of HPP, PTHSEL is the last one to be solved before a hybrid
plan is ready. Once an optimal path is found, it translates into plans and partitions to define a
hybrid plan. Due to the strict time ordering of partitions (Condition 3 in Definition 3.3.1), past

32

plans cannot be directly reused. As a result, whenever plans are switched, a new problem-planner
node has to be created to represent a new partition of the hybrid plan.

3.3.2 Graph Construction

The Graph Construction (GPHCON) subproblem is to build reachability graph Γ to be used by
PTHSEL. To this purpose, as Figure 3.3 shows, GPHCON uses output tuples from PLRAST.
As Section 3.3.3 discusses, each tuple consists of a compatible problem-planner pair and an
invocation deadline d.

The set of nodes for Γ is constructed as follows: for each tuple (ξ, ρ, d) from PLRAST, create
a node consisting of (ξ, ρ, d). An edge is added between a pair of nodes v1 and v2, if and only if
two conditions are met:

1. Timing: the plan in v2 should be ready once the execution comes to it. Therefore, if v2.ρ
takes planning time t to solve problem v2.ξ then v2.ρ needs to be invoked at least time t
before the system reaches v2.ξ.si. Mathematically, the only reason an early enough time
could not be found is when t < 0. Therefore, for a node (ξ, ρ, d) that is the end of εn, the
condition for ρ having enough time before its execution is: d > ∑

εi∈⟨ε0...εn⟩
D(Rp(εi)), where

function D returns duration of an execution, and edges ε0 . . . εn−1 representing the system
trajectory before εn.

2. Preemption: after executing the plan π1 = v1.ρ(v1.ξ) from v1, the system should reach the
initial state of the planning problem in v2. Only then can the plan π2 = v2.ρ(v2.ξ) for v2

take over from the previous plan. Formally, v2.ξ.si ∈R(π1, v1.ξ.o, v1.ξ.si).
These two conditions are necessary for the correctness of a hybrid planning instantiation,

which needs to ensure a smooth transition between plans. However, when a single planning
approach (i.e., a special case of hybrid planning) is used to determine plans, these two conditions
are automatically satisfied since no transition (between plans) happens during executions.

Now we are ready to define GPHCON formally.
Definition 3.3.8 (GPHCON). The Graph Construction (GPHCON) problem is, given a set of
tuples (ξ, ρ, d) where ξ ∈ Ξ, ρ ∈ Ψξ, and d is the deadline corresponding to the problem-planner
pair (ξ, ρ), find a reachability graph Γ with edges satisfying the preemption and timing conditions.

In practice, GPHCON is unlikely to be fully constructed for even moderately sized problems.
Therefore, the goal of implementations is to build the most effective subgraph of Γ. For example,
in the cloud-based self-adaptive system we can place the graph nodes at times of large expected
changes in the incoming traffic. Edges can be made probabilistic (based on historic information
and heuristics) to avoid an exhaustive traversal of the state space.

To build a reachability graph, the tuples are provided by PLRAST, which is discussed next.

3.3.3 Planner Assessment

The Planner Assessment (PLRAST) subproblem is: given a set of pairs consisting of compatible
planning problem and planner, for each pair, evaluate the performance of the planner against the
problem. The criteria for evaluation is timeliness and quality of planning.

33

As an outcome of the timeliness evaluation, PLRAST returns deadline d ∈ R≥0 for each
problem-planner pair; these deadlines are used by GPHCON to evaluate the timing condition for
reachability. As an outcome of the quality evaluation, PLRAST formulates the utility of plan
function Uπ (Definition 3.2.13 in Section 3.2) that returns utility of a full/partial execution of the
plan corresponding to each pair; this function is used by PTHSEL to determine utility of each
edge in a reachability graph.
Definition 3.3.9 (PLRAST). The Planner Assessment (PLRAST) problem is, given a set of
problem-planner pairs (ξ, ρ), where ξ ∈ Ξ and ρ ∈ Ψξ, find function Uπ that returns utility
of plans for all the pairs, and find the deadline d for each pair. The output of PLRAST is the
function Uπ and a set of tuples (ξ, ρ, d).

To solve PLRAST in practice, one needs to create algorithms to measure utilities and deadlines
for planners. To the authors’ knowledge, the majority of existing planner implementations do
not provide up-front guarantees on either of these two characteristics. Therefore, two general
approaches are possible: (i) design new planners with guarantees of quality and timeliness on
given planning problems, and (ii) determine the characteristics of existing planners. While (i) is
a challenging design problem, (ii) can be accomplished in a number of ways—from theoretical
modeling to empirical profiling.

3.3.4 Problem Generation

The Problem-Planner Generation (PRBSEL) subproblem is to generate compatible and relevant
problem-planner pairs. Compatibility means that in a pair, the problem and the planner belong to Υ.
Relevance means that problems ξ are generated for a particular time t such that τ(ξ.si) = t.These
pairs, with deadline added, are eventually used by GPHCON as nodes of a reachability graph for a
particular point in time.

The set of relevant problem-planner pairs is smaller than the set of all possible such pairs.
At every moment, an infinite number of planning problems can be formulated: according to
Definition 3.2.14, one can arbitrarily select the initial state, the subset of actions, the subset of
the state space, the environment’s choices of events, and the utility function. However, not all
problems are relevant because as time passes, some initial states become unreachable, the state
space evolves, and those problems become obsolete. Besides, not all problems and planners are
compatible. PRBSEL helps in identifying the relevant problem set, which is fed into GPHCON.

So far we treated planning problems as timeless objects. While discussing PRBSEL we focus
on time, which is encoded in states. This extension does not affect other subproblems of HPP,
since time can be ignored by other subproblems.
Definition 3.3.10 (Time-bound Ξ). Given a time t, a time-bound planning problem set Ξt is a set
of planning problems whose initial states have time t: Ξt = {ξ ∶ Ξ ∣ τ(ξ.si) = t}.

Each time-bound set Ξt needs to be filtered through the compatibility relation Υ: only problems
that have at least one compatible planner need to be allowed. The result is a filtered time-bound
set of planning problems: Ξt,Υ = {ξ ∶ Ξt ∣ Ψξ ≠ ∅}.

For time instant t, PRBSEL generates a set of problem-planner pairs Ξt,Υ. The inputs to
PRBSEL are the initial problem ξi, the set of planners Ψ, and the compatibility relation Υ. The
output of PRBSEL is a set of problem-planner pairs.

34

Definition 3.3.11 (PRBSEL). The Problem-Planner Generation (PRBSEL) subproblem is, given
the initial planning problem ξi, the set of planners Ψ, and the compatibility relation Υ, generate
for each time instant t a set of pairs (ξ, ρ), where ξ ∈ Ξt,Υ, and ρ ∈ Ψξ.

The theoretical version of PRBSEL leaves most elements of ξ open, such as S and A. First of
all, in practice, the time is often discretized, leading to fewer choices of time points for which to
generate Ξt. Other elements are constrained by Υ: the existing planners consider certain types of
states and actions, and it is often a matter of bounding them. Different bounds would then lead
to different problem-planner pairs for a given time. Finally, further reduction of the number of
considered pairs is possible using various heuristics. In the context of the cloud-based system,
one could investigate more pairs at times when the environment is expected to rapidly change.

3.4 Applying the Formal Model

This section discusses potential applications of the formal model, the model’s assumptions, and
implementation barriers.

3.4.1 Formal Model Applications

The first potential application of the model is assisting in comprehending various instances of
hybrid planners. The model provides a vocabulary to understand major design decisions in
these instances: what planners are used, which problems they are run on, and how they are
assessed and switched between each other. The model also helps determine assumptions made
in a hybrid planner instance because creating an instance requires making the abstract formal
concepts concrete, and assumptions are often required in this process.

The second possible application is analyzing whether a planner is a valid instantiation of
hybrid planning. The analysis has three parts. First, whether the practical relaxations of the
model’s concepts rely on assumptions that are always satisfied in the instantiation. For instance, a
hybrid planner may associate higher expected utility with using a particular planner, thus always
preferring it to the other planners. However, if a posteriori utility is not always achievable with
that planner, that violates the assumption and leads to suboptimal executions. Second, whether
the timing and preemption conditions (Sec. 3.3.2) are satisfied. If there exists a possible scenario
where these conditions are broken, then the interaction between planners may break down, thus
making the instance invalid. Third, we can analyze the utility loss due to approximations of
the utility functions described in Sec. 3.2. While some bounded utility loss may be acceptable,
depending on the domain one can declare certain losses unacceptable, thus making the hybrid
planner instance invalid.

A third application is comparison between planners. We can use the notion of utility as
a uniform way to measure “goodness” of decisions made in implementations that address the
subproblems. To estimate the difference between a benchmark planner and an implementation,
our utility and reachability notions enable an evaluation workflow:

1. Implement a hybrid planner and a simulation of a system.

2. Obtain a hybrid plan ω and execute it with different o, logging complete execution traces.

35

3. Calculate utility of traces according to Definition 3.2.7.

4. Reconstruct a reachability graph for each scenario.

5. Perform what-if simulations to find (a) more optimal or timely paths, (b) other planning
problems from Ξ∗

t,Υ, (c) missing or inaccurate ε, and (d) other opportunities for improvement
of ω.

6. The identified improvements characterize the delta between the empirical and benchmark
utilities.

This is a repeatable evaluation procedure for hybrid planners, grounded in theoretical concepts
defined by the formal model. It is applicable to a wide variety of planner combinations, including
prior work on combining contingency plans [7]. Although such experiments can be computation-
ally expensive, they yield valuable insight into the behavior and potential improvements of hybrid
planners.

3.4.2 Assumptions
A distinctive feature of our formalization is its parsimony: we use only the essential concepts
broadly applicable to planners, and we introduce the least restrictive assumptions that enable
precise definition of subproblems. Below we summarize our assumptions to delineate the scope
of the model.

Markovian domain: many of the domains explored by the self-adaptive community are
assumed to be Markovian [110] [97] [4] (even though not always explicitly stated). Therefore,
even with this assumption, the proposed formal model is applicable to various domains, particularly
those investigated by the self-adaptive community.

No instantaneous transitions: in practice, no action or event takes exactly zero time to happen.
Therefore, this assumption makes the formal model more applicable.

Instantaneous solutions to subproblems: we consider the delays of actions and planning
itself, but not the delays of solving PTHSEL, GPHCON, PLRAST, and PRBSEL. This assumption
holds if solving these problems takes negligible time compared to the time scale of planning and
execution — or if the solutions are pre-computed offline.

Known planning time: currently most planners cannot provide a hard guarantee on their
planning time. We hope, however, that extensive up-front profiling of planners can lead to
empirical guarantees on average and worst-case planning times. In the future, relaxing this
assumption will open a promising research direction—planners with predictable planning time.

Known and finite utility of states/executions: this assumption holds in most contexts of self-
adaptation in software systems, except when experimental data are incomplete or inaccessible, or
a utility function is not formulated in a convergent way. One example is complex cyber-physical
systems where the physical state may be difficult to monitor and log entirely.

3.4.3 Implementation Barriers
Although hybrid planning has certain applications, implementing its general form (as defined in
Section 3.1) to solve planning problems at run time is not practical because of three implementation
barriers:

36

• INFINITE-REACHABILITY-GRAPH: In theory, since a planning problem could be modi-
fied in an unlimited number of ways and have an infinite planning horizon (i.e., no explicit
goal/end state), a reachability graph (even with discretized time) could potentially have an
infinite number of nodes and edges (connecting these nodes). Finding an optimal path in
an infinitely large reachability graph is an intractable problem since it requires comparing
utilities for an infinite number of infinitely long paths.

• DELAY-IN-SOLVING-SUBPROBLEMS: The model ignores the time to solve the four sub-
problems (i.e., PRBSEL, PLRAST, GPHCON, and PTHSEL). To solve a planning problem
using hybrid planning, one needs to start with solving PRBSEL (i.e., generate problem-
planner pairs), which is likely to take a non-negligible time since infinite combinations (due
to problem modification) are possible for a planning problem and a given set of planners.
Suppose PLNSEL could be solved in a negligible time by assuming the problem-planner
pairs to be finite in number. Now, even with a finite number of problem-planner pairs,
the time to construct a reachability graph is unlikely to be negligible, since the process
requires solving PLRAST (i.e., rating the planner against the problem for each problem-
planner node) and GPHCON (i.e., evaluating the reachability conditions for each pair of
a problem-planner node). Moreover, finding an optimal path (i.e., PTHSEL) in the graph
can take non-negligible time. Since hybrid planning aims at dealing with the run-time
planning delay, an additional delay (due to solving the four subproblems) would further
increase the complexity and decrease the effectiveness of applying hybrid planning to
realistic self-adaptive systems.

• REQUIRED-APRIORI-KNOWLEDGE-OF-EXECUTIONS: Ideally, to solve a planning prob-
lem (at run time) using the hybrid planning approach, a priori (i.e., before determining and
executing plans corresponding to problem-planner pairs) construction of the reachability
graph is needed. This construction requires knowledge of utility of executions. However,
this is a paradoxical requirement since the utility of an execution can’t be determined
without knowing a plan. Moreover, even if a plan is known, determining an execution
path before executing the plan is impossible for systems operating under uncertainty. For
instance, in our exemplar cloud-based system, due to uncertainty in the request arrival rate,
it is hard to anticipate the state that would result from an execution of a tactic.

However, looking at the potential benefits of hybrid planning in balancing quality and timeli-
ness, researchers have suggested various instantiations of hybrid planning [7, 79, 92, 113]. These
instantiations make certain assumptions to make it tractable, and thereby, applicable to realistic
systems. Often these assumptions are not explicitly stated, preventing one from understanding
the strengths and the weaknesses of these instantiations. Moreover, even if assumptions are
mentioned, it is difficult to compare different instantiations since there is no comprehensive
comparison framework.

Our model provides a framework to systematically analyze existing instantiations of hybrid
planning (or design new ones) in two ways. First, while analyzing/designing a hybrid planner,
the model highlights how the implementation barriers are handled, describing the outcomes,
assumptions, and limitations of the design choices. Second, the model breaks down the bigger
design problem into four subproblems, allowing separate investigation of design decisions for
each. Such an analysis, grounded in the formal model, not only highlights the implicit assumptions

37

made by designers of hybrid planners, but also gives confidence that all relevant challenges are
addressed.

We use the formal model to analyze two instantiations of hybrid planning. In Chapter 4, we
explain/analyze our approach to hybrid planning in the context of the formal model. Chapter 6
analyzes an instance of hybrid planning proposed by Mausam et al. [79]. In the two case
studies, we will look at how (a) the implementation barriers have been handled, and (b) the four
subproblems have been addressed. These analysis exemplify the first and the second application of
the formal model as discussed in Section 3.4.1. In addition, the analyses demonstrate practicality
of the formal model and provide examples of how to use the formalism for analyzing existing
instantiations or designing a new one.

3.5 Summary
This chapter formalized the problem of hybrid planning and decomposes it into four computational
subproblems. Moreover, the chapter links the four subproblems to the two fundamental challenges
i.e., PLNCRD, and PLNSEL. As already discussed, there are several applications of this formal
model. In particular, the formal definitions offered in this chapter can be used to analyze/evaluate
existing solutions to hybrid planning or even instantiate a new one. However, the a posteriori
nature of the formal model could initially be counterintuitive to users who want to apply the
model to analyze/design hybrid planners. To exemplify this use of the model, the next chapter
analyzes/evaluates our approach to solving the problem of hybrid planning in the context of the
formal model. In addition, Chapter 6 analyzes/evaluates an instantiaton of hybrid planning not
proposed by us but another researcher [79]. Users can use these two case studies as a handbook
for applying the formal model.

38

Chapter 4

Solution to Hybrid Planning

Chapter 3 presented the formal model describing the problem of hybrid planning. The formal
model breaks the hybrid problem into four subproblems as summarized in Table 4.1. Given
a planning problem and a hybrid planner, solving a hybrid planning problem means finding a
sequence of plans determined by different constituent planners such that the sequence yields the
highest utility among all potential sequences. In the context of the formal model, this is equivalent
to solving PTHSEL as illustrated in Figure 3.2.

This chapter presents our approach to solving the problem of hybrid planning. We explain
the approach in the context of the formal model, giving us confidence that all the subproblems
(i.e., PTHSEL, GPHCON, PLRAST, and PRBSEL) have been addressed; as discussed in Chapter 3,
addressing GPHCON and PTHSEL implicitly solves PLNCRD and PLNSEL, respectively. In a
way, this chapter presents and explains our approach in the theoretical context. For a practitioner
interested in applying hybrid planning without going into theoretical details, later in Chapter 7, we
provide informal guidelines to select an appropriate set of planners to instantiate hybrid planning.

To solve the problem of hybrid planning, essentially, we need to build a reachability graph with
problem-planner nodes and edges connecting those nodes; once the graph is ready, the optimal
path leads to the sequence of problem-planner nodes that gives a hybrid plan. As discussed in
Chapter 3, to apply hybrid planning to a realistic system, the key challenge is to constrain a
potentially infinite reachability graph (i.e., INFINITE-REACHABILITY-GRAPH). In our approach,
the following assumptions are made to achieve this objective1:

• TWO-LEVELS-OF-PLANNING: Hybrid planning uses two levels of planning (i.e., reactive
planning followed by deliberative planning) to solve a planning problem.2 One level is
provided by the reactive planner chosen from a set of reactive planners that determine a
plan in a negligible time, and the other level is provided by the deliberative planner used to

1The thesis will revisit these assumptions and their impact on the scope of applicability of this thesis later in
Chapter 8

2Levels of planning are differentiated by the amount of computation done to determine a plan. The computation
is higher for deliberative planning compared to reactive planning, which is aimed at dealing with emergency
situations (e.g., constraint violations) by providing plans in a negligible time; the quantification of negligible time is
domain-dependent as discussed in Chapter 7.

39

Subproblem Description
Path Selection (PTHSEL) The Path Selection subproblem is, informally, to find a path

in a reachability graph that yields the highest utility. As
discussed earlier, this path implicitly solves the planning
selection problem (PLNSEL).

Reachability Graph Construc-
tion (GPHCON)

The Graph Construction subproblem is to evaluate the reach-
ability conditions between each pair of nodes in a reachabil-
ity graph. If the reachability conditions are satisfied for a
pair, the nodes are connected through an edge to construct
the graph, ensuring a smooth transition between plans i.e.,
solves the planning coordination problem (PLNCRD).

Planner Assessment
(PLRAST)

The Planner Assessment subproblem is, given a set of com-
patible problem-planner pairs, for each pair rate the perfor-
mance of the planner on the respective problem. The metrics
for the rating are execution utility (i.e., quality) and planning
time (i.e., timeliness). These ratings are used by PLRAST

and PTHSEL to construct the edges between nodes and to
find an optimal path in a reachability graph, respectively.

Problem-Planner Generation
(PRBSEL)

The problem-planner subproblem is, given a planning prob-
lem and a set of planners, generate compatible and relevant
problem-planner pairs. Relevance means that problems are
generated for a particular time t such that the problems’ ini-
tial states are at time t. These pairs are used by PLRAST for
assessment.

Table 4.1: Summary of the four subproblems of the hybrid planning problem.

40

instantiate hybrid planning.3 As explained later, having only two levels of planning reduces
the number of problem-planner nodes in a reachability graph, making the problem of hybrid
planning tractable.

• FINITE-HORIZON: The planning problem has a finite planning horizon. An infinite
horizon will lead to infinite nodes in the graph because time is a state variable according
to the formal model.4 This assumption restricts the number of problem-planner nodes in a
reachability graph.

• DISCRETE-STATE-VARIABLES: The value of state variables (e.g., time) is discrete. Oth-
erwise, a reachability graph would have infinite nodes.

• DELIBERATIVE-PREFERRED: For any planning problem, a deliberative plan always
provides higher expected utility compared to a reactive. This implies that whenever a
deliberative plan is ready for a planning problem, it is preferred over the plans determined
by reactive planners. This assumption ensures that there can never be a path in a reachability
graph that has deliberative planning followed by reactive planning, and thereby restricts the
number of paths in a reachability graph.

Once the size of a reachability graph is constrained, the next challenge is to deal with the
issue DELAY-IN-SOLVING-SUBPROBLEMS. For a practical application of hybrid planning, one
needs to minimize the delay of solving the four subproblems (PRBSEL, PLRAST, GPHCON and
PTHSEL). As explained later, the first three subproblems are simplified by the assumptions (listed
above) in such a way that negligible time is consumed to solve them.

As already discussed, solving PTHSEL amounts to finding an appropriate reactive approach
(from the given set) for a planning problem until the deliberative plan is ready; PTHSEL implicitly
solves PLNSEL. To address PTHSEL in a negligible time, as discussed later in Section 4.2, we
propose two approaches: condition-based (CB) and learning-based (LB). Each of these addresses
PTHSEL in a negligible time (NEGLIGIBLE-PLNSEL-DECISION-TIME). The condition-based
approach is useful for the domains where manually determining invocation conditions (e.g.,
emergencies) to invoke reactive planning is straight-forward at design time; invoking reactive
planning on such conditions reduces the risk of inappropriate quick decisions. To pick a reactive
approach using a condition-based approach, designers specify up-front conditions under which
the reactive approach should be invoked [3, 51]; checking whether the conditions are satisfied (in
the current state) can be done in a negligible time.

While the condition-based approach can be useful for effective hybrid planning, it suffers from
three drawbacks: (a) it requires domain expertise to identify the conditions that should trigger
reactive planning; (b) it relies on error-prone humans to identify the right and comprehensive
conditions; and (c) such conditions do not transfer to other systems or domains, hindering reuse
of hybrid planning.

To overcome these shortcomings, as detailed later, we propose a learning-based approach to
solve PTHSEL. It is called learning-based since it maps a problem space to the solution space

3Although our approach can theoretically support any number of deliberative planners (to instantiate hybrid
planning) as discussed later in Section 4.2.2, we restrict the thesis claims to a single deliberative planner since the
validation is done using one deliberative planner.

4Although condition-based hybrid planning can support planning problems (e.g., represented as MDP) with
infinite horizon, the learning-based approach requires the planning problem to have a finite horizon, as discussed later.

41

using training instances; this mapping is used at run time to solve a new problem instance [81].
Compared to explicitly finding an optimal path in a reachability graph, the approach approximates
a solution to PTHSEL quickly since most of the computation is done offline. In the context of
hybrid planning, the assumption (INDUCTIVE-BIAS) behind the application of the approach is that
the reachability graphs for two “closely related” planning problems are also similar. In other words,
for two similar planning problems, an effective combination of reactive and deliberative planning
for one problem will also work for the other problem. Moreover, this approach does not require a
priori knowledge of execution utility to approximate the solution to a hybrid planning problem,
and therefore the implementation barrier REQUIRED-APRIORI-KNOWLEDGE-OF-EXECUTIONS

(cf. Section 3.4) is not an issue.
Now, using the formal model, we provide a detailed analysis of our approach and how it

approximates a solution to a hybrid planning problem.

4.1 Constructing a Reachability Graph

As explained earlier, hybrid planning requires constructing a reachability graph and finding an
optimal path in the graph. The first step towards constructing a reachability graph is to choose the
problem-planner nodes, and then to connect a pair of nodes if the reachability conditions (i.e.,
preemption and timing) are satisfied between the nodes.

4.1.1 Restricting the Number of Nodes

Assumptions FINITE-HORIZON, DISCRETE-STATE-VARIABLES and TWO-LEVELS-OF-PLANNING

help to restrict the number of nodes in a reachability graph corresponding to a planning prob-
lem. Assumption FINITE-HORIZON restricts the number of nodes by assuming the planning
horizon of all the planning problems to be finite (e.g., having an explicit goal/end state with
a finite value for the state variable time). However, even with a finite horizon, theoretically a
planning problem can have a reachability graph with an infinite number of problem-planner
nodes if time (i.e., a state variable) is treated as a continuous variable. Therefore, assumption
DISCRETE-STATE-VARIABLES is made to ensure that planning problems use a discrete notion of
time.

Even after FINITE-HORIZON and DISCRETE-STATE-VARIABLES, given an infinite set of
planners, there could be an infinite number of problem-planner nodes since (a) a planning problem
can be modified in an unlimited number of ways (as discussed in Section 3.1), and (b) an infinite
number of planning approaches can be used to solve each of these modified problems therefore,
infinite combinations (i.e., nodes) of problem-planner are possible.

To address this problem, our approach assumes TWO-LEVELS-OF-PLANNING, which limits
the number of (deliberative and reactive) planning approaches, thereby constraining the number
of problem-planner nodes to a finite value. To explain, suppose hybrid planning is instantiated
using a deliberative approach, and a set (say, F) of N reactive approaches, which include a special
reactive approach (i.e., ρwait) that, for any planning problem, always suggests to wait until the

42

deliberative plan is ready.5 Because of assumption TWO-LEVELS-OF-PLANNING, (only) 1 +N
kinds of problem-planner nodes are possible for a planning problem (say Pb) in a reachability
graph. The first kind of node consists of the deliberative approach (suppose, MDP planning) and a
modified version (say Pbd) of Pb that is compatible with the planner. Realistically, even MDP (i.e.,
deliberative) planning might be solving a modified (i.e., relaxed) version of an original planning
problem. For example, suppose Pb has uncertainty in both – action outcomes and observations
of an underlying system state.6 Now, if an MDP planner is used for deliberative planning, the
input problem specification to the planner needs to ignore uncertainty in observations since MDP
planners can handle uncertainty only in action outcomes.

In addition to the first node, there are N nodes corresponding to each reactive approach. From
these N nodes, one node corresponds to wait planning (i.e., ρwait). Planning problems do not
matter for ρwait since it always returns the same plan (i.e., to wait until the deliberative plan is
ready). Since ρwait does not take anything from Pb into account, it does not matter what the
planning problems are (except τ(Pb.si)), so all nodes of this kind are equivalent at a given time
point.

However, even after TWO-LEVELS-OF-PLANNING, solving PRBSEL (i.e., generating com-
patible and relevant problem-planner pairs) is likely to consume non-negligible time. Even with a
finite (i.e., 1 +N) number of possible problem-planner nodes for a planning problem, there could
be a large number of nodes due to intermediate planning problems (i.e., problems resulting from
partial executions of a plan) and corresponding modified problems. In the proposed approach,
solving PRBSEL is not required, since the output of PRBSEL is used by PLRAST, which is not
explicitly required to be handled, as explained later in Section 4.1.2.

4.1.2 Connecting the Nodes
Once the set of problem-planner nodes is finite, the next step is to connect the nodes in the
reachability graph. To this end, the approach to solve the problem of hybrid planning needs
to solve PLRAST and GPHCON. Given pairs of problem-planner nodes, a solution to PLRAST

would return the utility of plan function (i.e., Uπ defined by Definition 3.2.13), and a set of
tuples containing the problem-planner pair and the deadline, as discussed in Section 3.3.3. The
deadline is used by GPHCON to evaluate reachability between nodes and the partial utility function
(returning the utility of a full/partial execution) is used by PTHSEL to find an optimal path.

As discussed earlier, a practical application of hybrid planning needs to deal with the issue of
DELAY-IN-SOLVING-SUBPROBLEMS; however, solving (both) PLRAST and GPHCON in negli-
gible time is infeasible. To solve PLRAST, for each problem-planner node, one needs to rate the
planner with respect to the planning problem; the time consumed for this process is unlikely to be
negligible. GPHCON is also likely to consume a non-negligible time. To solve GPHCON, nodes
in a reachability graph need to be connected. This requires evaluating the reachability conditions
between each pair of nodes in a reachability graph; if the reachability conditions (i.e., timing

5Using ρwait in combination with deliberative planning is equivalent to using deliberative planning alone. ρwait

is required to ensure that hybrid planning does not underperform deliberative planning in cases when none of the
other reactive approaches (in F) provide a better plan than just waiting for the deliberative plan to be ready.

6POMDP-based planners can handle both kinds of uncertainty; however, these planners can be slow in determining
plans compared to other planners such as MDP.

43

and preemption) are satisfied for two nodes, they are connected through an edge. However, this
computation is likely to take a non-negligible time for realistic systems.

In our approach, no time is consumed to solve PLRAST because it is not handled explicitly.
The approach does not solve PLRAST since the deadline and the utility function for full/partial
executions are not required to approximate a solution to GPHCON and PTHSEL, respectively.
The deadline is not required since, as explained next, reachability from reactive to deliberative
planning nodes is approximated without knowing deadlines; in other words, deadline is not used
to approximate a solution to subproblem GPHCON. The utility function is not required since the
proposed condition-based or learning-based approach approximates a solution to PTHSEL without
having knowledge of the function.

The approach solves GPHCON in a negligible time because it does not explicitly evaluate the
reachability conditions between each pair of nodes. If reactive and deliberative planning use the
same initial state, our approach relies on two assumptions that increase the chances of a seamless
transition from a reactive plan (including an empty plan generated by ρwait) to a deliberative plan;
however, as explained later, in practice there is still a possibility that the transition might fail. As
already mentioned in Chapter 1, the two assumptions are:

• UNIVERSAL-DELIBERATIVE-PLAN: Deliberative planning generates a universal plan
(i.e., one containing state-action pairs for all the reachable states from the initial state),
where a mapping from a state (say s) to an action (say a) suggests a be executed in s [44].

• MARKOVIAN-DOMAIN: The operating domain is Markovian (an assumption made by the
formal model): the state after a transition depends only on the current state — not on the
sequence of states that preceded it [78].

Fig. 4.1 explains how a universal plan (e.g., MDP policy) increases the chances of (but does
not guarantee) the transition of execution from a reactive plan to a deliberative plan. Explaining
in the context of the exemplar system, suppose at time t0 in state s, there is a response time
constraint violation. To deal with this situation, both reactive planning and deliberative planning
are invoked simultaneously. Suppose reactive planning is designed such that it ignores uncertainty
in the external environment by assuming the future request arrival rate will remain the same as in
the current state. Since reactive planning time is negligible, suppose it suggests an action a1 to
be executed at time t0. Meanwhile, using a time-series predictor, suppose deliberative planning
takes predicted, but uncertain, values of future request arrival rate into consideration and comes
up with a deliberative plan, suppose at time t1. On executing the action a1, due to uncertainty in
the client request arrival rate, suppose the system could reach one of three possible outcome states:
s1, s′1 or s′′1 . If the predicted values for the request arrival rate (used for the deliberative planning)
are correct, these states will be found in the deliberative plan, because the plan contains the
state-action pair for all the reachable states from the initial state s. Therefore, once the deliberative
plan is ready (suppose at time t1), it can take over the plan execution from the reactive plan
because any state in the reactive plan will be in the deliberative plan.

Moreover, due to the Markovian nature of the operating domain, optimality of the action
prescribed by the deliberative plan for states such as s1, s′1 and s′′1 , depends only on that state, and
not on any of the previous states. This implies that once deliberative planning solves the planning
problem corresponding to the state space shown in Figure 4.1, the resulting plan would suggest an
optimal action for each state reachable from the initial state s.

44

s

Timeline

a1

s1’’

a1

s1’

s1
a1

t0 t1 t2 t3 tn

Legend

Transition from
state S1 to state S2 by
applying action A

s2s1 A

s State S

a2

…..

…..

s2

..…

..…

Reactive and deliberative planning invoked

State Action
s1 ap
s1’ aq
s1’’ ar
s2 ar
… …

Universal Plan

Figure 4.1: Transition from a reactive plan to a deliberative plan

45

The structure of a deliberative plan and the Markov property increase chances of a transition
from a reactive plan to the deliberative plan; however, in practice, there is still a possibility that
this transition might fail due to violation of either the timing or the preemption condition (cf.
Chapter 3) between two nodes. Continuing with the example, the timing condition is violated if
the deliberative plan is not ready by the time the system observes one of the states s1, s′1 or s′′1 . In
such cases, there is no need to restart deliberative planning since, due to the “universal” nature of
the plan (contingent on the accuracy of predictions made by the time-series predictor), once the
plan is ready it can take over the execution if the preemption condition is satisfied; meanwhile,
the system continues with reactive planning i.e., TWO-LEVELS-OF-PLANNING.

As an example of an unsatisfied preemption condition, suppose at time t1 the system ends
up in states such as s′1 or s′′1 not anticipated by the deliberative planning; this can happen, for
instance, if a prediction of the future request arrival rate is incorrect. In such a case, even if
the deliberative plan is ready at time t1 the transition from a reactive plan to the deliberative
plan would be infeasible because states s′1 and s′′1 will not be present in the deliberative plan.
Therefore, if the system still needs to adapt at time t1, deliberative planning needs to be restarted;
however, the choice of reactive planning depends on the solution to PTHSEL as discussed later in
Section 4.2.

4.2 Finding a Path in a Reachability Graph
Up to this point, we have discussed the approach to deal with PRBSEL, PLRAST, and GPHCON.
The last subproblem is PTHSEL, which amounts to finding a path consisting of problem-planner
nodes that would maximize the system’s utility. As already discussed, solving PTHSEL implicitly
solves PLNSEL. This section analyzes the approach to solve PTHSEL in the light of the formal
model.

Given assumptions FINITE-HORIZON and TWO-LEVELS-OF-PLANNING and a finite set of
(N) reactive approaches, as explained earlier, for a planning problem only 1 +N kinds of node
are possible in a reachability graph, i.e., nodes corresponding to deliberative planning, and N
reactive approaches. Therefore, initially when a system observes a planning problem, one of these
1+N nodes has to be selected as the first node of the path corresponding to the hybrid plan for the
planning problem. Given assumption DELIBERATIVE-PREFERRED, if a deliberative plan is ready
for a planning problem, the deliberative node gets precedence over the other nodes corresponding
to reactive planning. If the timing and the preemption condition is satisfied as defined in Chapter 3,
once a deliberative plan is ready no more planning is required; in other words, no further nodes
need to be selected to construct a path. However, due to the time-consuming nature of deliberative
planning, initially the plan is unlikely to be ready (i.e., the timing condition for reachability is
violated) therefore, the deliberative planning node cannot be selected.

While deliberative planning is in process, a decision is required to decide which reactive
approach to apply among the given (N) approaches. Given TWO-LEVELS-OF-PLANNING, once
a system picks an appropriate reactive approach, it sticks with it until the deliberative plan is
ready. To explain in terms of a reachability graph, first the node corresponding to the reactive
approach is selected among the N nodes corresponding to the reactive approaches. Then using
the execution edge for the related reactive plan, this node is connected to the deliberative planning

46

node, which is the first node in the timeline (i.e., as soon as the deliberative plan is ready) that
has the two reachability conditions satisfied. The execution edge from this node extends until the
planning horizon is reached for the planning problem.7 For such a reachability graph, formally,
given set Ξ of all planning problems for the system and set F of reactive planning approaches,
solving GPHCON (or PLNSEL) problem means approximating function G ∶ Ξ → F suggesting
which reactive approach should be invoked for a planning problem ξ ∈ Ξ.

Since reactive planning time is negligible, nodes corresponding to reactive approaches are
always available (i.e., reachable) when constructing a path. Condition-based and learning-based
approaches help in choosing between among reactive nodes in negligible time (i.e., assumption
NEGLIGIBLE-PLNSEL-DECISION-TIME).

4.2.1 Condition-based Approach

To choose among reactive approaches, this thesis investigates a condition-based (CB) invocation
of reactive planning where a system’s designer specifies up-front conditions (at design time)
under which (a particular) reactive approach should be invoked. Chapter 6 demonstrates the
effectiveness of hybrid planning using the condition-based approach to solve PLNSEL. To explain
in the context of the cloud system, on a response time violation, the system invokes reactive
planning to provide a quick response (say addServer) to the violation. However, while a new
server becomes active, deliberative planning would determine a (possibly higher) quality plan that
will take over the execution once it is ready. However, as discussed earlier, the condition-based
approach requires domain expertise and relies on error-prone humans to identify the conditions.
Moreover, the identified conditions cannot be transferred to other systems or domains, hindering
reuse of hybrid planning.

4.2.2 Learning-based Approach

To overcome these drawbacks, this thesis proposes a machine learning-based (LB) approach to
decide which reactive planning (from a given set, which includes waiting as a special case) in
combination with deliberative planning would lead to improved performance for a given situation.
Using planning problems similar to the ones expected at run time, the approach trains a classifier
to choose an appropriate reactive approach for a given problem. At run time, depending on how
the current situation (i.e., the planning problem at hand) relates to problems in the training set, the
classifier chooses which reactive approach (including ρwait) to invoke. This approach overcomes
the disadvantages of condition-based (CB) invocation of reactive planning by removing the need
for humans to determine the specific conditions at design time and being applicable to a broad
range of systems/domains.

The learning-based approach has two phases: offline and online. During the offline phase, the
first step is to collect/identify a training set of planning problems similar to the ones expected
at run time. In the second offline step, using a probabilistic model-checker, these problems
are labelled with the preferred reactive approach to be used for a problem in combination with

7If the plan execution is interrupted for some reason, then a new planning problem will be formulated, which will
result in a new reachability graph; the current reachability graph is abandoned.

47

deliberative planning, as discussed later. The third and last offline step is to decide appropriate
features in the training set and use them to train a machine learning classifier, which will determine
the best reactive planner for each situation. In the online phase, on facing a planning problem ξ
(representing the current situation) at run time, the system invokes the classifier on the features of
ξ. The classifier picks a reactive planner, which is used by the system until a deliberative plan is
ready.

The offline phase

In the offline phase, a classifier is trained using planning problems that the system expects to
observe at run time. The offline phase has three steps: (a) identify sample planning problems to
profile the hybrid planner; (b) profile the hybrid planner on these problems to determine the label
(i.e., which reactive planning outperforms others); and (c) select features and hyper-parameter
values to train a classifier.

(1a) Identifying Sample Problems: To select reactive planners effectively, it is crucial to
cover the planning problem space comprehensively. However, identifying a set of representative
problems is challenging due to a potentially infinite problem space and its unknown structure.
No single selection strategy fits all systems and domains, and we suggest tailoring the sample
set to the system’s context and requirements. Fortunately, modern-day systems produce large
amounts of data available to train a classifier. For instance, in our evaluation systems, we mine
sample planning problems from the available traces containing the typical load patterns [37] (for
the cloud-based system) and randomly sample the space of missions (for the UAV).

(1b) Labeling the Sample Problems: This step determines the reactive approach ρir ∈ F that
performs best in combination with deliberative planning for a sample planning problem ξ, and
label it accordingly (i.e., ρir). At the end of this step, we obtain a set of labelled training data,
which is critical to (supervised) learning in our learning-based approach [101]. However, in the
presence of uncertainty in the environment (which is often the case for realistic systems), it is
difficult to evaluate a combination given that its performance may vary across plan executions (for
the same problem) because of different possible outcomes leading to different plan execution paths.
For example, suppose a self-adaptive cloud-based system proactively adds a server anticipating
an increase in the future workload (i.e., the number of requests received by clients). However, if
the workload increases or decreases further, adding the server might not have the desired effect.
Therefore, an approach is needed that can take uncertainty into account when evaluating the
combination.

To overcome this problem, this thesis proposes to use a probabilistic model checker, which
considers probabilistic uncertainty when evaluating a combination of reactive and deliberative
plan. Moreover, existing model checkers ease adoption, automation, and reuse of the learning-
based approach by software engineers. One can encode each combination of planners and
planning problem in a model checker specification, and the model checker gives expected utility
that the combination will provide for the problem. This use of model-checking is fundamental
to our learning-based approach: a model checker labels training problems by evaluating plan
combinations under probabilistic uncertainty, by considering all possible execution paths weighted
with their probabilities. Such a use of probabilistic model-checking to assess the quality of a
(combined) plan is based on the assumptions that the model checker specification of a planning

48

problem captures reality. There might be other potential techniques/tools that can be explored to
evaluate combined plans. However, any such technique/tool should: (a) have an input specification
that captures reality, and (b) be able to evaluate a combined plan in the context of planning goal;
for instance, if the goal is to maximize expected utility, the tool should be able to calculate
expected utility for the combined plan in the context of the input specification.

Figure 4.2 illustrates how a model checker can be used to evaluate the combination of reactive
(ρir, producing plans πir) and deliberative planning (ρd, producing plan πd in time td). The
outcomes of executing actions from each plan are uncertain, and a model checker handles this
uncertainty by aggregating the quality of possible outcomes as expected utility, denoted U i

r.
To compute U i

r for ξ, the model checker calculates the expected utility for the combination
of plans πir (until time step td) and then πd. If set F has N reactive planners, then each sample
problem ξ requires N evaluations corresponding to each ρr ∈ F . Specifically, to calculate the
expected utility of a combination, we used PRISM [69] as a model checker.8

Legend

s2s1 a
p

Transition with
probability p from
state S1 to state S2
by applying action a

s State S

Representation of
a planning problem 𝓅,
i.e., state-action
probabilistic
transition diagram

Reactive
plan
duration

πi
r

t0

s

td+1td
Timeline

td+nt…

sd’’

sd’

sd

…..

…..

sd+1

..…

..…

Deliberative plan durationπd

a1

a1
a2

a3

a4

a5

a6

a3

p2

p1

p’1

p’3

p3

p4

p5

p6

Deliberative planning time

Figure 4.2: Evaluating a reactive approach ρir, i.e., calculating the utility for the combination of
reactive and deliberative plan.

Finally, we need to compare expected utilities for each combination. For problem ξ, suppose
8Our evaluation uses PRISM since it supports model-checking for the (MDP) domains with probabilistic un-

certainty in action outcomes, which is the case for the two systems used for evaluation. However, our approach is
not limited to any specific model checker. For Markovian domains (i.e., partially observable MDP) that also have
uncertainty in the underlying state, one can use model checkers that support such domains.

49

the plan determined by ρ′r ∈ F (in combination with the deliberative plan) provides the highest
utility, and ξ is assigned the label corresponding to ρ′r. If more than one reactive approach provides
the highest utility, any of those approaches can be chosen. Thus, each sample problem is labeled
with one of the N labels, given N reactive approaches. This approach can be naturally extended
to also support any number of deliberative approaches (rather than one); basically, the labeling
process can help in deciding the best combination of a reactive and a deliberative approach.

Although Section 6.3 demonstrates that labeling the sample problems using model checking
works in practice, this approach is limited to the problems with a finite horizon. To explain further,
as shown in Figure 4.2, a model checking specification needs to keep track of states before time
td (i.e., before the deliberative plan is ready), and td onwards (i.e., when the deliberative plan is
available). This requires having a state variable that captures the time for a state. Since time is
a state variable, a problem cannot have an infinite planning horizon. Otherwise, the state space
will be infinite, therefore, intractable for probabilistic model checking. However, this problem of
infinite state space does not arise due to assumption FINITE-HORIZON.

(1c) Training a Classifier: The first step to train a classifier on the labeled planning problems
is to identify relevant features of planning problems that help separating the N classes. To this end,
we use two complementary sets of features: ones representing the current state of the system, and
ones describing how the system will evolve in the future. For the two evaluation systems, future
evolution of the systems depend on the external environment, which is uncertain but predictable.
To exemplify, for the cloud-based system, we use state variables such as the number of active
servers to capture the current state. To capture the future evolution of the system, we use real-time
predicted request arrival rates for the future within the planning horizon [85]. Similarly, for the
team of UAVs, we use state variables such as flying altitude to capture the current state. To capture
future evolution, we use predicted value of threats and targets as discussed in Section 6.1.2.

We believe these features reasonably capture a planning problem, which has current (i.e.,
initial) state and transitions as the fundamental elements. One could also use techniques such
as principal component analysis (PCA) to further reduce the set of features [2]. Once features
are identified, using the sample problems, we use cross-validation to train and test different
classifiers [66]; we pick the classifier which provides the best performance during cross-validation.

The online phase

When a self-adaptive framework requires planning (e.g., periodically or in response to a constraint
violation [10]), it formulates a planning problem ξ. The offline-trained classifier is used on
ξ to assign the label corresponding to an appropriate ρr ∈ F . Typically, such a supervised
learning classifier can classify instances (e.g., planning problems) near-instantaneously: therefore,
assumption NEGLIGIBLE-PLNSEL-DECISION-TIME is not violated.

4.3 Summary
This chapter presented our approach to instantiate a hybrid planning using a deliberative approach
and a finite number of reactive approaches. The chapter explained the approach in the context of the
formal model, giving us confidence that all relevant subproblems (i.e., i.e., PTHSEL, GPHCON,

50

PLRAST, and PRBSEL) are handled. Consequently, the chapter also discussed how the two
fundamental challenges (i.e., PLNCRD and PLNSEL) are handled because solving subproblems
GPHCON and PTHSEL implicitly solves PLNCRD and PLNSEL, respectively.

To solve PLNSEL, the chapter discussed two approaches: condition-based and learning-based.
The condition-based approach is easy to apply for systems where appropriate conditions to invoke
reactive planning can be identified; however, for complex systems, it can be difficult to determine
a fixed set of predefined conditions at design time that captures all possible constraint violations.

To overcome the shortcomings of the condition-based approach, the chapter proposed a
learning-based approach that overcomes the limits of relying on predefined conditions to choose
among reactive approaches. Now, domain expertise is not necessary to decide which reactive
approach needs to be invoked. Instead, engineers can rely on planning problems encountered in the
past to answer the same question, without committing to specific up-front conditions. Moreover,
full/partial automation is possible for the learning-based approach, which can relieve designers
from the painstaking and error-prone process of identifying the conditions. In Chapter 6, we
investigate the performance-related advantages of the learning-based approach over the condition-
based approach.

51

52

Chapter 5

Design and Analysis of Hybrid Planning

The previous two chapters presented the formal model describing the hybrid planning problem,
and a practical approach to apply hybrid planning under certain assumptions/restrictions that
nonetheless apply to many self-adaptive systems. This chapter takes a step closer to implementing
hybrid planning in realistic systems. First, the chapter describes a general algorithm, executed
in hybrid planners, to determine an adaptation plan for a given situation. This algorithm can be
used with either the condition-based approach or the proposed learning-based approach. Second,
the chapter analyzes the performance of hybrid planning: specifically, it proves a theorem, which
states that under ideal conditions (listed in Section 5.2), hybrid planning cannot underperform its
constituent approaches used alone.

5.1 The Hybrid Planning Algorithm

The goal of the hybrid planning algorithm (see Algorithm 1) is to determine a plan for system
adaptation using a combination of a reactive approach (ρr ∈ F) with a deliberative one. The input
to the algorithm is a planning problem (ξ) that contains the current state of the system (ξ.scurr),
and the output is a plan stored in variable π, protected from race conditions by a mutex µ. Since,
as discussed later, reactive and deliberative planners can be invoked simultaneously using different
threads, we need mutex µ to handle race conditions.

To find a plan corresponding to the problem ξ, the HYBRIDPLANNING algorithm first refers to
the existing plan (line 6). If a plan is present and matches the current state (i.e., contains ξ.scurr),
then the algorithm does not change π. However, if the plan does not exist or ξ.scurr is not in the
plan, then the planner computes a suitable new plan (lines 10–20).

First, the algorithm needs to decide its reactive response (lines 10–13), which requires choos-
ing an appropriate reactive planning approach ρr ∈ F . This decision is made by the function
PICKREACTIVEPLANNING, the role of which is to solve PLNSEL. This function can be imple-
mented by checking predefined conditions on ξ, or by learning which reactive approach is (the
most) suitable for a given planning problem. As an input, function PICKREACTIVEPLANNING

takes planning problem ξ, set F , and deliberative planner ρd, and returns the reactive approach
that will provide the plan that provides the highest utility when combined with the deliberative
plan, when it is ready.

53

Algorithm 1 A general hybrid planning algorithm.
1: global π ← null ▷ System’s plan for execution
2: global µ← new Mutex ▷ Mutex for π
3: global T ← new Thread ▷ Deliberative thread
4: function HYBRIDPLANNING(Problem ξ, Planners F , Planner ρd)
5: µ.lock()
6: if π ≠ null and π.has(ξ.scurr) then
7: µ.unlock()
8: return ▷ Replan only if needed
9:

10: ▷ Pick an appropriate reactive planning approach
11: Planner ρr = PICKREACTIVEPLANNING(ξ, F , ρd)
12:
13: π ← ρr.PLAN(ξ) ▷ Determine the reactive plan
14: µ.unlock()
15:
16: if not T .isRunning() then
17: T .run [▷ Deliberate in the background
18: π′ ← ρd.PLAN(ξ)
19: µ.lock()
20: π ← π′

21: µ.unlock()]

54

Regardless of the above decision, deliberative planning (function DELIBERATIVEPLANNING)
is started afterwards in a separate thread (T , lines 16–18), in order to eventually arrive at a plan
that is expected to yield higher utility than any of the reactive planning approaches. For each
planning problem, deliberative planning is invoked once, allowing only one thread at a time. Once
the computation of the deliberative plan is complete, the system’s plan is thread-safely updated
to it (17–19). As discussed earlier, the structure of the plan enables a smooth transition (i.e., the
global plan π is updated) from a reactive to the deliberative plan, thus resolving PLNCRD.

Algorithm 1 is implemented by a self-adaptive framework, which can use the global variables
π, µ, and T to configure HYBRIDPLANNING. For example, to find a reactive plan without
stopping deliberative planning, the framework can lock µ, set π to null and, if T is still running,
execute HYBRIDPLANNING. If needed, deliberative execution can be reset by stopping T .

5.2 Analysis of the Performance of the Hybrid Planning
In Chapter 3, we formalized the problem of hybrid planning using an a posteriori (i.e., after
executing a hybrid plan) semantics, which was useful in the theoretical formulation of the problem
and its solution. Moreover, as we demonstrate in Chapter 6, the formalism can be used to analyze
and compare different hybrid planners. However, when applying hybrid planning, one also needs to
analyze hybrid planning in an a priori (i.e., before executing a hybrid plan) semantics, for instance,
to investigate bounds (e.g., the worst-case) on the performance of hybrid planning even before
applying it. Knowing the performance bounds of an approach helps to understand associated risks.
This section provides the worst-case bound on the performance of hybrid planning, and in the
process, formulates an a priori definition for the concepts defined in Chapter 3 in an a posteriori
semantics.

A critical part of the hybrid planning algorithm is realized by the function PICKREACTIVE-
PLANNING, which solves PLNSEL in the algorithm (or subproblem PTHSEL in the context of the
formal model). Under idealized conditions (i.e., (a) DELIBERATIVE-PREFERRED– deliberative
planning provides higher expected utility than any of the reactive planners in F , and (b) PICK-
REACTIVEPLANNING picks the best reactive approach for a given planning problem), hybrid
planning will never provide a lower expected utility compared to utilities provided by reactive and
deliberative planning used alone. This section provides a formal proof of this statement.

Intuitively, comparing hybrid planning to a reactive approach used alone, while deliberative
planning is in-process, no reactive approach can be better than the choice of PICKREACTIVE-
PLANNING given the (ideal) implementation as explained earlier. And, once the deliberative plan
is ready, it will outperform any reactive plan due to assumption DELIBERATIVE-PREFERRED. On
comparing hybrid planning to deliberative planning used alone, the only way for the latter to be
better than hybrid planning is when PICKREACTIVEPLANNING inappropriately returns a reactive
approach other than ρwait, which might be the best choice.1 However, this is not possible given
the ideal implementation of PICKREACTIVEPLANNING.

We start with some basic definitions defining the concepts, which will be used in stating the
theorem and its proof. In contrast to Section 3.2 (in Chapter 3), which lists formal definitions in

1As explained earlier, using deliberative planning alone (i.e., wait until the deliberative plan is ready) is equivalent
to using ρwait in combination with deliberative planning; ρwait always suggests to wait.

55

the context of an a posteriori semantics, this section provides definitions using a priori semantics.
Consequently, some concepts (e.g., a planning problem) have been redefined in this section.
The key difference between an a posteriori and an a priori semantics is that the latter considers
uncertainty in the environment. As explained in Section 3.1, there is no uncertainty in an a
posteriori semantics. In contrast, as explained later, in an a priori semantics (i.e., before a plan
execution) uncertainty in the environment is considered, if it exists. Since we evaluate expected
utility to compare hybrid planning with its constituent planners, only probabilistic uncertainty
in the a priori definitions and the proof (i.e., non-deterministic uncertainty is not covered). For
completeness of this formal system, this section also reiterates the definitions that are the same as
those specified in Section 3.2.
Definition 5.2.1 (State). A state (s) is a vector of values of the system’s and environment’s
variables. Time is considered as a state variable. We denote the set of states by S .

Since time is a state variable, S is a potentially infinite set. Moreover, time imposes an implicit
total order on states in S . By default we consider time continuous, and also allow its discretization.
Definition 5.2.2 (State time). The function τ returns the time value of a state. Formally, τ ∶ S →
R≥0.
Definition 5.2.3 (A priori transition). A priori state transitions are characterized by a transition
function Ta ∶ S ×A × Z → P(S), giving a probability distribution (P) over states S telling the
probability of s′ ∈ S given that system action a ∈ A and environment action z ∈ Z are applied to
system state s ∈ S . Here, A is a set of the system’s actions, and Z is a set of external events. An
element � represents an empty action/event and is present in both sets: A ∩ Z = {�}. We write
Ta(s, a, z , s

′) for the probability of ending in state s′ , given that a system starts in state s and,
actions a and z are taken.

Definition 3.2.8 of an a posteriori transition in Section 3.2 does not consider uncertainty since,
as explained in Chapter 3, there is no uncertainty in an a posteriori semantics. In contrast, an a
priori semantics has uncertainty, therefore, Definition 5.2.3 considers (probabilistic) uncertainty
in transitions. Referring to Figure 3.1 that explains the difference between the a priori and the a
posteriori semantics in the context of the cloud-based system, suppose at time t0, response time
for the system is above a predefined threshold. In response to this emergency situation, suppose
the system adds a server to bring the response time below the threshold. However, due to the
(probabilistic) uncertainty in the request arrival rate, workload on the system can change (i.e.,
increase or decrease). If the workload increases further then even after the adding the server, the
response time can still remain above the threshold. In contrast, if the workload decreases, the
response time can be below the threshold. Therefore, due to uncertainty in the request arrival rate,
the system can end up in one of the two states, i.e., response time above (S1) or below (S2) the
threshold.
Definition 5.2.4 (A priori environment). An priori environment is a function oa ∶ S → P(Z)
giving probability distribution (P) of external events happening in each state. A set of possible a
priori environments is designated as Oa such that oa ∈ Oa. We write oa(s, z) for the probability
of external event z happening in state s.

Again, in contrast to Definition 3.2.10 of environment, Definition 5.2.4 defines environment
in an a priori semantics, therefore, (probabilistic) uncertainty is considered.

Definition 5.2.3 and Definition 5.2.4 restrict the proof to domains with probabilistic uncertainty

56

(i.e., non-deterministic uncertainty is not covered). However, the proof is still useful, since
uncertainty can be represented probabilistically in a large number of domains, where planning
based of MDP and POMDP is applied [44].
Definition 5.2.5 (Utility of a transition). Utility of a transition is a function UT ∶ S ×A × Z → R
giving the expected immediate utility gained by a system for taking a ∈ A and environment action
z ∈ Z in s ∈ S .
Definition 5.2.6 (A priori plan). A plan πa is a total function πa ∶ S → A. A mapping from a state
s ∈ S to an action a ∈ A suggests a to be executed in s. We denote a set of plans as Π.

This definition of plan as a total function is different from Definition 3.2.9, which defines
plan as a partial function in an a posteriori semantics. As explained later, in context of the
definition (i.e., Definition 5.2.11) of a planner, Definition 5.2.6 captures different types of plans
(e.g., policies) in the context of this formal system.
Definition 5.2.7 (Expected utility of a plan for a state over a horizon). The expected utility of a
plan for a state over a horizon is a function Uπ ∶ Π×S ×Oa ×R×R→ R that returns the expected
discounted sum of future utility that a system gets over horizon (i.e., time steps) h ∈ R for a given
plan π ∈ Π, the initial state s ∈ S for plan (π) execution in environment oa ∈ Oa, and discount
factor γ ∈ R such that 0 < γ < 1. The expected utility of a plan can be inductively calculated as

Uπ(π, s, oa, h, γ) = Σz∈Zoa(s, z)UT (s, a, z) + γΣs′∈STa(s, a, oa(s), s′)Uπ(π, s′, oa, h − 1) (5.1)

Approaches such as MDP planning can find a plan (i.e., policy) for an infinite horizon. To
calculate Uπ for such plans, horizon can be set to infinity (i.e., ∞).
Definition 5.2.8 (A priori planning problem). The a priori planning problem ξa is a tuple
(S , si,A, Ta, oa, h, γ,UT), where si ∈ S is the initial state and h is the planning horizon. Solving
an a priori planning problem refers to finding a plan (πa) with maximum utility Uπ for horizon h
given si, oa, UT and discount factor γ. Here h = τe − τi such that τi = τ(si) and τe = τ(se) for the
end state se of the plan π execution. If h is specified as ∞ then provided plan π will maximize Uπ
over an infinite planning horizon. A set of a priori planning problems is denoted by Ξa.

This definition of a planning problem is general enough to represent commonly used proba-
bilistic planning approaches such as MDP and POMDP planning. An MDP planning problem can
be directly represented by Definition 5.2.8. However, to represent a POMDP planning problem, a
state is treated as a belief space, and the problem can be modelled as a belief MDP [55]. Defi-
nition 5.2.9 defines a belief space, which is a probability distribution over states. Belief space
helps in representing uncertainty in the underlying state since (typically) states cannot be directly
observed in a POMDP domain.

Definition 5.2.8 does not assume sets, such a S , A, and Z , to be finite. However, some
algorithms to solve planning problems require these sets to be finite. For instance, the value-
iteration method to solve MDPs assumes the sets are finite. In contrast, for POMDPs, the set of
belief spaces (Definition 5.2.9) is infinite. By not restricting these sets to be finite, Definition 5.2.8
is flexible enough to capture both cases (i.e., when the sets are finite or infinite).
Definition 5.2.9 (Belief state). Belief state b ∈ B is a probability distribution over S , where B is
the set of belief states such that 0 ≤ b(s) ≤ 1 for state s ∈ S , and

∑s∈Sb(s) = 1 (5.2)

57

Due to uncertainty in the underlying state space, utility of a belief space is the expected utility
of all the states in the belief space as formulated by Equation 5.2.10.
Definition 5.2.10 (Utility of a belief state). Utility of a belief state is a function Ub ∶ B×A×Z → R
giving the expected immediate utility gained by a system for taking a ∈ A and environment action
z ∈ Z in belief state bS ′ ∈ B . This can be calculated as

Ub(bS ′ , a, z) =∑s∈S ′bS ′(s)UT (s, a, z) (5.3)

Definition 5.2.9 and Definition 5.2.10 provide an insight into how Definition 5.2.8 can represent
a POMDP planning problem.
Definition 5.2.11 (Planner). A planner is a function ρ ∶ Ξa → Π that solves a planning problem ξ
and produces a plan π. We designate a set of potentially infinite planners by Ψ.

Definition 5.2.11 abstracts the process of problem modification and replanning if a plan fails.
When a planning problem (ξa) is assigned to a planner, it modifies/relaxes ξ a problem (say, ξ′a)
to make it compatible and determines a plan, which is applied to ξ. For some planners (e.g.,
deterministic), there is a possibility that the plan might fail since the planner uses a modified
problem (i.e., ξ′a) having a subset of states S ′ ∈ S ; therefore, the plan cannot provide for all the
states. In case of a plan failure, suppose at state sf , the planner will replan for a new problem (ξ1

a)
having sf as the initial state. Definition 5.2.11 encapsulates the process of problem modification
and replanning, and returns a plan, which has provided for all the states. Therefore, the plan
is defined as a total function in Definition 5.2.6. A plan as a total function is agnostic to the
planning approach (i.e., whether it is generated by an MDP planner which generates a policy, or a
deterministic planner, which generates a sequential plan).
Definition 5.2.12 (Plan merge). Plan merge is a function ϕ ∶ Π ×Π ×R→ Π that returns hybrid
plan ω ∈ Π by merging plans πr and πd w.r.t. t ∈ R such that s ∈ S before t (i.e., τ(s) < t) will be
directed by πr and remaining states (i.e., τ(s) ≥ t) will be directed by πd. Here, ω = ϕ (πr, πd, t).

We use the same Definition 3.3.1 of a hybrid plan as mentioned in Chapter 3. In simple words,
for an a priori planning problem ξa, a hybrid plan merges plans from different planners such
that different sets of states Si ⊂ ξa.S are directed by different plans. Moreover, these subsets
(i.e., partitions of state space) are totally ordered in time. To exemplify, for problem ξa, suppose
reactive (say, ρr) and deliberative (say, ρd) planners determine plans as πr and πd, respectively,
and deliberative planning time is t. In this case, the hybrid plan will merge πr and πd such that
states s ∈ ξa.S before t (i.e., τ(s) < t) will be directed by πr and remaining states (i.e., τ(s) ≥ t)
will be directed by πd. Due to assumption TWO-LEVELS-OF-PLANNING, a hybrid plan (ωtπrπd)
merges only two plans (i.e., a reactive and a deliberative), therefore ωtπrπd divides Ξa.S into two
partitions.
Definition 5.2.13 (PickReactivePlanning). Function PickReactiveP lanning ∶ Ξa ×ψr ×Ψ→ F
returns reactive planner ρr ∈ F for a given planning problem ξa ∈ Ξa, a finite set of reactive
planners F ∈ ψr, deliberative planner ρd ∈ Ψd, where ψr ∈ P Ψr such that Ψd and Ψr is are infinite
set of all deliberative and reactive planners, respectively.

Given planning problem ξa, set of reactive planners F , deliberative planner ρd and deliberative
planning t to solve problem ξa, an ideal implementation of function PickReactiveP lanning
will output the reactive planner that provides the plan, which when merged with the deliberative
plan (πd) w.r.t. t, provides the hybrid plan with highest expected utility. Formally, for an ideal

58

implementation of the function, given ωρ = ϕ(ρ(ξa), πd, t) and ωρr = ϕ(ρr(ξa), πd, t) such that
ρ, ρr ∈ F

ρ = PickReactiveP lanning(ξa,F , ρd) Ô⇒
∀ρr ∶ F ⋅Uπ(ωρ, ξa.si, ξa.oa, ξa.h, ξa.γ) ≥ Uπ(ωρr , ξa.si, ξa.oa, ξa.h, ξa.γ)

(5.4)

As proved later, given DELIBERATIVE-PREFERRED, and an ideal implementation of PICK-
REACTIVEPLANNING, hybrid planning will never provide a lower expected utility compared
to utilities provided by reactive and deliberative planning used alone. Here is the theorem that
formally states this fact.
Theorem 1. Given

1. a priori planning problem ξa ∈ Ξa

2. Set of reactive planners F = {ρwait, ρr1, . . . , ρrn}
3. Deliberative planner ρd, which determines plan ρd for ξa with deliberative planning time as
t ≤ ξa.h

4. And an ideal implementation of function PickReactivePlanning such that
ρ = PickReactivePlanning(ξa, F , ρd) and ωρ = ϕ(ρ(ξa), πd, t)

then Uhp
π ≥ Ud

π and Uhp
π ≥ U r

π , where
Uhp
π = Uπ(ωρ, ξa.S .si, ξa.oa, ξa.h, ξa.γ)

Ud
π = Uπ(ωρwait

, ξa.S .si, ξa.oa, ξa.h, ξa.γ) such that ωρwait
= ϕ(ρwait(ξa), πd, t)

U r
π = Uπ(ρr(ξa), ξa.S .si, ξa.oa, ξa.h, ξa.γ) for ρr ∈ F

Proof. Given PickReactivePlanning(ξa, F , ρd) = ρ and deliberative planning time t, hybrid
planning determines plan ωρ by merging reactive plan πr (i.e., ρ (ξa)) and deliberative plan πd such
that ωρ = ϕ (πr, πd, t). In contrast, when using deliberative planning alone, ρwait is used for reactive
planning until td since no system’s action is taken; however, from t onwards, deliberative planning
is used. Therefore, the resulting plan can be represented as plan ωρwait

= ϕ(ρwait(ξa), πd, t) (i.e.,
the states before t are directed by plan πr and the remaining states (i.e., with time value ≥ t) are
directed by plan πd). The expected utility of plan πr determined by using reactive planning alone
is U r

π .
Given the four conditions (listed above), Theorem 1 has two claims. The first claim is that

the expected utility (i.e., Uhp
π) of hybrid plan ωρ cannot be less than the expected utility (i.e., Ud

π)
of ωρwait

i.e., Uhp
π ≥ Ud

π . The second claim is that the expected utility (i.e., Uhp
π) of hybrid plan

ωρ cannot be less than the expected utility (i.e., U r
π) of plan ωρr = ϕ(πr, πd, t) for ρr ∈ F such

that πr = ρr (ξa); formally, Uhp
π ≥ U r

π . To summarize the two claims, hybrid planning cannot
underperform either deliberative or reactive planning used alone. To prove Theorem 1, we will
separately investigate the two claims.

The fact that deliberative planning will outperform hybrid planning implies Ud
π > Uhp

π . How-
ever, given an ideal implementation of function PickReactiveP lanning, the function will output
a reactive planner that, when merged with deliberative plan πd, provides a merged plan with the
highest expected utility among ρr ∈ F . Therefore, plan ωρwait

can never outperform ωρ because
if that had been the case, PickReactiveP lanning would have output ρwait instead of any other
reactive planner in F . Hence, Uhp

π ≥ Ud
π , i.e., performance of hybrid planning will always be

59

greater or equal to that of deliberative planning. The performance will be equal when both ρwait
and some other planner ρr ∈ F provide equal expected utility when merged with πd.

Now, let us analyze the second claim (i.e., Uhp
π ≥ U r

π) of the theorem. According to assumption
DELIBERATIVE-PREFERRED, for any planning problem, a deliberative plan provides higher or
equal expected utility compared to a reactive plan. Each state s ∈ St , where St ⊆ ξa.S and
∀s ⋅ St ∶ t ≤ τ(s) < (ξa.h − t), can be treated as the initial state of an a priori planning problem
ξ
′

a such that ξ′a = {St , s, ξa.A, ξa.Ta, ξa.Oa, ξa.h − τ(s), ξa.γ, ξa.UT} (i.e., each element is the
same between ξa and ξ′a except state space St (i.e., starting from t onwards), the initial state and
the planning horizon). According to DELIBERATIVE-PREFERRED, plan π′d = ρd(ξ

′

a) will provide
higher or equal expected utility compared to a reactive plan πr determined by planner ρr ∈ F .
Formally,

∀s ⋅ St ∶ ∀ρr ⋅F ∶ Uπ(ρr(ξ
′

a), s, ξa.oa, ξa.h − τ(s), ξa.γ) ≤ Uπ(π
′

d, s, ξa.oa, ξa.h − τ(s), ξa.γ)
(5.5)

Since the domain is assumed to be Markovian, plan π′d will be subsumed by plan πd, i.e.,
π
′

d(s) = πd(s), where s ∈ dom(π′d). Therefore, we can deduce that deliberative plan πd will
provide higher or equal utility compared to a reactive plan πr determined by a reactive planner in
F . Formally, π′d in Equation5.5 can be replaced with πd to formulate Equation 5.6 below.

∀s ⋅ξa.S ∶ ∀ρr ⋅F ∶ Uπ(ρr(ξa), s, ξa.oa, ξa.h− τ(s), ξa.γ) ≤ Uπ(πd, s, ξa.oa, ξa.h− τ(s), ξa.γ)
(5.6)

Reactive plan πr can be treated as a merged plan such that πr = ϕ(π1, π2, t) where π1 and π2

direct the states before t and the states from t onwards, respectively. Due to Equation 5.6, the
expected utility of π2 for any state sd ∈ Sd, such that ∀s ⋅ Sd ∶ τ(s) = t and Sd ⊂ ξ.S , cannot be
greater than the utility provided by πd. In other words, the utility of plan πr cannot be greater than
the merged plan ω1 = ϕ(π1, πd, t). On comparing plans ω1 and hybrid plan ωρ, due to the ideal
implementation of PickReactiveP lanning, the expected utility of ω1 cannot be greater than ωρ,
otherwise the function would have output planner ρr, i.e., the one that provides the maximum
expected utility when merged with πd. Therefore, since utility of ω1 cannot be less than πr, we
can conclude that the utility of plan ωρ cannot be less than plan ρr. Hence, hybrid planning cannot
underperform reactive planning, i.e., Uhp

π ≥ U r
π .

5.3 Summary
This chapter presented Hybrid planning algorithm that can be used both with the condition-based
and the learning-based approaches discussed in Chapter 4. In the context of MAPE-K loop [61],
this algorithm can be implemented in the planning component. however, this algorithm is not
limited to any specific self-adaptive framework, since it can be implemented in the component of
the framework that is responsible for determining an adaptation plan. Moreover, while explaining
the algorithm, the chapter highlights how condition-based and learning-based approaches fit into
the algorithm (i.e., the approaches are implemented inside PickReactiveP lanning).

60

In addition, the chapter proves Theorem 1, which states that (theoretically) hybrid planning
cannot underperform reactive or deliberative planning used alone. However, in practice, imple-
mentations of PICKREACTIVEPLANNING solve PLNSEL imperfectly, affecting the performance
of hybrid planning. In the next chapter, we experimentally evaluate the hybrid planning approach,
and demonstrate how the formal model can be used to evaluate/analyze/compare instantiations of
hybrid planning.

61

62

Chapter 6

Validation

This chapter serves three purposes: It (a) validates the thesis claims using two realistic systems as
a testbed, (b) presents an empirical analysis of the experimental data from the two systems that
reveal the factors that influence the performance of hybrid planning, and (c) illustrates how the
formal model can be used as a unifying evaluation framework to compare/analyze instantiations
of hybrid planning, and thereby understand their strengths and weaknesses.

Chapter 1 stated the thesis claims, which are restated below:
We can improve the effectiveness of self-adaptive systems by using a hybrid planning approach,

which is general and flexible. This approach has the following elements:
• the use of off-the-shelf deliberative and reactive planning approaches to instantiate hybrid

planning that can take advantage of both planning approaches to find a balance between
quality and timeliness of planning;

• the ability to dynamically decide which constituent reactive planning should be invoked
along with deliberative planning.

Chapter 4 presented the two elements of our hybrid planning approach. The chapter explained
how to instantiate hybrid planning using off-the-shelf approaches and introduced the condition-
based and the learning-based approach to address PLANNING SELECTION (i.e., the ability to
dynamically decide which constituent reactive planning should be invoked along with deliberative
planning). This chapter validates the thesis claims that hybrid planning is:

• Claim 1: effective, i.e., provides a higher utility compared to its constituent planning
approaches used alone.

• Claim 2: general, i.e., can be applied to different kinds of system.
• Claim 3: flexible, i.e., can be instantiated using different combinations of off-the-shelf

deliberative and reactive approaches.
To validate these claims, we use two realistic systems − a self-adaptive cloud-based web

system and a team of UAVs. These systems are from different domains and differ in a variety
of ways, as detailed later in Section 6.3.2. The systems are realistic since: (a) they belong
to real-world domains, and (b) the quality attributes and adaptation actions considered for the
two systems are similar to the ones considered in the real-world for their respective domains.
A validation using these systems demonstrate that hybrid planning is effective. Moreover, an
effective application of hybrid planning on such different kinds of systems demonstrates generality

63

of the approach. Furthermore, hybrid planning is shown to be flexible since it is instantiated
using a different set of off-the-shelf planning approaches in the two systems. Additionally, this
chapter presents an empirical analysis of the data from the case studies that reveals that the
performance of hybrid planning is correlated to the performance of (i) deliberative planning,
and (ii) the relatively better-performing approaches among the reactive ones. These findings can
inform software engineers who need to prioritize their investment of resources in planners.

Finally, using an example, this chapter demonstrates how the formal model describing the
hybrid planning problem (cf. Chapter 3) can be used to analyze and compare instantiations of
hybrid planning. To this end, the chapter uses the model to analyze an existing hybrid planning
instantiation and compare it with the instantiation used in one of the case-studies (i.e., the cloud-
based system). Notably, the instantiation used as an example is not proposed by us but another
researcher [79].1.

The chapter is organized as follows. Section 6.1 introduces the two systems used for evaluation;
Section 6.2 explains the implementation of the learning-based approach for the two systems;
Section 6.3 presents the evaluation results and discusses how they validate the thesis claims;
Section 6.4 highlights findings from the empirical analysis; Section 6.5.1 presents an example
demonstrating how to analyze and compare an instantiation of hybrid planning; Finally, threats to
validity are discussed in Section 6.6.

6.1 Validation Systems

This section presents the two systems that are used to evaluate the thesis claims. These systems
are a cloud-based load balancing system and a team of UAVs on a reconnaissance mission. As
discussed later, these two systems are used because balancing timeliness and quality of planning
is critical to their success. In addition, developing a single planning approach from scratch can
be challenging for software engineers. The two systems let us investigate different compositions
of constituent planners, which vary in their action sets, planning horizons, and treatment of
uncertainty. The differences are further discussed in Section 6.3.3.

To compare various planning approaches such as condition-based and learning-based hybrid
planning and its constituent planners, we conducted controlled experiments by keeping all the
experimental parameters constant except the planning approach, and the traces/missions used as
inputs for the two systems respectively (cf. Section 6.1.1 and Section 6.1.2). We controlled the
parameter values to isolate the effects of the planning approach on the utility.

6.1.1 The Cloud-based Load Balancing System

As the first system, we adopted a cloud-based load balancing system already introduced in
Section 1.1. Here we provide more details about its implementation, instantiation of hybrid
planning, and experimental setup for evaluating the thesis.

1Compared to our approach to hybrid planning, this instantiation is limited to a specific combination of a reactive
and deliberative approach.

64

Implementation

As an implementation of the cloud-based system, we used SWIM, which is a well-accepted
artifact in the self-adaptive research community [87]. We made two key extensions to SWIM to
suit our goals. First, we added support for non-negligible planning times to make it comparable
to a realistic system. This change is needed to implement the hybrid planning algorithm (i.e.,
Algorithm 1) discussed in Section 5.1. The extended SWIM runs planners during experiments,
therefore planning delays are real (i.e., not artificially induced). Our second extension, as
detailed later, added support for different types (i.e., 3) of servers, with their associated tactics as
described earlier in Section 1.1. Specifically, as discussed later, we implemented the M/G/1/PS
queueing model to distribute load among active servers of different capacity. The servers allow
incrementing/decrementing dimmer values, and the load-balancer allows addition/removal of
servers and distributing load among active servers. The extended version of SWIM is open-source,
and available online.2

Instantiation of Hybrid Planning

As parts of hybrid planning, we use two reactive approaches, i.e., F = {ρdet, ρwait}, and ρmdp as
deliberative planning. Here, ρdet and ρwait refers to deterministic planning and wait planning (as
discussed in Chapter 4), and ρmdp refer to MDP planning. ρdet ignores uncertainty in the request
arrival rate by assuming it to be constant at the current value. This reduction in the search space
greatly reduces the planning time for ρdet, making it practically instantaneous in the context of the
this system. When using the condition-based approach to solve PLNSEL, ρdet is invoked when
response time is above the threshold; therefore, the intent behind using ρdet is to avoid penalty P
for having the response time above the threshold, as discussed in Section 1.1.

In contrast to ρdet, ρmdp considers predicted (but uncertain) values of the request arrival
rates. We use a time-series predictor to anticipate the future workload on the system, similar to
others [85]. When deliberative planning (i.e., ρmdp) is triggered, a time-series predictor feeds
predicted values as an environment model formulating an MDP, mapping each possible request
arrival rate to an outcome of a probabilistic action taken by the environment. Moreover, ρmdp
generates a universal plan (i.e., MDP policy), which is the requirement for deliberative planning
as discussed in Section 4.1.2. However, due to explicit modeling of uncertainty, ρmdp has a larger
(on average, 22 times) state space compared to ρdet: thereby, ρmdp is relatively time-consuming.
The goal of both reactive and deliberative planning is to maximize utility (Formula 1.1) for
their lookahead horizon. In addition to labeling sample planning problems to implement the
learning-based approach (as discussed in Section 6.2), we use PRISM both as a deterministic and
a MDP planner – similar to what has been done by other researchers [39, 108].

The supplementary material provides a PRISM planning specification for non-wait reactive
(i.e., deterministic) and deliberative (i.e., MDP) planning [93]. These specifications have some
constants (e.g., MAX_ARRIVALA_CAPACITY, penalty) that remain constant for all the planning
problems. However, there are variables (e.g., ini_servers_A, and ini_traffic_A) that depend on the
current state (i.e., initial state of the planning problem) of the system.

2https://bitbucket.org/ashutosh_pandey/hybridplanning-omnet5

65

https://bitbucket.org/ashutosh_pandey/hybridplanning-omnet5

As mentioned earlier, a deliberative planning specification includes a model of the environment
as an MDP. To build a model for the environment, as proposed by Moreno et al. [85], we build a
probability tree that represents both the predicted interarrival rates and the probabilistic uncertainty
in the request arrival rate. To discretize the probabilistic distribution of transitions from a state, we
use Extended Pearson-Tukey (EP-T) three-point approximation, which consists of three points that
correspond to the 5th, 50th, and 95th percentiles of the estimation distribution, with probabilities
0.185, 0.630, and 0.185, respectively [59].

Experimental Setup

To construct a realistic environment of users accessing the cloud-based system, we adapted a
research dataset with online traffic common in web analytics — the daily traces of user requests
from the FIFA WorldCup website [5]. These traces are independent day-by-day recordings of user
website activity during the championship, with rapid changes in system load, as well as periods
of low variation. We picked these traces for several reasons. First, this trace set is considered
as a benchmark for traffic in web analytics [6, 50, 121]. Second, modern-day web applications
(such as content delivery and video streaming) are typically bursty, with periods of low load
contrasting with occasional flash crowds caused by an important event; these traces represent such
workloads [22]. Finally, they contain the patterns for high-demand cloud systems as classified
by Ghandhi et al. [37] and illustrated in Figure 6.2. These patterns are: slowly varying, quickly
varying, big spike, dual phase, large variations, and steep tri phase. As shown in Figure 6.1, a
trace can have multiple patterns. We performed experiments on 87 traces (out of 92), ignoring 5
empty/partial ones. The plots illustrating the traces’ pattern are made available in Appendix B.
Each day’s trace contains timestamps representing inter-arrival time between two client requests,
abstracting away the details of user requests to focus on their frequency.

As discussed in Section 1.1, the system uses a queueing theory model to predict the system’s
response time depending on the number of active servers, their capacity to handle a number of
requests per minute, and the request arrival rate. For the model to work, we scaled each trace
(keeping the trace pattern intact) to the length of 105 minutes such that it does not exceed the
maximum capacity of the testbed in terms of the ability to serve requests per minute. The scaling
also ensured that the starting request arrival rate is not greater than the capacity of server of type
A (the only active server at the start of a simulation). Out of 105 minutes in each trace, the first 15
minutes are used to train the time-series predictor, and the performance of different planners on a
trace is evaluated during the remaining 90 minutes. We fix the length of the traces to normalize
aggregate utility values.

As mentioned earlier, we extended SWIM to have three types of servers: A, B and C. Servers
of type A are the most expensive, but have the highest capacity to handle requests. Servers of type
C are the cheapest, but have the least request-handling capacity. We assume the time for a server
to serve a request is normally distributed with the mean as the server’s capacity and the variance
as the maximum possible delay calculated using a variation of the M/G/1/PS queueing model that
supports different-capacity servers operating in parallel. The costs and capacities are assigned
according to Table 6.1. The ratio between cost and capacity is constant, which is inspired by the

66

Minutes

Requests/Min

Large
VariationsSlowly Varying

Big
Spike

Figure 6.1: Illustration of multiple workload patterns in day-46 trace of FIFA worldCup. The
trace has slowly-varying, big-spike and large-variation patterns.

77

41 33
52 43

23
0

10
20
30
40
50
60
70
80
90

Slowly
varying

Quickly
varying

Big Spike Dual
Phase

Large
Variations

Steep Tri
Phase

Trace count

Figure 6.2: The number of traces (out of total 87 traces) having a specific pattern. A trace can
have more than one pattern.

67

cost model of Amazon Web Services3 where the system capacity improves in the same ratio as
the increase in cost. In the experiments we have three dimmer levels and one server of each type.

Capacity (ability to server requests per minute)

Server type Cost (units per minute) With Optional Content Without Optional Content

A 1.0 200 400
B 0.7 140 280
C 0.5 100 200

Table 6.1: Cost/capacity parameters for each server type.

In our experiments, the cost of a server can be covered by the revenue of handling 1/10 of its
maximum capacity with optional content and the revenue of handling 2/3 of its maximum capacity
without optional content. If the server cost per minute is C, capacity with optional content is
cO and without optional content is cM , then the revenue for a server with optional content is
RO = 10

cO
C and without optional content would be RM = 3/2

cM
C. For each request having response

time above the threshold of 1 second, there is a penalty of -0.25 units.
The system evaluates the need for adaptation at each minute, i.e., the length of an evaluation

cycle. To this end, a planning problem is formulated that represents the current state of the system
and future transitions. This problem is passed as an input to the hybrid planning algorithm, which
returns an appropriate adaptation action(s); if adaptation is not needed then the algorithm returns
an empty action, suggesting the system to wait until the next invocation of the algorithm.

We assume a fixed server boot-up time of 2 minutes (i.e., 2 evaluation cycles) and only one
server can be booted up (at a time) in response to an increase in requests arrival rate; however,
multiple servers can be active (i.e., serve requests) simultaneously. Since at a given point, we
would have a maximum of 2 inactive servers and each server has 2 minutes of boot-up time, our
planning horizon for the deliberative (i.e., ρmdp) planning is 5 minutes. This heuristic gives a
planning horizon long enough to go from 1 active server to 3 active servers plus 1 additional
evaluation cycle to observe the resultant utility.

When looking up the current state in a plan (Line 6 in the hybrid planning algorithm, i.e.,
Algorithm 5), the cloud-based system needs to deal with the possibility of not finding any matches;
in such cases the plan fails and needs to be recomputed. As mentioned earlier, planning is done
based on predicted request arrival rate; not the actual values. Since the prediction discretizes the
values, it is possible that the actual value is not one of the discrete values. To account for this
situation, we used a matching heuristic. Specifically, we use two criteria for states in a plan being
matched to a given (current) state: (1) all state variables (except the request arrival rate) have the
same values; (2) the rate is within min(0.5 ∗ current_rate,100) of the current arrival rate.4 If
no state meeting both the criteria is found in a plan, the matching fails. If several states meet both
criteria, one that minimizes the difference between request arrival rates is picked. Appendix A

3https://aws.amazon.com/ec2/pricing/on-demand
4By experimentation, we found that this criterion provides a reasonable balance between matching states and

failing plans in our experiments.

68

https://aws.amazon.com/ec2/pricing/on-demand

formalizes the timing and the preemption condition (cf. Chapter 3) for this system and discusses
how the state matching heuristic influences the two conditions.

We conducted the experiments on a Ubuntu 14.04 virtual machine having 8.5 GB RAM and 4
processors at 2.9 GHz. The state space for deterministic planning (i.e., ρdet) varies between 25K
and 100K, for deliberative planning (i.e., ρmdp) between 1.6 million and 2.8 million. The planning
time for reactive planning ρdet is considered negligible, i.e., less than a second. The planning time
for deliberative planning ρmdp varies between 35-45 seconds.

6.1.2 A Team of Unmanned Aerial Vehicles

route segment altitude level

threat target

UAVs

downward-looking
target sensor

forward-looking
target/threat sensor

Figure 6.3: Simulation overview [88].

As the second evaluation system, we used a simulated team of unmanned aerial vehicles
(UAVs) performing a reconnaissance mission in a hostile environment. The predefined route of the
team is a straight line, divided into equal segments of fixed length, as shown in Figure 6.3. Each
segment can have threats and detection targets depending on how they are randomly placed in the
route. The mission of the team is to detect the targets and avoid being shot down by the threats,
which would lead to the mission failure (no more targets can be detected further). However, it
is difficult to meet the two requirements simultaneously since there is no action available that
increases the chances of both target detection and survival for the team (see Table 6.2). The team
uses these actions to maximize the number of targets detected, taking into account that if the team
is lost to a threat, the mission fails. If the team chooses to execute an action, then all of its UAVs
in the team execute the same action.

Pre-planning the execution of the mission is not feasible because the environment (i.e., the
location of targets and threats) can only be discovered as the team flies during the mission, and

69

Action Description Survival/Detection Chance

IncAlt Climb one altitude level increases/decreases
DecAlt Descend one altitude level decreases/increases
IncAlt2 Climb two altitude levels increases/decreases
DecAlt2 Descend two altitude levels decreases/increases
GoTight Change to tight formation increases/decreases
GoLoose Change to loose formation decreases/increases
EcmOn Turn ECM on increases/decreases
EcmOff Turn ECM off decreases/increases

Table 6.2: Adaptation actions for the team of UAVs.

even then, only with uncertainty.5 Moreover, even though both targets and threats are static, their
number is not known a priori. The team has different sensors to detect targets and threats as it
flies a route at constant speed. For each route segment within the range, the sensor reports whether
it detects a target or threat, depending on the sensor type. However, due to sensing errors, these
reports may include false positives and false negatives. An adaptation manager can get multiple
observations to construct a probability distribution of threat or target presence in a cell.

The team configuration has an effect on the probability of being destroyed by a threat and
the probability of detecting a target, which is important when deciding how to adapt. A threat
can destroy the team only if both are in the same segment. However, a threat has range rT , and
its effectiveness is inversely proportional to the altitude of the team, denoted by A. In addition,
the formation of the team affects the probability of it being destroyed. The team can be in two
different formations: loose (φ = 0), and tight (φ = 1). The latter reduces the probability of being
destroyed by a factor of ψ [116]. When the team uses (E = 1) electronic countermeasures (ECM),
the probability of being destroyed is reduced by a factor of α. Taking altitude, formation, and the
use of ECM into account, the probability of the team being destroyed, d, is given by (6.1).

d =
max(0, rT −A)

rT
((1 − φ) + φ

ψ
)((1 −E) + E

α
) . (6.1)

The probability of detecting a target with the downward-looking sensor, given that the target
is in the segment being traversed by the UAVs, is inversely proportional to the altitude of the
team [111]. Furthermore, flying in tight formation reduces the detection probability due to sensor
occlusion or overlap, and the use of ECM also affects target detection, reducing the probability of
detection by a factor of β. The probability g of detecting a target is given by (6.2).

g =
max(0, rS −A)

rS
((1 − φ) + φ

σ
)((1 −E) + E

β
) , (6.2)

where rS is the range of the sensor (i.e., at an altitude of rS or higher, it is not possible to detect

5Theoretically, pre-planning can be done for all the possible states and transitions, but that is difficult to scale; a
large number of variables (e.g., the number of segments, threats and targets) in a typical system leads to a well-known
combinatorial explosion of states, making the task of off-line calculation intractable in practice.

70

targets), and σ is the factor by which the detection probability is reduced due to flying in tight
formation. Given constants µ and λ, and the number of segments survived and targets detected for
a mission is S and T respectively, the utility of the mission is calculated as

U = µS + λT. (6.3)

Both timeliness and quality of planning are needed to maximize utility for this system. A
timely (i.e, quick) response is needed in response to threats, which could lead to mission failure.
Simultaneously, a quality plan is needed for the long-term utility gains that requires not only
surviving, but also detecting targets; this requires considering factors such as uncertainty in the
threat and target locations.

Implementation

As an implementation of a team of UAVs, we used DARTSim, which is a published benchmark
in the research community [88]. We extended DARTSim to support non-negligible planning
times to make it comparable to a realistic system. Although DARTSim is a simulator, planning
was invoked at run time, therefore, planning delays are real during evaluation. The locations of
targets and threats depend on a seed, which is an input parameter to DARTSim. Thus, by varying
seeds we created different missions to generate training problems and evaluate the learning-based
approach, as detailed later. The extended DARTSim is open-source and available online.6

Instantiation of Hybrid Planning

To instantiate hybrid planning, we use two reactive approaches (F = {ρmdps, ρwait}) and delib-
erative planning ρmdpl. Both ρmdps and ρmdpl use MDP planning, however, ρmdps plans with a
shorter horizon compared to deliberative planning ρmdpl. Moreover, while planning, ρmdps does
not consider adaptation actions IncAlt, DecAlt, and EcmOn, and EcmOff. Using a shorter
horizon in combination with a subset of actions results in a smaller state space in ρmdps compared
to ρmdpl. Since ρmdps uses actions IncAlt2 and DecAlt2, it can increase/decrease two altitude
levels in response to a threat or an opportunity to detect a target. The goal for both reactive and
deliberative planning is to detect targets on the ground and avoid being shot down by threats.
When using the condition-based approach, this instantiation invokes ρmdps if A < rT , i.e., the team
is in the range of threats, else ρwait is used; therefore, ρmdps is used to provide a quick response
when the team is in danger.

Appendix A provides PRISM planning specifications for non-wait reactive (i.e., the short-
horizon MDP with a subset of actions) and deliberative (i.e., the long-horizon MDP) planning.
These specifications have some constants (e.g., threatRange, sensorRange) that remain the same
for all the planning problems (i.e., specifications). However, there are variables (e.g., current
altitude ini_a, and formation ini_f) that depend on the current state (i.e., initial state of the
planning problem) of the system.

These specifications also include modeling of the environment that is proposed by Moreno et al.[84].
To calculate these probabilities, by sampling the information captured by the target and threat

6https://github.com/Ashutoshp/pladapt

71

https://github.com/Ashutoshp/pladapt

sensors, we describe the probability densities of a target and a threat in a segment using the beta
distribution [12]. This continuous distribution is then discretized using the EP-T three-point ap-
proximation [59], allowing the planners to consider three possible realizations of the environment
for each segment.

Experimental Setup

We fixed the mission length for DARTSim at 40 segments. The total number of targets and threats
is 20 and 10, respectively, and they are placed randomly depending on the random seed. The total
number of altitude levels is 4, threat (rT) and target (rS) range is 3 and 4 respectively, the tight
configuration reducing the probability of being destroyed (i.e., ψ) by a factor of 1.5. When using
ECM the probability of being destroyed and target detection is reduced by a factor of 0.15, and
0.3, respectively. The threshold for the Manhattan distance is 1.0, which was decided after trying
values 0.25, 0.5, 1.0, and 1.5. 1.0 provided the best performance for deliberative planning. The
reward for surviving a segment is (µ =) 0.2 and for detecting a target is (λ =) 1.

We set the time-related parameters as follows. Similar to the cloud-based system, this system
evaluates the need for adaptation at each minute, i.e., the length of an evaluation cycle. Time
to observe effects of action IncAlt2/DecAlt2 and IncAlt/DecAlt is equal to 1 minute,
which is also the duration that the team takes to cross a segment. For the remaining actions, effect
can be observed instantaneously. For the team, the planning horizon for ρmdps and ρmdpl is 2 and
5, respectively.

When looking up the current state in a plan (i.e., Line 6 in hybrid planning algorithm in
Chapter 5), DARTSim needs to deal with the possibility of not finding any matches; in such
cases, the plan fails and needs to be recomputed. As mentioned earlier, planning is done based on
probability for segments having a target and a threat; this probability is calculated by sampling
the observations by target and threat sensors. However, when the team reaches a segment, the
probability value can change due to additional data collected during the mission. To find the
closest matching state corresponding to the current state, we use two criteria: (1) all state variables
(except the target and threat probabilities in the current segment) have the same values, and (2) the
Manhattan distance between the pairs of target and threat probabilities is less than a predefined
threshold. If no state meeting both criteria is found in a plan, the matching fails. If several states
meet both criteria, the one with the smallest distance is picked.

In hybrid planning modes, to identify an appropriate Manhattan distance to find the current
state in an MDP policy, we evaluated the performance of deliberative mode with different distances,
as shown in Table 6.3. We focused on the deliberative mode because, when using hybrid planning,
Manhattan distance is used by deliberative planning. We finalized on Manhattan distance as 1.0
since deliberative mode detects maximum targets (i.e., 493 from 70 missions generated by 70
random seeds) without being destroyed more compared to other values for Manhattan distance.

72

Manhattan Distance Targets Destroyed
0.25 315 29
0.5 229 29
1.0 493 29
1.5 229 49

Table 6.3: Influence of Manhattan distances on the performance of deliberative mode on 70
missions.

We conducted the experiments on a Ubuntu 14.04 virtual machine having 8.5 GB RAM and 4
processors at 2.9 GHz. The state space for the short-horizon MDP planning (i.e., ρmdps) varies
between 75K to 250K, and for the long-horizon MDP planning ρmdpl between 3 million to 5
million. The planning time for reactive planning ρmdps is considered negligible, i.e., less than a
second. The planning time for deliberative planning ρmdpl varies between 40-60 seconds.

6.2 Learning-based Approach Implementation
This section explains the implementation of the offline and the online phase for the learning-based
approach for the two case studies.

6.2.1 The Offline Phase
As already explained in Section 4.2.2, the offline phase involves three steps: identifying sample
problems, labeling the sample problems, and training a classifier.

Identifying Sample Problems

To generate sample problems for the two systems, our goal was to create a set of problems similar
to the ones expected at run time. For the cloud-based system, we executed each trace in a mode
where ρdet was always invoked in the combination with ρmdp. This mode is different from using a
learned classifier, which does not always invoke ρdet. Therefore, the training data are less likely
to include the exact problems that the system would observe at run time, thus providing us with
data similar to what can often be mined from system execution logs. In total, we generated
1651 planning problems from 87 traces. For the UAV team, we simulated 630 missions (using
630 different seeds) in the mode similar to the cloud-based system, i.e., always invoke ρmdps in
combination with ρmdpl. In total, 16822 planning problems were generated.

Labeling the Sample Problems

In both the systems, for the labeling process, we configured the worst-case planning time (td cf.
Chapter 4) for ρmdp/ρmdps (i.e., deliberative planning depending on the case study) as 1 minute,
chosen as an over-approximation after a large number of trial runs. Since in both the systems
set F has two elements, the offline phase of the learning-based approach labels each sample
problem (say, ξ) with one of three classes (i.e., UseReactive, UseWait, or UseEither). Suppose

73

the expected utility (after model-checking) for the combination ρdet/ρmdps (i.e., non-wait reactive
planning depending on the case study) and deliberative planning is UR and for the combination
of ρwait and deliberative planning is Uw. if Ur > Uw, then the problem is labeled to invoke the
reactive planning (i.e., Y (ξ) = UseReactive); if Ur < Uw, then the problem is labeled to wait for
the deliberative plan to be ready (i.e., Y (ξ) = UseWait). Finally, if Ur = Uw, then the choice
between reacting and waiting does not matter (i.e., Y (ξ) = UseEither). One can also include
a small margin (δ such that Ur > Uw + δ, or vice versa) when comparing Ur and Uw. For the
cloud-based system, 111, 253, and 1287 problems were labeled as UseWait, UseReactive, and
UseEither, respectively. The UAV team had 358, 8391, and 8073 problems labeled as UseWait,
UseReactive, and UseEither, respectively.

Training a Classifier

Next we choose a classifier such that the test data used in the online phase are not considered while
training a classifier. For the cloud system, this was accomplished through leave-one-out cross-
validation. First, we left out a test trace (iterating through all 87 traces) on which the classifier
would later be used to evaluate the learning-based approach. Using the problems generated from
the remaining 86, we did 10-fold cross-validation to train a classifier. Classifier performances are
then averaged over all validation folds, and the best one is picked for the test trace. For the UAV
team, we used 630 missions (using 630 seeds) to train a classifier using 10-fold cross-validation.
Once the best classifier is identified and trained, we simulated 70 missions (using seeds other than
the 630 seeds) in the online phase to evaluate the learning-based approach. During cross-validation
for the systems, each fold had the same proportion of classes as the overall dataset to preserve the
real-world imbalance between classes.

To define the “best” classifier in cross-validation (CV), we did not use the typical measure
of accuracy. To explain in the context of the cloud-based system, due to the data being skewed
towards UseEither, even a trivial classifier that always predicts UseEither would have a relatively
high accuracy (1287/1651 = 0.78). Instead, we analyzed recall, precision, and F1 score for
each of the three classes to judge classifier performance. As it turned out, the limitations of the
training data made it challenging to discover situations when ρwait is the best choice. Therefore,
in CV we maximized the recall value for UseWait. Using this criterion we determined that an
ensemble classifier known as extremely randomized trees [42] achieved the best performance in
both systems. For the cloud, this classifier had recall/precision for UseWait above 0.8, and the
same was above 0.9 for UseReactive and UseEither. However, even after trying several classifiers
for UAVs, UseWait recall cannot go beyond 0.70 and precision above 0.72. Both recall and
precision for UseReactive and UseEither were between 0.8 and 0.85.

6.2.2 The Online Phase
As discussed earlier, both the systems periodically (i.e., once per minute) evaluate if an adaptation
is needed. When a system observes a problem (ξ) at run time, the hybrid planning algorithm is
invoked once per planning problem, thus committing to either invoking ρdet/ρmdps or ρwait until a
deliberative plan is ready. In the learning-based approach, the offline-trained classifier is used
on ξ to assign it to one of the three classes discussed above in Section 6.2.1. If the returned

74

class is UseWait or UseReactive, the system invokes ρwait or ρdet/ρmdps, respectively. However, if
the class is UseEither, then the choice is not fully defined by the profiling information. To deal
with this ambiguity, we consider two variants of the learning-based approach: LB-W chooses to
wait in the case of UseEither, and LB-R chooses UseReactive. Both variants are studied in the
evaluation. As already mentioned, for the cloud-based system, using the classifier trained on 86
traces we executed one left-out trace, and repeated this process for each trace for evaluation. For
the team of UAVs, using the classifier trained on 630 missions, we simulated 70 different missions
for evaluation. Except aggregate utility (based on Formulas 1.1, and 6.3), all the evaluation
parameters (e.g, choice of reactive and deliberative planning, instantiation of the condition-based,
LB-W, and LB-R) are independent.

6.3 Claims Validation
This section presents experimental results from the two case studies, and discusses how these
results support the thesis claim that hybrid planning is effective, general, and flexible.

6.3.1 Effectiveness

The thesis claims that hybrid planning is more effective than its constituent planning approaches;
for each trace/mission, we define higher effectiveness of a planning as greater utility accrued over
the trace/mission. To validate the effectiveness claim, we investigate if hybrid planning provides
higher utility compared to its constituent approaches used alone. We compare two variations of
hybrid planning to its constituent approaches; The first uses the condition-based approach and the
second uses the learning-based approach to solve PLNSEL.

For validation of the effectiveness claim, each trace/mission was evaluated in seven modes:
1. Non-wait reactive — only ρdet/ρmdps is used (i.e., used ρdet for the cloud and ρmdps for the

UAVs);

2. Wait — only ρwait is used, which essentially means the system does not adapt;

3. Deliberative — the system invokes ρmdp/ρmdpl (i.e., used only deliberative planning ρmdp
for the cloud and ρmdpl for the team), and waits until a deliberative plan is available;

4. Non-wait hybrid planning (NW-HP) — when ρdet/ρmdps is always invoked until a delibera-
tive plan is ready;

5. Condition-based hybrid planning — when a deliberative plan is not available, ρdet and ρmdps
are invoked only when the predefined conditions are met as described in Section 6.1.1 and
Section 6.1.2 for the cloud-based system and the UAV team, respectively;

6. LB-W hybrid planning — the learning-based approach solves PLNSEL and invokes ρwait
if classification is uncertain; and

7. LB-R hybrid planning — the same learning-based approach solves PLNSEL, but invokes
ρdet/ρmdps if classification is uncertain.

Given ρmdp/ρmdps and ρwait, non-wait reactive and wait modes represent the two possible
modes when only reactive planning is used. The condition-based mode that calls ρwait until a

75

deliberative plan is ready is not considered separately since it is equivalent to the deliberative
mode. In both the case studies, although the classifier performed well during the cross-validation,
comparison of the learning-based modes (i.e., LB-W and LB-R) with NW-HP and deliberative
mode will further indicate whether the learned classifier was able to switch effectively between
the reactive approaches (i.e., ρwait and ρdet/ρmdps); NW-HP and deliberative mode use only one of
the reactive approaches.

The results of our experiments showed that on average (both the condition-based and the
learning-based) hybrid planning outperforms its constituent planners. The experiments further
demonstrate that the learning-based approach is more effective than the condition-based. This
indicates that we can instantiate hybrid planning more effectively by solving PLNSEL using the
learning-based approach instead of the error-prone condition-based approach since it relies on
human judgment to identify the right and comprehensive conditions.

Hybrid Planning Outperforms its Constituent Planners

Our experiments in both systems indicate that hybrid planning provides more utility than indi-
vidual planning, as depicted in Figure 6.4 and Figure 6.5. The box-plots in Figure 6.4 show the
differences in accrued utility (per trace/mission) when comparing pairs of planning approaches.
Bars in Figure 6.5 show performance comparison of different planning approaches in terms of
traces/missions count.

In Figure 6.4, the boxes represent the median 50% of traces (in terms of the difference between
a pair of planners), with the horizontal lines inside showing the median difference across the
traces. The whiskers show the minimum and maximum difference in utilities. For example, the
leftmost box compares the condition-based approach to only using reactive (i.e., ρdet/ρmdps). The
fact that the lower edges (i.e., the first quartile) of the six leftmost boxes are above zero indicates
that for most of the traces/missions hybrid planning provides equal-or-higher utility compared to
non-hybrid approaches. Specifically for the cloud-based system, the condition-based approach,
LB-W, and LB-R show equal-or-higher utility than both reactive and deliberative planners on 57
(66%), 60 (69%), and 57 (66%) traces respectively (out of 87 total); moreover, for the respective
boxes, the positive whisker is longer than the negative one, indicating higher maximum gain than
loss when choosing hybrid planning.

Based on the estimator of true probability with a confidence level of 95%, the true probability
ranges for the three hybrid planning approaches to match or improve over both non-hybrid planners
are (0.55; 0.76), (0.58; 0.80), and (0.55; 0.76). For the UAVs, the condition-based approaches,
LB-W and LB-R, show equal-or-higher utility than both reactive and deliberative planners on
51 (71%), 55 (78%), and 56 (80%) traces respectively (out of 70 total). The longer negative
whiskers for the 1st, 3rd, and 5th box-plot are explained by the team being averse to destruction
in reactive mode, which avoids the threats at all costs; therefore, in certain missions the team
survives whereas it gets destroyed (i.e., mission failure) in hybrid planning modes, which lost
significantly in the overall utility for those missions. Based on the estimator of true probability
with a confidence level of 95%, the true probability ranges for the condition-based approach,
LB-W, and LB-R to match or improve over both non-hybrid planners is (0.58; 0.82), (0.65; 0.89),
and (0.67; 0.9), respectively.

We also found that it is unlikely that hybrid planning performs worse than both reactive and

76

-100000

-50000

0

50000

100000

150000 Difference in Utility Units The Cloud-based System

CB
-Reactive

CB
-

Deliberative

LB-W
-

Reactive

LB-W
 -

Deliberative

LB-R
-

Reactive

LB-R -
Deliberative

LB-W
-CB

LB-R
-CB

LB-W
-NW

-HP

LB-R
-NW

-HP

-20

-15

-10

-5

0

5

10

15

20

25

ConditionHP - Reactive ConditionHP - Deliberative LB-W - Reactive LB-W - Deliberative LB-R - Reactive LB-R - Deliberative LB-W - ConditionHP LB-R - ConditionHP LB-W - NW-HP LB-R - NW-HP

Difference in Utility Units The Team of UAVs

CB
-Reactive

LB-W
-

Reactive

CB
-

Deliberative

LB-W
 -

Deliberative

LB-R
-

Reactive

LB-R -
Deliberative

LB-W
-CB

LB-R
-CB

LB-R
-NW

-HP

LB-W
-NW

-HP

Figure 6.4: Utility differences per trace/mission added up for all traces/missions. Each bar
represents a sum of differences for a pair of planning approaches.

77

26
5

23
9

22 13 17 25 25 26

0
26

1
12

1 10

32 25 19
27

61 56 63 66 64 64

38 37 43 34

0

10

20

30

40

50

60

70

80

90

Reactive
Vs. CB

Deliberative
Vs. CB

Reactive
Vs. LB-W

Deliberative
Vs. LB-W

Reactive
Vs. LB-R

Deliberative
Vs. LB-R

 CB Vs.
LB-W

 CB Vs.
LB-R

NW-HP
Vs. LB-W

NW-HP
Vs. LB-R

The Cloud-based System Higher Equal LowerTraces Count

18
5

15
1

14
1 0 0 0 0

2
15 2

11
2

6

43
33

57
41

50 50 53 58 54
63

27
37

13
29

0

10

20

30

40

50

60

70

Reactive
Vs. CB

Deliberative
Vs. CB

Reactive
Vs. LB-W

Deliberative
Vs. LB-W

Reactive
Vs. LB-R

Deliberative
Vs. LB-R

 CB Vs.
LB-W

 CB Vs.
LB-R

NW-HP
Vs. LB-W

NW-HP
Vs. LB-R

The Team of UAVsMission Count

Figure 6.5: Pairwise performance comparison of planning approaches. Each bar is for a pair of
approaches, labeled with the counts (out of the total traces/missions) of traces/missions where the
first approach provides higher/equal/lower utility compared to the second approach in the pair.

78

deliberative planning; therefore, using hybrid planning is less risky compared to reactive and
deliberative planning. Out of 87 traces, hybrid planning does worse than both of its constituent
planners only in 1 (1%), 5 (6%), and 5 (6%) traces for the condition-based approach, LB-W,
and LB-R planning, respectively. This leads us to, respectively, (0,0.12), (0,0.16), and (0,0.16)
probability ranges of both reactive and deliberative planning outperforming hybrid planning
according to the estimator of true probability, with 95% confidence. For the UAVs, hybrid
planning does worse than both non-hybrid planners only in 4 (6%), 2 (3%), and 2 (3%) missions
respectively (out of 70 total). The true probability ranges for the three hybrid planning approaches
to match or improve over both non-hybrid planners are (0; 0.17), (0; 0.15), and (0; 0.15). Therefore,
when choosing between deliberative, reactive, and hybrid planning, the latter is the least risky
choice.

The Learning-based Approach Outperforms the Condition-based Approach

Our experiments show that the learning-based approach provides more utility than the condition-
based on average. In Figure 6.4, the 7th and 8th box is above zero, indicating that for the majority of
traces/missions the learning-based hybrid planning does equal-or-better than the condition-based.
Specifically, out of 87 traces, LB-W and LB-R provided higher or equal utility for 70 (80%)
and 62 (71%) traces, respectively. The estimator of true probability suggests with a confidence
of 95% that the true probability range for the condition-based hybrid planning yielding higher
utility than LB-W and LB-R is (0.09,0.3) and (0.18,0.39), respectively. For the UAV team, out
of 70 missions, both LB-W and LB-R provided higher or equal utility for all the 70 missions.
With a confidence of 95%, the true probability range for the condition-based hybrid planning
yielding higher utility is (0,0.12). Thus, it is less risky, and in many cases advantageous, to use
the learning-based over the condition-based hybrid planning.

However, the magnitude of the utility difference between the condition-based and the learning-
based is smaller than that between hybrid planning and its constituent planners. The reason is
that in response to the condition-based constraint violations, reactive planners typically propose
conservative measures such as addServer, decreaseDimmer, and IncAlt2. These actions
decrease the worst-case utility loss, which is particularly high for the second system due to
the possibility of destruction. In contrast to the condition-based, despite not falling behind in
performance, the learning-based enables the system to (automatically) learn when utility could be
gained by using reactive planning, even without violations. Thus, we conclude that the condition-
based is more risk-averse, whereas the learning-based is more opportunistic since it does not
limit the use of non-wait reactive planning to constraint violations.

The outperformance of the learning-based approach is less significant compared to the NW-HP
mode, as shown in the right-most two boxes, because in both systems invoking the non-wait
reactive planner (i.e., ρdet or ρmdps), in general, was preferred over using ρwait.7 However,
compared to NW-HP modes, the learning-based approach was able to automatically learn a
classifier that switches effectively between the reactive approaches.

7This fact is supported by the class imbalance of the labelled data, which is skewed against using ρwait as
presented in Section 6.2; this indicates the model-checking was able to label the problems reasonably well.

79

6.3.2 Generality

The thesis claims that hybrid planning is general enough to be applied (effectively) to self-adaptive
systems operating in domains. The two case studies validate this claim since the systems used
in the two case studies differ in various significant ways. The first three differences mentioned
below were stated in Chapter1 and restated here. However, the fourth difference was realized
while conducting the experimental study.

• Quality dimensions of concern: The cloud-based system aims at lowering response time,
increasing revenue, and decreasing operating cost, whereas the UAV team intends to avoid
threats and detect targets;

• The cost of poor/delayed actions: Poor/delayed actions could lead to destruction of a UAV(s)
in the team; Therefore, generally speaking, the (monetary) cost of such actions is higher for
the team compared to the cloud-based system;

• The ability to recover from poor/delayed actions: Even if the cloud-based system fails to
maintain the critical response time constraint due to poor/delayed actions, it can still recover
back to a desired state later. However, in case of the UAV, a failure to avoid a crash (i.e.,
safety constraint) will lead to a mission failure, as illustrated by the negative long whiskers
in Figure 6.4;

• Significance of wait/non-wait planning: The cloud-based system has the majority of (both)
training and testing problems labelled/classified as either UseWait (i.e., use wait planning) or
UseEither (i.e., use either wait or non-wait reactive approach as they are equally preferred),
indicating that for a large number problems wait planning was the preferred or the equally
preferred choice compared to non-wait planning. In contrast, for the UAV team, the majority
of problems were labelled as UseReactive (i.e., use non-wait reactive), indicating the
significance of wait planning was relatively lower compared to non-wait planning. Despite
this difference between the two systems, in both cases hybrid planning outperformed its
constituent approaches. Moreover, the learning-based approach outperformed the condition-
based approach indicating, the potential of the former to address PLNSEL.

6.3.3 Flexibility

This thesis claims that Hybrid planning is flexible enough to be instantiated (effectively) using
different combinations of reactive and deliberative planners. Two instantiations are considered
different if any of the constituent (reactive or deliberative) planners are different between the
instantiations.

To demonstrate flexibility, we use different combinations of off-the-shelf deliberative and
reactive planning approaches for the two case studies. Specifically, the first case study uses MDP
and deterministic planning as the deliberative and reactive approach, respectively. In contrast, the
second case study uses MDP planning both as a deliberative and reactive approach; however, the
reactive version of MDP planning uses a shorter planning horizon and only a subset of adaptation
actions compared to the deliberative version of MDP planning.

80

6.4 Other Findings: Influence of Constituent Planners on Hy-
brid Planning

This section presents an empirical study (using the data from the two case studies) that aims to
characterize the impact of constituent planners on the performance of a hybrid planner. Knowing
such dependencies (up front) can help engineers to instantiate hybrid planning using a right set of
constituent planners. Our evaluation shows that the performance of hybrid planning depends on
the performance of deliberative planning, and the (relatively) effective reactive planners. Below is
the evidence and implications for software engineers.

Deliberative planning performance has a consistent positive impact on the performance of
hybrid planning. We observe a medium-to-strong correlation (p < 0.01) between the deliberative
mode and each of the three hybrid planning modes. For the cloud system, the Pearson correlation
is 0.95 for the condition-based approach, 0.97 for LB-W, and 0.95 for LB-R. For the UAVs team,
the correlation is 0.6 for the condition-based approach, 0.61 for LB-W, and 0.59 for LB-R. The
interpretation of this finding is that, once a deliberative plan is ready, it inevitably takes over from
any reactive plan, hence the performances of hybrid planning and deliberative planning are tightly
coupled. This finding is further illustrated by Figure 6.6 for the cloud-based system and the UAV
team; the x-axis represents traces/missions sorted in ascending order in terms of aggregate utility
(y-axis) accrued by deliberative mode. However, the performance of hybrid planning is not linked
to a reactive approach. Intuitively, if a particular reactive approach (e.g., ρdet or ρmdps) is not
effective, the hybrid planner can choose another reactive approach (e.g., ρwait) in F .

To further investigate this correlation, we conducted a Chi-square independence test, which
also showed that the ability of hybrid planning to perform better than or equal to its constituent
planners significantly depends (p < 0.01) on deliberative planning performing better than or equal
to reactive ρdet/ρmdps. For the cloud-based system, the χ2 values for the condition-based approach,
LB-W, and LB-R are 43.79, 32.38, and 19.02, indicating strong-to-moderate dependency. For the
UAVs, the χ2 values for the condition-based approach, LB-W, and LB-R are 18.97, 22.16, and
20.37, also indicating strong-to-moderate dependency. This finding supports our assumption that
an effective deliberative planning approach is a foundation for hybrid planning. As the chi-square
test suggests, one should prefer hybrid planning to reactive planning if deliberative planning
consistently provides higher or equal utility compared to reactive approaches.

In addition, we found that the performance of each reactive planner has a positive impact
on the performance of hybrid planning, moderated by the relative performance of the reactive
planner. Our analysis found that among the reactive approaches, the more effective ones had a
stronger influence on the hybrid planning performance. The above holds under the assumption that
the classifier performance is reasonably good (in our evaluation this meant having precision/recall
above 0.7 for all classes). Therefore, we suggest identifying the more effective approaches (via
comparing their utilities or respective class counts in training data) and focusing the resources on
improving them further.

We discovered this dependency by fitting a regression model to the utility of a hybrid planner
Uhp, using the deliberative utility Ud and reactive utility Ur as independent variables. The fitting
is done over all the traces/seeds in both the case studies. Furthermore, to represent the moderating
effect, these utilities were weighed with the following ratios:

81

-200000

-150000

-100000

-50000

0

50000

100000

Day69
Day23

Day59
Day9

Day53
Day73

Day52
Day65

Day18
Day12

Day17
Day62

Day11
Day26

Day74
Day8

Day22
Day6

Day57
Day85

Day45
Day82

Day70
Day21

Day54
Day56

Day90
Day76

Day89
Day49

Day47
Day25

Day64
Day71

Day87
Day84

Day79
Day40

Day27
Day83

Day42
Day35

Day43
Day33

 Deliberative Condition-based LB-W LB-R

Aggregate utility The Cloud-based System

Traces

0

5

10

15

20

25

30

405 162 529 251 71 473 324 2 268 154 477 103 693 484 294 640 219 242 356 635 147 224 384 522 646 53 418 253 361 593 696 526 220 392 372

Mission Seeds

Aggregate utility The Team of UAVs

Figure 6.6: Performance of the hybrid planning modes improves with the performance of deliber-
ative planning mode.

82

• Ud/Unw for the deliberative utility, where Unw is the utility of the NW-HP planner on that
day. In this case, Ud is a proxy for the utility of the wait planner, which is invoked instead
of a reactive planner for Unw. Thus, this ratio represents how much the reactive planning is
better than waiting planning.

• Unw/Ud for the reactive utility, thus amplifying it on days when it is preferable to the wait
planning, and reducing it on days when wait planning is preferable.

Thus, we arrive at the following regression model:

Uhp = a ⋅
Ud
Unw

⋅Ud + b ⋅
Unw
Ud

⋅Ur + c,

where a, b, and c are regression coefficients determined by fitting the above function to the utility
data. In the second case study we fit this exact function, and in the first case study we had to
adjust the utility numbers such that none is negative or zero (otherwise the meaning of ratios is
lost). Thus, we performed the following operation for the utility U of each type of planning:

U ∶= U +min(U) + 1.

In the fit models corresponding to the two systems, the coefficients a and b were found positive.
We tested the hypothesis that a and b are not zero with a t-test, yielding a highly significant result
(p < 0.01) that indeed the dependency exists.

6.5 Applications of the formal model

Chapter 3 listed some potential applications of the formal model describing the hybrid planning
problem. One of the key applications is using the model as a unifying evaluation framework to
compare/analyze instantiations of hybrid planning. Grounding the analysis of an instantiation on
the formal model has several benefits. First, while analyzing/designing a hybrid planner, the model
highlights how the implementation barriers are handled, describing the outcomes, assumptions,
and limitations of the design choices. Second, the model breaks down the bigger design problem
into four subproblems, allowing separate investigation of design decisions for each. Therefore,
such an analysis not only highlights the implicit assumptions made by designers of hybrid planners,
but also gives confidence that all relevant challenges are addressed. In Chapter 4, we explained
our approach to hybrid planning in the context of the formal model, thereby demonstrating the
utility of the model in analyzing hybrid planning intantiations.

This section provides another example demonstrating how the formal model can be used
to analyze instantiations of hybrid planning. The section uses the formal model to analyze an
existing instantiation of hybrid planning that has been proposed by another researcher and has
shown to be effective in its context. Our analysis not only provides insight into the strengths and
weaknesses of the instantiation, but also highlights the (often implicit) assumptions behind the
designs. Moreover, to indicate how the formal model can be used to compare hybrid planning
instantiations, we compare this instantiation with the learning-based hybrid planner applied to the
cloud-based system as described in Section 6.1.1.

83

6.5.1 Analysis of Hybridized Planner

To demonstrate practicality of the formal model, we analyze the hybrid planning instantiation
proposed by Mausam et al. [79]; they refer to this instantiation as a hybridized planner. The
instantiation uses three kinds of planning:

• MDP planning: deliberative planning uses an exact MDP solver General Planning Tool
(ρgpt)[16]. ρgpt uses labeled real-time dynamic programming (RTDP), which finds an
optimal solution to an MDP once planning is complete. Labeled RTDP is anytime in nature:
the planning process could be stopped anytime to get a sub-optimal plan; however, more
planning time leads to a better plan. Since RTDP converges to an optimal plan slowly, ρgpt
can be preempted after planning for a (predefined) fixed amount of time to get a sub-optimal
plan.

• Non-deterministic planning: reactive planning uses a Model Based Planner (ρmbp) [11]. For
a planning problem with probabilistic uncertainty and utility function to be optimized, ρmbp
relaxes the problem in two ways: (a) it treats probabilistic transitions as non-deterministic
transitions, and (b) it ignores the utility function while planning. The goal of planning is to
reach one of the absorbing goal states — ones that end the process once reached. Model
Based Planner (MBP) finds strong cyclic plans (i.e., one that admits loops but for every
non-goal state there always exists a path to reach a goal unless the state is a dead end);
however, such plans might be (highly) sub-optimal. ρmbp solves a relaxed problem, so it is
more scalable than ρgpt.

• Wait planning: similar to our approach presented in Chapter 4, ρwait is one of the constituent
reactive approaches for this instantiation. While formalizing this instantiation, the formal
model helped us discover the implicit assumption that wait planning is one of the reactive
approaches.

Here is a high-level overview of how a combination of ρgpt and ρmbp is used to balance quality
and timeliness of planning. For a planning problem, ρgpt is used to plan for a fixed duration
(say, thyb). Once thyb elapses, ρgpt returns a (possibly) sub-optimal plan (say, πgpt). ρmbp is also
expected to be ready with a plan (say, πmbp) by thyb. Both ρgpt and ρmbp determine a universal
plan (i.e., a policy) on the same state space. Therefore, in theory coordinating between their plans
is not an issue (i.e., PLNCRD is solved). Policies determined by the ρgpt and ρmbp are merged
together into a consolidated policy, which is a hybrid plan ω. Once a hybrid plan is determined, as
discussed in Section 3.3.1, PLNSEL (or subproblem PTHSEL) is solved. Since the system waits
(i.e., executes no action) until thyb, we can say that the system is governed by ρwait during that
period.

The instantiation uses an algorithm to merge πgpt and πmbp. For a state s, πmbp is used if s
is neither marked as solved by RTDP, nor has been visited a number of times above a certain
user-defined threshold (V) in RTDP. Intuitively, a number of visits of state s lower than V indicates
low confidence in the quality of πgpt(s), therefore πmbp(s) is preferred. Sometimes, ρmbp may
suggest that no solution exists from a state s; this might happen due to a choice of action in any
of the proceeding states. In such cases, the algorithm recursively re-visits proceeding states to
ensure if action for any of those states could be modified in order to find a solution from s. Further
details can be found in the paper [79].

84

Similar to our approach to instantiate hybrid planning as outlined in Chapter 4, this instantia-
tion makes certain assumptions to constrain a potentially infinite reachability graph (i.e., issue
INFINITE-REACHABILITY-GRAPH). Here are the assumptions:

• TWO-LEVELS-OF-PLANNING: Hybrid planning is instantiated using one deliberative
planning (i.e., using ρgpt) and two reactive planning approaches (i.e., using ρwait and ρmbp).
ρwait and ρmbp determine a plan in negligible time and within thyb respectively. This
assumption reduces the number of problem-planner nodes in a graph, making the problem
of hybrid planning tractable in practice.

• FINITE-HORIZON: Each planning problem has a finite planning horizon. In other words,
planning problems have explicit goal/end states. This assumption restricts the number of
problem-planner nodes in the reachability graph.

• DISCRETE-STATE-VARIABLES: The value of state variables (e.g., time) is discrete. Oth-
erwise, a reachability graph would have infinite nodes.

Once the size of the reachability graph is constrained, the next challenge is to deal with issue
DELAY-IN-SOLVING-SUBPROBLEMS, i.e., solve the four subproblems (i.e., PRBSEL, PLRAST,
GPHCON and PTHSEL) in a negligible time. The first three subproblems are simplified by the
assumptions in such a way that no time is consumed to solve them, therefore the remaining
concern is to solve PTHSEL in negligible time. To this end, it is assumed that the time required
to merge πgpt and πmbp is negligible (NEGLIGIBLE-MERGE-TIME), and as already discussed,
an approximate solution to PTHSEL is found once these two policies are merged. The merge
algorithm relies on a user-defined variable (V) to decide whether to use an action from πgpt or πmbp
for a particular state. This criterion is a kind of heuristic rather than a principled approach, therefore
we treat the criterion as an assumption (say, DELIBERATIVE-PREFERRED-CONDITIONALLY).

Finally, issue REQUIRED-APRIORI-KNOWLEDGE-OF-EXECUTIONS also needs to be handled
for a practical application of hybrid planning; i.e., solve PTHSEL without having a priori knowl-
edge of utility of execution. However, this is not a problem, since merging πgpt and πmbp policies
does not require this knowledge. Merging is either done based on expected utility (when a state is
marked as solved by RTDP) or assumption DELIBERATIVE-PREFERRED-CONDITIONALLY.

Next, we analyze the proposed instantiation as we did for our approach in Chapter 4.

Constructing a Reachability Graph

Construction of a reachability graph has two steps: (i) restricting number of nodes in the graph to
make it tractable, and (ii) connecting nodes if the timing and the preemption condition is satisfied;
a (direct) connection guarantees a seamless transition between two nodes.

Restricting number of nodes: Similar to our approach, assumptions TWO-LEVELS-OF-PLANNING,
FINITE-HORIZON, and DISCRETE-STATE-VARIABLES help restrict the number of problem-
planner nodes in the reachability graph. Due to assumption TWO-LEVELS-OF-PLANNING, for a
planning problem (say Pb), three nodes are possible. They correspond to (a) MDP (i.e., delibera-
tive) planning that consists of planner ρgpt and problem description that represents probabilistic
uncertainties and utility function, (b) non-deterministic (i.e., reactive) planning that consists of
planner ρmbp and problem description that ignores probabilistic uncertainties and utility function,

85

and (c) wait planning that consists of planner ρwait and problem Pb. As in our approach, for
the proposed instantiation, solving PRBSEL is not required, since output of PRBSEL is used by
PLRAST, which is not explicitly handled, as explained in Section 6.5.1.

Connecting the nodes: Once the problem-planner nodes are finite, the next step is to con-
nect the nodes in the reachability graph. For this purpose, the instantiation needs to solve
PLRAST and GPHCON. A practical application of hybrid planning needs to deal with the is-
sue of DELAY-IN-SOLVING-SUBPROBLEMS; however solving (both) PLRAST and GPHCON in
negligible time is infeasible.

For this instantiation, no time is consumed to solve PLRAST because it is not handled explicitly.
Solving PLRAST is not required since the outputs (the deadline and partial utility function) are
not required to approximate a solution to a hybrid planning problem. Deadline is not required
since, as discussed later, GPHCON does not require evaluating the timing condition. Partial utility
function is not required since the merge algorithm (as discussed earlier) approximates a solution
to PTHSEL without having knowledge of utility of executions.

The proposed instantiation does not explicitly handle GPHCON, since the timing and the
preemption condition is satisfied by design. The timing condition is satisfied because non-
deterministic plan execution waits until thyb. Since both ρgpt and ρmbp generate a policy for the
same state space, once policies πgpt and πmbp are ready, they are ready to take over plan execution
from each other for any state in the policies; thus, the timing condition between the two policies is
satisfied. The timing condition between wait planning, and the other two planning approaches
is satisfied because transition from the former planning to either of the later approaches only
happens after thyb; that is, when ρgpt and ρmbp are ready.

The preemption condition between different planning approaches is satisfied because (a) both
ρgpt and ρmbp generate a policy, and (b) domain is assumed to be Markovian. These properties
provide a theoretical guarantee of a smooth transition from the empty action � (suggested by
ρwait) to πgpt and πmbp. In addition, these two properties also facilitate interleaving between πgpt
and πmbp, once they are merged together to formulate a hybrid plan.

Finding a Path in a Reachability Graph

By now, we have analyzed how the instantiation restricts the number of problem-planner nodes and
deals with the issue of connecting them. There are some similarities between this instantiation and
our approach discussed in Chapter 4. First, FINITE-HORIZON, DISCRETE-STATE-VARIABLES,
and TWO-LEVELS-OF-PLANNING are similar for both the cases. Second, they do not explicitly
handle PRBSEL, PLRAST and GPHCON.

However, the approach to find a path (i.e., PTHSEL) linked to a hybrid plan is quite different
between this instantiation and our approach. In our approach, for a planning problem (say, Pb),
once a deliberative plan is ready it is preferred. However, while deliberative planning is in process,
both reactive and ρwait nodes are available for selection, since both are ready with a plan in a
negligible time. In contrast, for the instantiation analyzed in this section, the problem-planner
node corresponding to MBP planning is not used until thyb (i.e., fixed time to preempt GPT).
As a result, initially the wait planning node is a default choice in the path. However, nodes
corresponding to both, MDP and non-deterministic planning, are available for selection after thyb.

86

Once πGPT and πMBP are merged, a hybrid plan is ready, thereby PTHSEL is solved. In other
words, empty action � is used until thyb, but merged policy πhyb is executed thereafter.

To summarize this instantiation, certain assumptions help in restricting the size of a reachability
graph. Similar to our approach, PRBSEL, PLRAST, and GPHCON are not explicitly handled. The
solution to PTHSEL is found by merging the policies determined by MDP (i.e., deliberative) and
non-deterministic (i.e., non-wait) planning based on the algorithm/heuristic discussed earlier. We
have formalized the implicit assumptions about the utility that would make this instantiation valid.

6.5.2 Comparison Between the Learning-based and the Hybridized Plan-
ner

This section shows how hybrid planning instantiations can be compared using the formal model as
a framework. Table 6.4 illuminates the similarities and differences between learning-based hybrid
planning applied to the cloud-based system (as discussed in Section 6.2) and hybridized planner.8

The basic ingredients of the graph are similar (three planners, similar node types, and a restricted
space of possible nodes), but the planners approach reachability, timing, preemption, and path
selection in different ways. For example, to solve PTHSEL, learning-based planner uses machine
learning to decide between deterministic and wait planning node until an MDP policy is ready.
In contrast, hybridized planner selects wait planning node until thyb, and afterwards, states are
handled by πgpt or πmbp as per the merge algorithm. This suggests that once approaches diverge
in one subproblem, they are likely to differ on the downstream subproblems. These observations
raise a question: can subproblem solutions be reused across planners that solve the preceding
subproblems differently? We anticipate that future work will provide more evidence for this
question.

6.6 Threats to Validity

A central construct of the experiments, using the two systems, is the effectiveness of hybrid
planning. The internal validity of our validation for the effectiveness claim is threatened by
four potentially confounding factors. First, to measure effectiveness, we use a cumulative
utility function (presented in Section 6.1). This function expresses the conflicting goals of such
systems, and similar functions are used to measure performance of cloud-based systems and UAV
team throughout related work [27, 28, 53, 63, 83, 85, 86, 94, 97, 107]. Such utility functions
are applicable to systems that need to accumulate correct behavior while avoiding undesirable
behavior (which is penalized), by performing actions with uncertain outcomes in uncertain
environments (modeled as MDPs).

Second, our objective function for cross-validation (recall on UseWait) could lead to increased
performance of the learning-based approach. This threat is mitigated by precision and recall
for other classes also being high for our chosen classifier, and that the patterns are observed

8Learning-based hybrid planner is a specific instance of the hybrid planning approach presented in Chapter 4.
Therefore, the planner has the same set of assumptions and addresses the four subproblems as discussed in Chapter 4.

87

Formal As-
pect

Learning-based Hybrid Plan-
ner

Hybridized Planner

Planners Prism model-checker (ρmdp) is
used both for deterministic and
MDP planning.

ρmbp and ρgpt is used for non-
deterministic and RTDP plan-
ning, respectively.

Graph node
types

Three kinds of nodes correspond
to deterministic, MDP, and wait
planning.

Three kinds of nodes cor-
respond to non-deterministic,
RTDP, and wait planning.

Handling
PRBSEL

For learning-based and hybridized planner, potential combina-
tions of problem-planner nodes are decided/restricted by various
assumptions listed in Chapter 4 and Section 6.5.1, respectively.

Handling
PLRAST

Learning-based planner approxi-
mates deadline and partial utility
function based on similar prob-
lems seen in the past.

Since both πgpt and πmbp are
assumed to be ready by thyb,
there is no need to calculate
deadline. The partial util-
ity function is not required
because the merge algorithm
approximates a solution to
PTHSEL without knowing the
function.

Handling
GPHCON

The timing and preemption con-
ditions are guaranteed given the
assumptions formalized in Ap-
pendix A. When the respective
assumptions are not satisfied, the
conditions are not met.

The timing condition is sat-
isfied once πgpt and πmbp are
ready. Between wait and non-
deterministic/RTDP planning
the preemption condition is
satisfied since both ρgpt and
ρmbp generate a policy. Be-
tween non-deterministic and
RTDP planning the preemp-
tion condition is satisfied
since ρgpt and ρmbp generate
policy on the same state space.

Handling
PTHSEL

Learning is used to decide be-
tween deterministic and wait plan-
ning node until an MDP policy is
ready.

Wait planning node is selected
until thyb. Afterwards, states
are handled by πgpt or πmbp as
per the merge algorithm.

Table 6.4: Comparison between learning-based planner for the cloud-based system and hybridized
planner in the context of the formal model.

88

in experiments with a broad range of classifier performances. However, it is possible that the
classifier could have led to higher utility than that of LB-W and LB-R.

Third, the relative performances of the condition-based and the learning-based approaches are
due to the specific conditions for triggering reactive planning. Although this condition is tied to
the system’s utility function, it is possible to fine-tune it further, to approach the theoretical limit
of perfectly matching a situation to a reactive approach. However, this fine-tuning is difficult in
practice due to the multi-dimensional utility function and uncertainty in the external environment
that leads to uncertainty in (reactive) action outcomes. Therefore, we expect this tuning to have a
minor effect on the evaluation results.

Fourth, the performance of the learning-based and the condition-based approach may depend
on system parameters (e.g., server costs, ECM factors). Different parameter values might change
the penalties for reacting incorrectly. This threat is mitigated by two different test-beds and hybrid
planners, and a sizable set of traces/missions with substantial variation, which leads to a robust
assessment of planner performance through cross-validation. To our knowledge, this is the largest
set of traces ever used for an evaluation of a cloud-based system.

The external validity of our conclusions is threatened by the use of only two systems and three
reactive planners (ρdet, ρmdps, and ρwait). In theory, the learning-based approach should apply
to any number of reactive approaches in set F ; however, we evaluate using only two planners
at a time. As a sanity check, we compare the learning-based approach with deliberative only
and NW-HP mode; these modes are constrained to use only one of the reactive approaches. The
fact that the learning-based approach outperforms them indicates that the classifier was able to
switch effectively between the reactive approaches used to instantiate a HP. This conclusion is also
supported by the precision/recall values from the cross-validation of the classifier. Furthermore,
labeled training data can be used as a basis for narrowing down the set of constituent planners.

The dependencies between constituent and hybrid planners are dependent on various factors,
including the utility function and assumptions behind the approach. We expect these dependencies
to hold for any utility function that is accrued over states of traces/missions and reflects that
fast reactions are vital to the system’s goals, yet the choice of when to react is not obvious. We
further mitigate the threat to validity by evaluating on two published testbeds (i.e., SWIM [87]
and DartSim [88]) for self-adaptive research. The domains for these testbeds differ in significant
ways, as already discussed in Section 6.3.2.

6.7 Summary
This chapter presented results that support the claims of the thesis. Using the two case studies
that differ in significant ways, we have demonstrated that hybrid planning is effective, general,
and flexible. The case studies also showed that the proposed learning-based approach to solve
PLNSEL is more effective than the condition-based. In addition, we analysed a hybrid planning
instantiation suggested by other researchers and compared it to the learning-based hybrid planner
used for the cloud-based system. Users can use these examples as a handbook to apply the formal
model for analyzing and comparing hybrid planning instantiations.

89

90

Chapter 7

Guidelines to Apply Hybrid Planning

Prior chapters outlined the formal model describing the hybrid planning problem (cf. Chapter 3),
an approach to solve the problem (cf. Chapter 4), and the hybrid planning algorithm (cf. Chapter 5).
Suppose a practitioner is interested in applying hybrid planning. This chapter provides guidelines
for the practitioner to apply the principles outlined earlier in order to use hybrid planning for a
realistic self-adaptive system.

7.1 Introduction

Alice is designing a self-adaptive system for a domain where both the timeliness and the quality
of planning is critical. She has passed a graduate level course on artificial intelligence (AI) that
included topics such as automated planning and machine learning. Consequently, although not
an expert in planning and machine learning, she has a general understanding of various planning
approaches (e.g., classical planning, search heuristics, MDP/POMDP planning), and different
machine learning algorithms (e.g., supervised and unsupervised learning), models (e.g., decision
trees, support vector machines) and techniques (e.g., cross-validation).

While designing the system, she is struggling to find a planner that can balance the timeliness
and the quality of planning for her particular adaptive system and application domain. She has tried
different off-the-shelf planning approaches but the approaches that, in general, provide quality
plans tend to take longer to plan, leading to loss in utility, particularly in emergency situations. In
contrast, the approaches that can provide a timely response tend to provide lower-quality plans.
Now, she is left with two options: (a) compare the existing approaches and pick the one that is
“best" (e.g., performs better than others on average), or (b) develop a customized planner that can
outperform the off-the-shelf planners. She has already explored the first option, and is inclined to
explore the second option in search of a better planner. However, not being an AI researcher, she
anticipates that it will be difficult for her to develop such a customized planner.

While exploring potential planning solutions, she came to know about the idea of hybrid
planning. She is interested in applying hybrid planning, but wonders about questions such as
(a) how to identify an appropriate set of reactive and deliberative planners that can handle the
trade-off between the timeliness and the quality of planning, (b) whether to use condition-based
or learning-based hybrid planning, and (c) how to implement learning-based hybrid planning.

91

This chapter aims at helping Alice to answer these questions. It is structured as follows:
Section 7.2 provides informal guidelines and a quantitative approach to select an appropriate set
of planners to instantiate hybrid planning; Section 7.3 provides insights on how to decide between
condition-based and learning-based hybrid planning; and Section 7.4 highlights challenges to
implementing learning-based hybrid planning and potential solutions to those challenges.

7.2 Instantiating Hybrid Planning

For applying hybrid planning, a key step is to instantiate hybrid planning using a set of (deliberative
and reactive) planning approaches that can balance quality and timeliness of planning. However,
for a domain, choosing such a set is a non-trivial decision due to a large number of choices for a
planning approach.1 For instance, assume the domain has uncertainty in action outcome, therefore
MDP planning can be a suitable choice to determine plans. But, to instantiate MDP planning, one
can configure options such as the algorithm (e.g., value-iteration and policy iteration) to solve an
MDP, optimization threshold2, planning horizon, and the subset of actions to be considered for
planning as done for the DART system (cf. Chapter 6) [78]. Even with a small number (e.g., 10)
of binary configuration options, a large number of MDP planners can be instantiated.

This section aims at providing guidelines and a quantitative approach to identify an appropriate
set of planners to instantiate hybrid planning. To identify the set, a practitioner can use the
guidelines followed by the quantitative approach; they complement each other. However, the
guidelines and the approach are independent of each other, therefore can be used in isolation.

7.2.1 Informal Guidelines to Instantiate Hybrid Planning

The choice of a (deliberative or reactive) planner for a domain depends on the properties of
planning problems used to represent adaptation situations. The properties of a planning problem
have several dimensions such as whether (a) the objective of planning is to reach a predefined
goal state, or to maximize a reward (i.e., utility) function, (b) action outcome is deterministic, or
non-deterministic, (c) there is full or partial observability of the current state, (d) uncertainty in
the domain is captured using probabilistic models, (e) state variables are discrete or continuous,
and (f) there is a single agent or multiple agents to execute a plan. Based on certain assumptions
in this thesis, we scope the kinds of planning problems under consideration in the following ways:

• The objective of planning is to maximize the expected utility calculated through a multi-
dimensional function that captures both quality and timeliness of planning (cf. Chapter 1).

1As a reminder, we use the term "planning" in a broad sense, referring to any decision-making approach that could
be used to determine adaptation plans. Throughout the thesis, we use the term “planner” and “planning approach”
interchangeably. As formalized in Chapter 3, both the terms refer to the black-box that takes a planning problem
as an input and returns a plan. This black box encapsulates various planning aspects such as the planning tool
that implements a planning algorithm/heuristic and its configuration options. Therefore, two instances of the same
planning tool, but with different configuration options will be considered as different planners.

2The value to decide when the improvement in a policy between two successive iterations is not significant enough
to continue the optimization process.

92

• Planning problems have either no uncertainty (i.e., they are deterministic) or use probabilis-
tic models (e.g., MDPs and POMDPs) to capture uncertainty (i.e., non-determinism) in a
domain.3

• The planning problem has a finite planning horizon (cf. assumption FINITE-HORIZON

stated in Chapter 4).
• The value of state variables (e.g., time) is discrete (cf. assumption DISCRETE-STATE-VARIABLES

stated in Chapter 4).
• We assume a single agent executes a plan, therefore multi-agent planning approaches are

out of scope.

Instantiating a Deliberative Planner

To balance the quality with the timeliness of a plan, hybrid planning requires a smooth transition
from a reactive plan to a possibly higher-quality deliberative plan. For such a transition, according
to the formal model, both the timing and the preemption condition need to be satisfied (cf.
Chapter 3). In short, the timing condition is that the deliberative plan should be ready at the
moment of transition, and the preemption condition is that the deliberative plan should have a
provision for the state of a system at the point of transition.

To solve this transition problem (which we referred to earlier as the planning coordination
problem (PLNCRD)), as detailed in Chapter 4, our approach has two assumptions: (a) deliberative
planning generates a universal plan/policy (one containing state-action pairs for all the reachable
states from the initial state), where a mapping from a state (say s) to an action (say a) suggests
a be executed in s; and (b) the operating domain is assumed to be Markovian: the state after a
transition depends only on the current state — not on the sequence of states that preceded it [78].4

The combination of these two characteristics increase the chances of successful preemption if
reactive and deliberative planning use the same initial state (cf. Chapter 4).

Given the constraints that deliberative planning needs to handle probabilistic uncertainty,
generate a policy and plan for Markovian domains, MDP and POMDP planning are two potential
choices to determine a plan. Typically, MDP planning is used for domains with the probabilistic
uncertainty in outcomes of actions [78].5 POMDP planning is a generalization of MDP planning
since it captures the probabilistic uncertainty both in outcomes of actions and in observability of
the underlying state [55]. MDP/POMDP planning generate a policy-structured plan that helps
to deal with uncertainty. To explain further, when executing the policy, due to the uncertainty, a
system might end up in one of the several anticipated states; however, irrespective of the current
state of the system, the action corresponding to that state can be found since the policy has
state-action pairs for all states reachable from the initial state. Finally, both MDP and POMDP are
suitable to plan for Markovian domains [44].

3Probabilistic modeling of uncertainty is needed to calculate expected utility calculated through the utility
function [44].

4A non-Markovian domain can be represented as a Markovian domain using additional state variables to capture
history; however, this may increase the state space and could lead to an increase in planning time, thereby negatively
impacting the timeliness of planning.

5By specifying transition probability as 1, deterministic transitions can also be captured by MDP planning as is
done for the cloud-based system used for the thesis evaluation.

93

Due to their ability to handle uncertainty, which is often required by realistic systems, MD-
P/POMDP planning can potentially determine quality plans; therefore, MDP/POMDP planning
can be a good choice for deliberative planning. Both MDP and POMDP planning have been used
in a variety of domains such as robotics [71], and cyber-security [41, 120]. MDP planning can
also be extended to game-theoretic planning that can incorporate competitive or collaborative
behavior, modeled as (turn-based) stochastic multi-player games (SMGs) [26].6 SMGs can be
particularly useful to provide quality plans to deal with cyber-attacks by modeling a defender
(i.e., a self-adaptive system) and attackers as distinct agents such that the goal of planning is to
determine a plan that helps the defender to protect the systems against the attackers [31].

Although MDP/POMDP planning can provide quality plans they might fail to provide a timely
plan when invoked at run time (i.e., online) [73]; specifically, solving a POMDP is often intractable
except for small problems due to their complexity [100]. Although various optimization algorithms
have been suggested to improve the planning time for MDP [78] and POMDP [96, 100, 106]
planning, planning delay in probabilistic domains is still an ongoing challenge.

If an MDP/POMDP policy can be determined offline (i.e., no run-time overhead), these ap-
proaches can provide a quick and a quality response to a situation as suggested by Mostafa et al. [89].
However, for many realistic systems such as the two systems used for the thesis evaluation, offline
planning is often difficult since: (a) upfront consideration of all the possible states and transitions
for planning might not scale for the systems, and (b) uncertainty in the operating domain could
lead to difficulty in upfront probabilistic modeling of uncertainty in a planning problem specifica-
tion used for the offline planning; imprecise modeling of uncertainty can negatively impact the
quality of planning.7 Therefore, for such systems, online MDP/POMDP planning could be more
suitable than offline planning.

To summarize, given the constraints as mentioned earlier, MDP and POMDP planning could
be good choices for deliberative planning. MDP and POMDP planning can provide quality plans,
but the planning might be time-consuming, and therefore, not suitable to provide quick response
to emergencies. But, by combining POMDP/MDP planning with reactive planning, one can
instantiate a hybrid planner that can deal with the timeliness-quality trade-off. The next section
discusses various ways to instantiate reactive planning.

Instantiating Reactive Planners

To provide a quick response, our approach to hybrid planning combines a deliberative planner
with a set of reactive planners, which provide plans, particularly in emergencies (e.g., constraint
violations), in negligible time. Intuitively, planning time is considered negligible when utility
loss during the planning process is insignificant compared to the (potential) utility gain from the
plan determined from the process. The threshold for planning time to be considered as negligible
depends upon the operating domain. Moreover, even for the same domain, the threshold for
reactive planning might vary depending upon context. For instance, for a self-driving car, the
reactive planning time to avoid a crash with another vehicle next to it would likely be in the range

6A tool for SMG planning can be available online: https://www.prismmodelchecker.org/bibitem.php?key=CFK+13
7In the systems used for the thesis evaluation, instead of doing offline planning by considering all the possible

states and transitions over the entire execution period (for the systems), we do online planning with a shorter planning
horizon, as detailed in Chapter 6.

94

of milliseconds; however, in case the other vehicle is few meters away, the car could tolerate a
longer reactive planning time in return for a better a (reactive) plan. Therefore, it is often difficult
to define this threshold manually at design time.

To deal with this issue, Section 7.2.2 provides a quantitative approach that helps to identify an
appropriate set of reactive planners (to instantiate hybrid planning for a domain) by taking reactive
planning time and the plan quality into consideration so that designers do not have to define the
reactive planning time threshold manually. However, before finalizing the set of reactive planners,
one needs a candidate set of reactive planners to evaluate using the quantitative approach. To this
purpose, this section discusses three techniques to build the candidate set of reactive planners.
These techniques are: (a) anytime planning, (b) using precomputed plans, and (c) planning with a
relaxed deliberative planning problem.8

(a) Anytime Planning: To solve an MDP/POMDP, the state-of-the-art algorithms (e.g., value
iteration and policy iteration) are based on the idea of incremental planning, known as “anytime”
planning. Typically, anytime planning algorithms are optimizing in nature: the planning process
can be interrupted at any time to get a sub-optimal plan, and longer planning times lead to better
plans [122]. For example, in Figure 7.1, the planning (i.e., optimization) process can be interrupted
at time t0, t1, or t2 to obtain a valid but potentially a sub-optimal plan. However, the quality of
plan will be lowest at t0 and highest at t2.

Figure 7.1: Anytime algorithms are optimizing in nature and can return a valid plan to a planning
problem even if planning is interrupted before the optimizing process ends.

This anytime nature of these algorithms can be utilized to provide a reactive response from
the deliberative (i.e., MDP/POMDP) planner itself. To explain further, when a system observes a
(planning) problem, deliberative planning can be invoked that will provide a quality plan once
the planning is over. Meanwhile, intermediate plans (e.g., at time t0, t1, or t2) can be used to

8These techniques can be used in combination with the quantitative approach (as recommended in this thesis) as
well as in isolation (i.e., without the approach) to identify the set of reactive planners.

95

provide a reactive response. However, the key challenge to use this approach (to provide a reactive
response) is to decide how long to wait before one can get a “reasonable” (e.g., non-fatal) plan.
In the context of this thesis, intermediate plans are assumed to be ready in a negligible time (cf.
Chapter 4), and if the plans are not good enough, the learning-based hybrid planning will not
use the anytime approach (from the set of reactive plans) to provide reactive plans. For more
general solutions to this challenge, one can refer to different variations/frameworks proposed by
researchers in the context of MDP [17, 60, 114] and POMDP [96, 119] planning.

(b) Using Precomputed Plans: To determine adaptation plans, researchers have suggested a
diverse set of planning approaches such as rule-based adaptation [27] and case-based reason-
ing [107, 115] that, generally speaking, determine an adaptation plan quickly because the plan is
not generated at run time, but rather selected from an existing set of precomputed plans; however,
quality (in a utility-theoretic sense) of plans might be bad, since the set of precomputed plans
may not be sufficient to handle unforeseen problems or environments [1]. Similarly, fuzzy-logic
determines plans quickly since it uses a predefined set of rules to determine a plan [76]; however,
the approach is not robust unless there is a comprehensive set of rules, and having such a set
is non-trivial, particularly for domains with uncertainty [8]. To summarize, approaches such
as rule-based adaptation, case-based reasoning, and fuzzy-logic can find a plan quickly but the
plan might be of low quality. However, since these approaches have potential to determine plans
quickly, hybrid planning can be instantiated with these approaches (as reactive planners) to provide
a quick response to emergencies, and a deliberative planner that can handle uncertainty better than
these reactive ones.

(c) Planning with the Relaxed Deliberative Planning Problem: Another technique to instan-
tiate reactive planning is to plan for relaxed planning problems compared to the one used for
deliberative planning. The deliberative planning problem can be relaxed by reducing the planning
search space and/or by relaxing the planning goal. Planning with a reduced search space and/or
a relaxed goal is likely to result in reduced planning time. Once the planning problem has been
relaxed one can use either the deliberative planner itself or search heuristics that find quick, but
potentially sub-optimal plans. This section discusses techniques to relax a planning problem.
These techniques are summarized in Figure 7.2.

One approach to relax the deliberative planning problem is to reduce the search space; planning
with the smaller space can potentially reduce the planning time. The search space can be reduced
by decreasing the states and/or the transitions, for instance, by planning with a subset of actions,
ignoring low-probability transitions [19], and/or reducing the planning horizon (when the planning
goal is not an explicit state). Figure 7.3 illustrates how such techniques can reduce a search space
for planning. Researchers have also suggested heuristics such as ignoring transitions that lead to
negative outcomes with respect to the planning goal [13].

Planning time can also be reduced by relaxing the planning goals. For example, instead of
finding an optimal plan, which typically requires finding all the possible plans and comparing
them to identify the optimal plan, a planner can also settle for a sub-optimal plan (e.g., the first
plan determined by the planner). Another way to relax the planning goal is to plan for a subset of
goals. For instance, for the cloud-based system presented in Chapter 1, a planner can focus on

96

Techniques to relax a planning problem

Reduce the search space e.g., Relax the goal e.g.,

Non-optimal plan is
acceptable

Plan for selective goals
e.g., fix only critical
constraints

Reduce the number of actions

Ignore transitions with lower
probability

Decrease planning horizon

Figure 7.2: Summary of potential techniques to relax a planning problem.

just fixing a response time constraint violation instead of optimizing the utility as calculated by
Formula 5.1; the formula considers other quality attributes such as decreasing the cost of servers
and increasing revenue. When planning for a subset of goals, a planner is likely to find a plan
quickly compared to finding an optimal plan that maximizes the utility.

This section presented guidelines and the techniques to relax a planning problem. Although the
guidelines and techniques are not comprehensive, these can be a good starting point to identify a
potential deliberative planner and a set of reactive planners to instantiate hybrid planning. Due
to the informal nature of the guidelines and the techniques, even after applying them, there
is a possibility that one might end up with some poor planners in the set of reactive planners.
When using learning-based hybrid planning, the classifier will automatically learn not to invoke
them. However, when using condition-based hybrid planning, one might need to do some
experimentation and manual analysis to identify the most effective set of reactive planners in the
context of the predefined conditions to be used to invoke reactive planning. Section 7.3 discusses
a quantitative approach to map a predefined condition with an appropriate reactive planner.

There is also a possibility that even after applying the guidelines, one is left with more than
one choice for deliberative planners; however, only a single deliberative planner is allowed by
the hybrid planning approach proposed in this thesis (cf. Chapter 4). Section 7.2.2 proposes
a quantitative approach to identify the most effective deliberative planner from a given set of
deliberative planners; this planner can be used to instantiate hybrid planning in combination with
the set of reactive planners. Although one can rely only on the guidelines to instantiate hybrid
planning, we recommend using both the guidelines and the quantitative approach. Using the
guidelines in combination with the quantitative approach would act as two levels of filtering, and
therefore is likely to identify a better set of planners to instantiate hybrid planning.

97

S0

S1 S2 S3

S4 S5 S6 S7 S8

t0

t1

t2

Reducing
Horizon

S0

S1 S2 S3

S4 S5 S6 S7 S8

S9 S10 S12 S13 S14S11 S15

t0

t1

t2

t4

S0

S3S2

S6

S7

B

C
1.0

1.0

B
1.0

1.0 1.0

CBS5

1.0
A

S1

A

D
0.8

0.9

1.0

1.0

P

S0

S3S2

S6

S7

B

C
1.0

1.0

B
1.0

1.0 1.0

CBS5

S0

S3S2

S6

S7

B

C
1.0

1.0

B
1.0

1.0 1.0

CBS5

1.0
A

S1

S4

A

0.1

D
0.80.2

0.9

Ignoring the transitions with

probabilities 0.2 and readjusting

the transition probabilities≤

Ignoring actions A and D

Legend

Transition from
state S1 to state S2 with probability P by
applying action A

s2s1 A

s

State Ss

The goal state S

Figure 7.3: Illustration of reduction in a planning search space by applying the potential techniques
such as ignoring actions, ignoring low probability transitions, and/or reducing the planning
horizon.

98

7.2.2 Quantitative Approach to Instantiate Hybrid Planning
Given set F of reactive planners and setD of deliberative planners, the quantitative approach helps
to identify the most effective deliberative planner in D such that hybrid planning is instantiated
using the deliberative planner and the reactive planners in set F . The quantitative approach is
inspired by the labeling process for learning-based hybrid planning detailed in Chapter 4. In
fact, when using learning-based hybrid planning, as discussed later, the steps of the quantitative
approach are naturally captured by the offline phase of learning-based hybrid planning; therefore,
applying the quantitative approach will not incur extra efforts or time.

The quantitative approach has two steps: (a) collect/identify a training set of planning problems
similar to the ones expected at run time, and (b) use these problems and a probabilistic model
checker to evaluate the deliberative planners to identify the deliberative planner, which is most
effective when used in combination with the reactive planners in set F .

Identifying Sample Problems

The first step to apply the quantitative approach is to collect/identify a set of sample problems
similar to the ones expected at run time.9 To evaluate the set of deliberative planners, it is crucial
to cover the planning problem space comprehensively. However, this is challenging due to a
potentially infinite problem space and its unknown structure. There is no single selection strategy
that fits all systems and domains. Therefore, one needs to tailor the sample set to the system’s
context and requirements. Fortunately, modern-day systems produce large amounts of data that
can be utilized to build the sample problem set. For example, in our evaluation systems, we mine
sample planning problems from the available traces containing the typical load patterns [37] (for
the cloud-based system) and randomly sample the space of missions (for the UAVs).

Choosing the Deliberative Planner

This step determines the deliberative approach ρdr ∈ D that performs best in combination with
reactive planners in F for a sample planning problem ξ. In the process, at the end of this step,
we obtain the most effective deliberative planner in the context of the set of sample planning
problems.

To evaluate a combination of a reactive and a deliberative planner for problem ξ, we need
to estimate how well the planning goals are met when the reactive plan (determined by the
reactive planner) is executed followed by the execution of the deliberative plan (determined by
the deliberative planner) when it is ready; in other words, we estimate the performance of hybrid
planning (for ξ) when the reactive planner is invoked in combination with the deliberative planner.
However, as explained in Chapter 4, in the presence of uncertainty in the environment, it is difficult
to evaluate a combination of plans given that its performance may vary across plan executions
(for the same problem) because of different possible outcomes leading to different plan execution
paths. To overcome this problem, similar to the labeling process for the learning-based approach,
we propose using a probabilistic model checker, which considers probabilistic uncertainty when
evaluating a combination of reactive and deliberative plan. For each sample problem, a model

9The same set can be used to train a classifier if learning-based hybrid planning is used.

99

Legend

s2s1 a
p

Transition with
probability p from
state S1 to state S2
by applying action a

s State S

Representation of
a planning problem 𝓅,
i.e., state-action
probabilistic
transition diagram

Reactive
plan
duration

t0

s

td+1td
Timeline

td+nt…

sd’’

sd’

sd

…..

…..

sd+1

..…

..…

Deliberative plan duration

a1

a1
a2

a3

a4

a5

a6

a3

p2

p1

p’1

p’3

p3

p4

p5

p6

Deliberative planning time

Figure 7.4: Evaluating the combination of reactive planner ρir and deliberative planner ρjd, i.e.,
calculating the utility for the combination of reactive and deliberative plan.

checker evaluates a pair of a reactive and a deliberative planner under probabilistic uncertainty,
by considering all possible execution paths weighted with their probabilities. Finally, the most
effective (e.g., the one that provides the highest expected utility on average) deliberative planner
is selected to instantiate hybrid planning.

Figure 7.4 illustrates how a model checker can be used to evaluate the combination of reactive
planner (ρir in F , producing plan πir) and deliberative planner (ρjd, producing plan πjd in time td).
The outcomes of executing actions from each plan are uncertain, and a model checker handles
this uncertainty by aggregating the quality of possible outcomes as expected utility, denoted U ij .
To compute U ij for ξ, the model checker calculates the expected utility for the combination of
plans πir (until time step td) and then πjd. If set F and D have M and N planners respectively, then
each sample problem ξ requires MxN evaluations corresponding to each pair ⟨ρr, ρd⟩ such that
ρr ∈ F and ρd ∈ D. For the (MDP) domains with probabilistic uncertainty in action outcomes,
one can use PRISM [69] as a probabilistic model checker to calculate the expected utility of a
combination. However, the quantitative approach is not limited to any specific model checker. For
instance, in the case of POMDP domains, which also have uncertainty in the underlying state, one
can use model checkers that support such domains.

Finally, we need to compare expected utilities for each pair to determine the effective delibera-

100

tive planner. There can be various heuristics to define the “most effective” planner. For instance,
for all the sample problems, the deliberative planner can be the one that provides: (a) the highest
mean utility, or (b) the highest median utility, or (c) the best worst-case performance (e.g., never
provides expected utility below a predefined threshold). Depending upon a system’s requirements,
practitioners can decide on an appropriate heuristic. For example, in the cyber-security domain,
going with the deliberative planner that provides the best worst-case performance might be useful
to prevent an attack; such a planner is likely to protect the system more reliably compared to a
planner that provides highest mean utility. In contrast, for the domains (i.e., cloud-based systems)
where systems can recover from failures without significant damage, one might choose the delib-
erative planner that provides the highest mean utility. Chapter 6.3 illustrates how the evaluation of
combinations of a reactive and a deliberative plan using model checking works in practice.10

7.3 Choosing Between Condition-based and Learning-based
Hybrid Planning

Suppose Alice instantiates a hybrid planner, which has the potential to balance the timeliness
and the quality of planning in the context of her self-adaptive system. The next challenge is to
decide whether to use the condition-based or the learning-based approach to solve the planning
selection problem (PLNSEL), i.e., choose an appropriate reactive planner to solve a planning
problem. We recommend using the learning-based approach since: (a) it does not require domain
expertise to decide which reactive planner needs to be invoked, and (b) full/partial automation is
possible for the approach (including the specification generation for model-checking), which can
relieve her from the painstaking and error-prone process of identifying the conditions to invoke
(reactive) planners. Moreover, the experimental results presented in Chapter 4 demonstrate that
the learning-based approach is likely to provide more utility and is less risky compared to the
condition-based approach.

However, if Alice is still interested in applying condition-based hybrid planning, she needs to
answer two questions: (a) given the system requirements and utility function, can the conditions
that require invoking a reactive planner be manually identified at design time, and (b) can those
conditions be manually mapped to an appropriate reactive planner (in set F) to solve PLNSEL. If
both the steps are feasible, condition-based hybrid planning can be applied.

The evaluation results from the probabilistic model checking (used by the quantitative ap-
proach) can be referred to mapping a condition to a reactive planner. To elaborate further, suppose
after the quantitative approach, it was decided to instantiate hybrid planning using the reactive
planners in set F , and deliberative planner ρd. Using the model checking data for the pairs
⟨ρr, ρd⟩ where ρr ∈ F , one can calculate the correlation between the planning problems capturing
a specific condition, and the reactive planner that provided the highest utility (in combination with
ρd) for that problem. If a (medium to strong) correlation is found between the planning problems
capturing a specific condition, and a particular reactive planner, then the condition can be mapped
to the planner; in other words, when that condition is observed, that reactive planner is invoked to

10In that Chapter, the evaluation was used for labeling the problems when implementing learning-based hybrid
planning).

101

provide a quick response.

7.4 Implementing Learning-based Hybrid Planning
Suppose Alice decides to use learning-based hybrid planning. To implement the approach, the two
key challenges are: (a) identifying a set of sample problems to train a classifier, and (b) training
a classifier to solve the planning selection problem (PLNSEL). As already mentioned, to select
reactive planners effectively, it is crucial to cover the planning problem space comprehensively.
However, to build such a set of sample problems, no single selection strategy fits all systems
and domains, and we suggest tailoring the sample set to the system’s context and requirements.
Fortunately, modern-day systems (e.g., Amazon Web Services (AWS), Netflix, autonomous
vehicles) produce large amounts of data (e.g., planning problems) that can be used to train a
classifier.

Assuming the labeling process goes well using probabilistic model checking, the second
challenge is to train a classifier, which requires: (a) feature selection, and (b) identifying the
machine learning algorithm that can classify the planning problems.

To train a classifier, we need to identify relevant features of planning problems that help
separating the classes corresponding to each reactive planner as explained in Chapter 4. For the
two systems used for the thesis evaluation, we use two complementary sets of features: ones
representing the current state of the system, and ones describing how the system will evolve in the
future. These features reasonably represent a planning problem by capturing the initial state and
future transitions of the problem. However, one can also investigate techniques such as principal
component analysis (PCA) to identify the optimal set of features [2].

The final step is to identify a machine learning algorithm that can classify the sample problems;
this step includes the training of a classifier because before evaluating the classifier one needs to
train it. A commonly used technique to determine a set of potential classifiers is to plot the sample
problems in a plane, and (visually) observe the shape of the boundary that can separate different
classes (corresponding to each reactive planner). Depending on the shape of the classifying
boundary, an appropriate set of algorithms can be selected for further evaluation using cross
validation. For instance, if the shape is linear, one can try algorithms such as logistic regression
and stochastic gradient descent [81].

For cross validation, it is critical to have an appropriate metric to evaluate the performance of
a classifier; typical metrics are accuracy, recall, precision, and F1 score (combines precision and
recall). There is no formal approach to decide which metric is to be used; the decision usually
involves analysis of the data. For example, in our experiments, we did not use the typical measure
of accuracy to define the “best” classifier in cross-validation. To explain in the context of the
cloud-based system, due to the data being skewed in favor of using a particular reactive planner
(say, ρ′r), even a trivial classifier that always predicts to use that planner would have a relatively
high accuracy. Instead, we analyzed recall, precision, and F1 score for the class corresponding to
each reactive planner to judge a classifier’s performance. More specifically, as it turned out in our
experiments, the limitations of the training data made it challenging to discover situations when a
reactive planner (other than ρ′r) is the best choice; therefore, in cross validation we maximized the
recall value for the class corresponding to that reactive planner (cf. Chapter 6).

102

7.5 Summary
The previous chapters presented the theoretical aspects of hybrid planning. This chapter intends
to ease the adoption of hybrid planning by addressing the questions a practitioner needs to answer
when applying hybrid planning. These questions are: (a) how to identify a set of constituent
planners to instantiate a hybrid planner that can balance the timeliness and the quality of planning,
(b) how to choose between condition-based and learning-based hybrid planning, and (c) how
to implement learning-based hybrid planning that includes finding a set of sample problems,
selecting the feature set of a planning problem, and identifying the machine learning algorithm
that can classify the planning problems.

To address the first question, the chapter provides both guidelines, and also a quantitative
approach to identify constituent planners to instantiate hybrid planning. To address the second and
the third questions, the chapter provides guidelines both for choosing between condition-based
and learning-based hybrid planning, and implementing learning-based hybrid planning; these
guidelines are built upon the empirical findings (cf. Section 6.4) as discussed in Chapter 6.

103

104

Chapter 8

Discussion and Conclusion

The previous chapters presented the thesis contributions that help to understand the problem of
hybrid planning and apply it in realistic contexts such as a self-adaptive cloud-based system and
team of UAVs. Specifically, Chapter 3 formulated the problem of hybrid planning; Chapter 4
outlined our approach to solve the problem; Chapter 5 presented the hybrid planning algorithm;
Chapter 6 validated the thesis claims (i.e., the effectiveness, the generality, and the flexibility of
hybrid planning), and demonstrated the applicability of the formal model describing the problem
of hybrid planning; Chapter 7 provided informal guidelines and a quantitative approach to
instantiate hybrid planning, decide between condition-based and learning-based hybrid planning,
and implement learning-based hybrid planning. This chapter analyzes the thesis contributions in
detail, and discusses the assumptions behind the proposed hybrid planning approach, and how to
relax the assumptions that are not fundamental to our approach. It also provides a potential list of
short-term and long-term research projects in the future.

8.1 Thesis Contributions
This thesis contributes to both the theory and the practice of hybrid planning. This section analyzes
these contributions and discusses their broader impact.

8.1.1 Theoretical Contributions

The theoretical contributions of this thesis are as follows:

A Formal Model Describing the Problem of Hybrid Planning

Understanding the hybrid planning problem is a critical step towards solving it. This thesis
formally defines the problem to describe its general nature, and decomposes it into four computa-
tional subproblems (cf., Table 4.1). Moreover, the model links the four subproblems to the two
fundamental challenges (i.e., PLNCRD, and PLNSEL) of hybrid planning.

The formal model uses the a posterioi semantics of utility and planning time. This means
that the model assumes that we know the post-execution states and how the non-determinism

105

in state transitions was resolved (cf. Chapter 3). In contrast, an a priori (i.e., pre-execution)
notion assumes uncertainty both in state transition and planning time, which makes it difficult to
understand and define the problem of hybrid planning. Compared to the a priori view, using the a
posteriori notion is different in two notable ways: (a) it is not required to handle uncertainty since
the state transitions are deterministic after a transition has taken place, and (b) the planning time
is known. Despite using the a posteriori notion of utility and planning time, the formal model
defines the problem of hybrid planning without the loss of generality. However, as a step closer to
implementing hybrid planning in realistic systems, the thesis also analyzes the hybrid planning
problem in the a priori semantics (cf. Chapter 5.

There are various applications of the formal model: it (a) can be used to represent and analyze
existing instances of hybrid planners to understand their strengths and weaknesses, (b) is a
unifying framework to compare existing hybrid planners, and (c) sets the stage for going beyond
the solution proposed in this thesis to find even better solutions to hybrid planning.

An Illustration of the Applicability of the Formal Model

The a posteriori semantic could initially be counterintuitive to users who want to apply the model
to analyze/design hybrid planners. To help the users, using two different hybrid planners as
examples, the thesis demonstrates how the model can be used to analyze and compare hybrid
planners. For instance, Chapter 4 uses the model to analyze our approach to hybrid planning; the
analysis grounded in the formal gives us confidence that all relevant challenges are addressed. To
demonstrate how the model can be used to compare different hybrid planners, using the model,
Chapter 6 compares a hybrid planning instantiation proposed by another researcher [79] with
the hybrid planning instantiation proposed in this thesis (cf. Table 6.4). Users can use these
examples as a handbook to apply the formal model for analyzing and comparing hybrid planning
instantiations.

A Formal Analysis of the Performance of Hybrid Planning

The formal model uses the a posteriori (i.e., after executing a hybrid plan) semantics, which was
useful in the theoretical formulation of the problem and its solution. However, when applying
hybrid planning, one also needs to analyze hybrid planning in an a priori (i.e., before executing
a hybrid plan) semantics. To this end, the thesis also analyzes the hybrid planning problem in a
priori semantics. Specifically, Chapter 5 provides the worst-case bound on the performance of
hybrid planning, and in the process, formulates an a priori definition for the concepts defined in
Chapter 3 in an a posteriori semantics. By formal analysis of the hybrid planning problem both in
the a priori and the a posteriori semantics, the thesis aims at providing a broader understanding
of the problem, and its potential solutions.

8.1.2 Practical Contributions
In addition to the theoretical contributions, the thesis makes practical contributions, which will
help a practitioner to apply hybrid planning in realistic contexts. The practical contributions are
as follows:

106

An Approach to Solve the Hybrid Planning Problem

The thesis proposes an approach to solve a hybrid planning problem to apply it to realistic
self-adaptive systems. As listed in Chapter 4, the approach is applicable under certain assump-
tions/restrictions, but (still) it can be applied to many self-adaptive systems as discussed later. To
ensure the soundness of the approach, we represent and analyze it in the context of the formal
model.

To solve the planning selection problem (PLNSEL), the thesis proposes learning-based hybrid
planning. This approach has both qualitative and quantitative benefits over condition-based hybrid
planning. In terms of the qualitative benefits, compared to the condition-based approach, the
learning-based approach: (a) does not rely on predefined conditions to choose among reactive
planners, (b) automatically maps problems to an appropriate reactive planner using a machine-
learning classifier, and (c) can be fully/partially automated. In terms of quantitative benefits, the
learning-based approach is shown to be more effective and less risky compared to the condition-
based approach (cf. Chapter 6).

Using probabilistic model checking to label the planning problem is fundamental to the
proposed learning-based approach (cf. Chapter 4). Model checking helps label training problems
by evaluating plan combinations under probabilistic uncertainty, by considering all possible
execution paths weighted by their probabilities. Moreover, existing probabilistic model checkers
ease adoption, automation, and reuse of the learning-based approach by software engineers.

Evaluation of the Thesis Claims Using Realistic Systems

The thesis uses two realistic systems to evaluate its claims about the effectiveness, generality,
and flexibility of hybrid planning. These systems are: (a) a self-adaptive cloud-based load
balancing system that has become a de facto benchmark for researchers in the self-adaptive
community [28, 53, 85, 94, 97, 107], and (b) a team of UAVs as used by other researchers [86].
As an implementation of these systems, we used well-accepted exemplars − SWIM [87] for the
cloud-based systems, and DART [88] for a simulated team of UAVs.

There are various benefits of using these systems. First, these systems/domains are widely used
in the self-adaptive community, therefore, the performance of hybrid planning can be compared
with other planning approaches proposed by the community. Second, the application of hybrid
planning in these systems is an illustration of how the proposed approach can be applied to
realistic self-adaptive systems. Third, using these systems gives us confidence about the validation
of thesis claims (cf. Chapter 6).

Methods/tools to apply hybrid planning to self-adaptive systems

To facilitate the adoption of hybrid planning, the thesis provides methods and tools as discussed
below:

Guidelines to Apply Hybrid Planning: To ease the adoption of hybrid planning, the thesis
provides informal guidelines and a quantitative approach to apply hybrid planning. For a prac-
titioner interested in applying hybrid planning, the guidelines and the approach help to answer

107

questions such as (a) how to identify an appropriate set of reactive and deliberative planners that
can handle the trade-off between the timeliness and the quality of planning, (b) whether to use
condition-based or learning-based hybrid planning, and (c) how to implement learning-based
hybrid planning.

An implementation of the Hybrid Planning Algorithm: We implemented the hybrid planning
algorithm (cf. Chapter 5) using an established self-adaptive framework (i.e., Rainbow [27]).
Implementing the algorithm in Rainbow has two key benefits: (a) it indicates the generality of the
algorithm, and (b) the same implementation can be used (with minor modifications e.g., the set of
constituent planners used to instantiate hybrid planning) by researchers/practitioners to apply/test
hybrid planning in their context.

8.2 Scoping Assumptions
As discussed in the previous chapters, the thesis makes certain assumptions in order to apply hybrid
planning in realistic contexts such as the two systems used for evaluation (cf. Chapter 6). Some
of these assumptions are fundamental to the proposed hybrid planning approach, and therefore
difficult to relax. This section discusses various assumptions (as summarized in Table 8.1) made
by the thesis.1

Category Assumption Description
Assumptions to
Make a Hybrid
Planning Problem
Tractable

TWO-LEVELS-OF-PLANNING Hybrid planning uses
two levels of plan-
ning (i.e., reactive
planning followed
by deliberative
planning)

FINITE-HORIZON Planning problems
have a finite planning
horizon.

DISCRETE-STATE-VARIABLES The value of state
variables (e.g., time)
is discrete.

DELIBERATIVE-PREFERRED For any planning
problem, a deliber-
ative plan always
provides higher
expected utility com-
pared to a reactive
one.

1The assumptions behind the formal model and the validation have already been discussed in Chapter 3 and
Chapter 6, respectively.

108

Assumptions to
Address the Planning
Coordination
Problem

UNIVERSAL-DELIBERATIVE-PLAN Deliberative plan-
ning determines a
universal plan (i.e., a
policy).

MARKOVIAN-DOMAIN The operating do-
main is assumed to
be Markovian.

Assumptions Related
to Learning-based
Hybrid Planning

USE-OF-UTILITY-FUNCTION Different conflicting
quality attributes
for a self-adaptive
system can be
represented as a
multi-dimensional
utility function,
and the planning
goal is to maximize
expected utility.

AVAILABILITY-OF-MODEL-CHECKERS There are probabilis-
tic model checkers
available to deal with
different kinds of
probabilistic uncer-
tainty.

NEGLIGIBLE-PLNSEL-DECISION-TIME The time to solve
the planning selec-
tion problem (i.e., de-
ciding the reactive
planner) is negligible

AVAILABILITY-OF-TRAINING-PROBLEMS A comprehensive set
of sample planning
problems is available
to train a classifier.

IDENTIFIABLE-FEATURES One can identify the
set of features that
can help to map a
problem to a reactive
planner.

109

INDUCTIVE-BIAS For two planning
problems having
a similar set of
features, an effective
combination of reac-
tive and deliberative
planning for one
problem will also
work for the other
problem.

Other Assumptions

ONE-DELIBERATIVE-APPROACH-ONLY The thesis claims are
subject to using a sin-
gle deliberative plan-
ner to instantiate hy-
brid planning.

PLANNING-PROBLEM-REPRESENTATION An adaptation situ-
ation can be repre-
sented as a planning
problem representa-
tion that realistically
captures the current
state of a system and
its future evolution.

IGNORED-PLANNING-RESOURCE-CONSUMPTION The likely resources
to be consumed by
planning are not con-
sidered when choos-
ing a planner to solve
a planning problem.

DESIGNERS-HAVE-FAMILIARITY-WITH-AI The person applying
hybrid planning has a
broad understanding
of automated plan-
ning and machine
learning.

110

USING-EXISTING-PLANNERS-IS-COST-EFFECTIVE The cost to instanti-
ate hybrid planning
(using off-the-shelf
planners) is lower
compared to devel-
oping a hand-crafted
planning solution
that can balance
timeliness and
quality of planning.

Table 8.1: Summary of Assumptions.

8.2.1 Assumptions to Make a Hybrid Planning Problem Tractable

The hybrid planning problem in its general form is intractable to solve, as suggested by the formal
model describing the problem (cf. Chapter 3). To make the problem tractable, the thesis makes
the following assumptions to scope the problem.

• TWO-LEVELS-OF-PLANNING: Hybrid planning uses two levels of planning (i.e., reactive
planning followed by deliberative planning) to solve a planning problem such that one level
is provided by a reactive planner chosen from a set of reactive planners that determine plans
in a negligible time, and the other level is provided by the deliberative planner used to
instantiate hybrid planning. Reactive planners with a non-negligible planning time are not
considered as it would increase the level of planning (from two) to three. To explain further,
the first level of planning will be done by ρwait that determines a plan in negligible time
(i.e., always suggests to wait), the second level (of planning) will be done by the reactive
planner (say, ρr) that determine a plan in a non-negligible time (but quickly compared to a
deliberative planner), and the third level is done by the deliberative planner (say, ρd).
There is a potential to relax assumption TWO-LEVELS-OF-PLANNING in the context of
learning-based hybrid planning. Theoretically, when using learning-based hybrid planning,
probabilistic model checking (to label training problems) can evaluate a combination of
plans determined by multiple planners. Explaining model checking for the three levels of
planning (caused by a non-negligible reactive planning time) as discussed earlier, suppose
for a planning problem (say, ξ), ρr and ρd determine plans in time tr and td, respectively
such that tr < td. To evaluate the performance of the combination of ρwait, ρr and ρd for ξ,
probabilistic model checking can calculate the expected utility for the combination of their
plans such that until time tr no action is considered, between tr and td the plan determined
by ρr is considered, and from td onwards, the plan determined by ρd is considered. When
all the potential combinations of multiple planners are evaluated for problem ξ, the best-
performing combination can be identified for ξ, and label it accordingly; this process can
be repeated for all the training problems. As a result, we have a set of labeled training
problems, which can be used to train a classifier that solves PLNSEL. As detailed later, it
is worth investigating (in the future) how learning-based hybrid planning performs with

111

multiple levels of planning.
Even with assumption TWO-LEVELS-OF-PLANNING, using specific instantiations of re-
active and deliberative planning in different domains, researchers from the self-adaptive
community have demonstrated the potential of hybrid planning [43, 94, 110, 112]. How-
ever, the existing work is limited to condition-based hybrid planning, i.e., invoking reactive
planning only on faults (i.e., for self-healing [10]). In contrast, in this thesis, we extend
the idea of hybrid planning to learning-based hybrid planning that not only overcomes the
shortcomings of the condition-based approach but also supports other self-* properties
such as self-optimization. Moreover, we consider different kinds of instantiation (different
reactive-deliberative) combinations, thereby broadening the effectiveness/generality of our
approach.

• FINITE-HORIZON: The thesis assumes that a planning problem has a finite planning
horizon. An infinite horizon will lead to infinite nodes in a reachability graph because time
is a state variable according to the formal model, and infinite nodes will lead to an infinite
reachability graph (i.e., intractable problem) (cf. Chapter 4). Although condition-based
hybrid planning can theoretically support planning problems (e.g., represented as MDP)
with infinite horizon, but the learning-based approach requires the planning problem to have
a finite horizon due to the use of probabilistic model checking, as detailed in Chapter 4.
Assumption FINITE-HORIZON restricts the planning horizon to a finite value. For realistic
self-adaptive systems such as cloud-based systems, planning for an infinite horizon is
not (typically) recommended, since as the planning horizon increases, the planning time
increases exponentially, while the quality of planning decreases due to decrease in accuracy
of predictions (e.g., request arrival rate). Researchers from the self-adaptive community
have demonstrated that planning even with a finite horizon is effective [39, 85, 108].

• DISCRETE-STATE-VARIABLES: The value of state variables (e.g., time) is discrete. Oth-
erwise, a reachability graph would have infinite nodes (cf, Chapter 4). Even with this
assumption, our approach can be applied to a variety of realistic systems since many of
the commonly used planning algorithms/heuristics (e.g., classical planning, MDP/POMDP
planning, Reinforcement learning) assume the state space to be discrete [44, 71].

• DELIBERATIVE-PREFERRED: For any planning problem, a deliberative plan always
provides higher expected utility compared to a reactive one. This implies that whenever a
deliberative plan is ready for a planning problem, it is preferred over the plans determined
by reactive planners. This assumption ensures that there can never be a path in a reachability
graph that has deliberative planning followed by reactive planning, and thereby restricts the
number of paths in a reachability graph. This is a realistic assumption since, as discussed
in Chapter 7, reactive planning either ignores parts of the operating domain state-space or
does not optimize a plan (e.g., anytime planning); this is likely to result in lower-quality
plans compared to ones determined by deliberative planning.

112

8.2.2 Assumptions to Address the Planning Coordination Problem
When using hybrid planning, a key to balancing the timeliness and quality of planning is to have
a smooth transition from a reactive plan to a deliberative plan. For a seamless transition from
a reactive plan to a deliberative plan, as suggested by the formal model, both the timing and
the preemption condition need to be satisfied. However, this is challenging for two reasons: (a)
uncertainty about deliberative planning time makes it difficult to predict when the deliberative
plan will be ready to take over, and (b) uncertainty in the system’s environment makes it difficult
to predict the expected system state after executing the reactive plan. The dissertation makes the
following fundamental assumptions to address these challenges:

• UNIVERSAL-DELIBERATIVE-PLAN: The thesis assumes that the deliberative planner
determines a universal plan (i.e., a policy). Once the deliberative plan is ready, it can take
over plan execution from the reactive plan because any state resulting from executing the
reactive plan will be found in the deliberative plan.2

• MARKOVIAN-DOMAIN: The operating domain is assumed to be Markovian: the state
after a transition depends only on the current state — not on the sequence of states that
preceded it [78]. This implies that once deliberative planning solves the planning problem,
the resulting plan would suggest an optimal action for each state reachable from the initial
state. Therefore, after a transition happens from a reactive plan to a deliberative plan, it
ensures an optimal execution thereafter.

Even with assumptions UNIVERSAL-DELIBERATIVE-PLAN and MARKOVIAN-DOMAIN, hy-
brid planning is applicable to different domains, since potential choices (such as MDP and POMDP
planning) for deliberative planning determine policy-structured plans (to deal with uncertainty)
and are applicable to Markovian domains. As discussed in Chapter 7, these approaches can be
used both for reactive and deliberative planning. Moreover, by specifying transition probability as
1, deterministic transitions can also be captured by MDP/POMDP planning, as was done for the
cloud-based system used for the thesis evaluation. Furthermore, as mentioned in Chapter 7, even
though MDP/POMDP planning is used only for a Markovian domain, they can also be used for a
non-Markovian domain by representing it as a Markovian domain using additional state variables
to capture history leading to a much larger state space, and therefore negatively impacting the
timeliness of planning.

8.2.3 Assumptions Related to Learning-based Hybrid Planning
One of the key contributions of this thesis is the learning-based approach to solve the planning
selection problem (PLNSEL). Although the approach is broadly applicable as discussed earlier,
there are certain assumptions that are fundamental to the approach.

• The following assumptions are due to using a probabilistic model checker to evaluate a
combination of planners.

USE-OF-UTILITY-FUNCTION: This thesis assumes that different conflicting quality
attributes for a self-adaptive system can be represented as a multi-dimensional utility

2However, in reality, there is still a possibility that transition between the plans might fail due to violating the
timing or preemption condition, thus affecting the quality of adaptation (cf. Chapter 6).

113

function such as Equations 1.1 and 6.3, and that the planning goal is to maximize
expected utility. In addition, the thesis assumes that planning problems have either
no uncertainty (i.e., deterministic) or probabilistic uncertainty. The combination of
these two assumptions enables the use of a probabilistic model checker to evaluate a
combination of reactive and deliberative planner by calculating the expected utility
(cf. Chapter 7); expected utility cannot be calculated for non-deterministic uncertainty.
The representation of a planning goal using a multi-dimensional utility function is
general enough to also capture goals having an explicit state. The assumption about
probabilistic uncertainty is broad enough to represent various domains [44, 71, 103].

AVAILABILITY-OF-MODEL-CHECKERS: The other key assumption is that there are
probabilistic model checkers available to deal with different kinds of probabilistic
uncertainty. The thesis already discusses and demonstrates the use of probabilistic
model checker PRISM that can handle MDP-based models (i.e., uncertainty in action
outcomes) [69]. For domains that also have uncertainty in the underlying state one
needs to use a model checker that supports partially observable MDPs. To this end, an
extended version of PRISM that deals with a POMDP model can be explored [91];
however, the tool is still in early stages.

• NEGLIGIBLE-PLNSEL-DECISION-TIME: This thesis assumes that the time to solve the
planning selection problem (i.e., deciding the reactive planner) is negligible, as elaborated
in Chapter 4. A delay in deciding the reactive planner (e.g., by classifying a planning
problem) will delay the response from the planner, thereby decreasing the effectiveness
of hybrid planning. Assumption NEGLIGIBLE-PLNSEL-DECISION-TIME limits learning-
based hybrid planning to the kinds of machine learning algorithms that can classify in
negligible time. For instance, supervised learning approaches such as logistic regression
and support vector machines (SVMs) can classify a planning problem quickly because
they construct a mathematical formula (using training problems) to map the problem to
its label [101]; predicting using such formulas is nearly instantaneous. In contrast, there
are lazy learning algorithms such as k-nearest neighbors that can be slow in classifying a
problem, therefore, might not be suitable for our approach [30].

• As explained in Chapter 4, learning-based hybrid planning uses supervised learning to train
a classifier that solves the planning selection problem (i.e., map a problem to an appropriate
reactive planner). For an effective training of a classifier, the thesis makes the following
assumptions [81]:

AVAILABILITY-OF-TRAINING-PROBLEMS: A comprehensive set of sample plan-
ning problems is available to train a classifier. This set should be a good representation
of the space of planning problems. Fortunately, modern-day systems (e.g., two sys-
tems used for validation) produce large amounts of data that are available to train a
classifier.

IDENTIFIABLE-FEATURES: One can identify a set of features that can help to map a
problem to a reactive planner. To identify such a feature set, the thesis proposes using
two complementary sets of features: ones representing the current state of the system,
and ones describing how the system will evolve in the future (cf., Chapter 4). These

114

features reasonably represent a planning problem by capturing the initial state and
future transitions of the problem. However, one can also investigate techniques such
as principal component analysis (PCA) to identify the optimal set of features [2].

INDUCTIVE-BIAS: This thesis assumes that for two planning problems having a
similar set of features, an effective combination of reactive and deliberative planning
for one problem will also work for the other problems; this is a fundamental assumption
to apply the learning-based approach.

.

8.2.4 Other Assumptions

Here are some other assumptions made by the thesis.

• ONE-DELIBERATIVE-APPROACH-ONLY: The thesis claims are subject to using a single
deliberative planner to instantiate hybrid planning. We restrict the thesis claims to this
assumption since our validation is done using single deliberative planning. However, as
discussed in Chapter 4, the proposed learning-based hybrid planning can naturally be
extended to support multiple deliberative planners. In short, given a finite set of reactive
planners and a finite set of deliberative planners, the proposed use of probabilistic model
checking can help in deciding the best pair (consisting of a reactive and a deliberative
planner) for a problem, and label it accordingly.

• PLANNING-PROBLEM-REPRESENTATION: The thesis assumes that an adaptation situ-
ation can be represented as a planning problem (cf. Definition 5.2.8), particularly, for
deliberative planning.3 This is a fundamental assumption of our approach; however, even
with this assumption, the scope of hybrid planning is broad enough to be applied to many
realistic contexts. For example, there are a variety of domains (e.g., cloud-based systems,
robotics, disaster management systems) explored by self-adaptive researchers that represent
an adaptation situation as a planning problem [39, 86, 102, 103].
For effective hybrid planning, it is critical to have a planning problem representation that
realistically captures the current state of a system and its future evolution. For instance,
while formulating a planning problem for the cloud-based system used for the thesis
evaluation, the expected values of request arrival rates used in problem formulation, and
their transition probabilities should be close to what the system would experience in a
posteriori semantics. Specifically, for deliberative planning, if the planning problem does
not capture reality: (a) the plan is likely to provide low utility on execution, and (b) during
execution, the plan (i.e., policy) will often fail (i.e., the current state of a system will not be
found in the policy) leading to more use of sub-optimal reactive planning, which may result
in a possible decrease in the overall quality of planning.

• IGNORED-PLANNING-RESOURCE-CONSUMPTION: The likely resources to be consumed
by planning are not considered when choosing a planner to solve a planning problem.
Specifically, the thesis ignores the fact that deliberative planning is likely to consume more

3Reactive planning (e.g., rule-based) does not necessarily require representing a situation as a planning problem.

115

resources (e.g., CPU cycles, energy) compared to reactive planning since the former has
to do more computation to determine a plan. If resources are limited, it might not always
be a good idea to invoke deliberative planning. As Kahneman and others have pointed
out, humans tend to avoid tasks that require deliberative thinking [56] to conserve energy.
Consideration of planning resource consumption to decide when invoking deliberative
planning is “good enough” is an open problem both for humans and systems.

• DESIGNERS-HAVE-FAMILIARITY-WITH-AI: As mentioned in Chapter 6.3.1, the thesis
assumes that the person applying hybrid planning has a broad understanding of various
planning approaches (e.g., classical planning, search heuristics, MDP/POMDP planning),
and different machine learning algorithms (e.g., supervised and unsupervised learning),
models (e.g., decision trees, support vector machines) and techniques (e.g., cross-validation).
This might not be an unrealistic assumption considering the increased awareness of these
technologies among practitioners, particularly in the self-adaptive community, in recent
years.

• USING-EXISTING-PLANNERS-IS-COST-EFFECTIVE: The thesis assumes that the cost
to instantiate hybrid planning (using off-the-shelf planners) is lower compared to develop-
ing a hand-crafted planning solution that can balance timeliness and quality of planning.
Burke et al. suggested that, in general, the cost of developing new search/optimizing algo-
rithms is higher than using a combination of off-the-shelf algorithms [20]. In the context of
this thesis, the cost of developing a customized solution is assumed to be higher because,
due to the complexity of the task, developing the solution can be more time-consuming, and
would require the skills of AI experts that many software engineers may not have. Moreover,
because these solutions are tailored to different domains, successes are rarely directly
transferable to other domains; hence, these approaches are not general, and therefore, the
investment in developing a planning solution cannot be utilized again. In contrast, using
existing planners is likely to reduce development time and cost since software engineers do
not have to be AI experts or master the complexity of developing new algorithms/heuristics.
However, a user study needs to be conducted to validate if this assumption holds in reality.

8.3 Future Work

The previous section provided a consolidated list of assumptions made in this thesis. Such a list
will help a practitioner to know all the assumptions up front, and thereby evaluate the feasibility of
applying hybrid planning in his context. In addition, there is a detailed discussion on how to relax
the assumptions that are not fundamental to our approach.This section presents the short-term and
long-term research projects (in the context of hybrid planning) that can be explored in the future.

8.3.1 Short Term Projects

This section lists the research projects that can be investigated in the short-term.

116

Supporting Multiple Deliberative Planners

Currently, the thesis assumes that hybrid planning is instantiated using a single deliberative
planner. However, as discussed earlier, when using learning-based hybrid planning, the use of
probabilistic model checking can be extended to support multiple deliberative planners. Using
multiple deliberative planners is likely to improve the effectiveness of hybrid planning because it
provides more choices for deliberative planners (in combination with reactive planners) to solve
a planning problem. In addition, using multiple reactive and deliberative planners to instantiate
hybrid planning would strengthen the case for flexibility for hybrid planning.

Application of Active Learning

Currently, as discussed in Chapter 4, the offline phase of learning-based hybrid planning is used
to train a classifier that learns the mapping function between the set of reactive planners (used to
instantiate hybrid planning), and the set of planning problems that a system expects to observe at
run time. However, over time, a system might face new planning problems that are not represented
in the set of sample problems. This might happen due to various reasons, such as a change in
workload patterns in the context of a cloud-based system. Therefore, the system needs to identify
such new planning problems to actively improve the mapping function. To this end, one might
apply a machine learning technique known as active learning in which a learning algorithm can
interactively query the user (or some other information source) to obtain the desired output for a
new data point (e.g., a planning problem) [105]. For the new data point, if the classifier’s output is
different from the desired output, then that data point can be used to further tune the classifier.

In the context of hybrid planning, probabilistic model checking can be used as a source of
information to decide which reactive planner should be invoked for a problem observed at run
time, and if the prediction of the classifier is different from the decision using model checking
then the problem can be treated as a new data point, and therefore used to train the classifier.

8.3.2 Long Term Projects
This section lists some potential long-term research projects in the context of hybrid planning.

Support for Multiple levels of Planning

The thesis assumes that hybrid planning has only two levels of planning. However, as explained
earlier, theoretically learning-based hybrid planning can support multiple levels of planning
because model checking can evaluate a combination of plans determined by multiple planners for
a planning problem. It would be worthwhile to investigate such multi-level hybrid planning since:
it (a) has the potential to outperform two-level hybrid planning due to availability of more choices
of planner combinations to solve a planning problem, and (b) naturally relaxes the assumption
that reactive planning time should be negligible. If multi-level hybrid planning works in practice,
it would further broaden the flexibility claim for hybrid planning, and demonstrate the generality
of the learning-based approach including the use of model checking to label planning problems.

However, using multi-level hybrid planning has various challenges. First, instantiating hybrid
planning for multi-level planning can be overwhelming for a practitioner. Currently, with the two

117

levels of planning, any planner with negligible planning time is in the set of reactive planners, else
it can be a potential candidate for deliberative planning. However, with multi-level planning, one
needs to evaluate a larger set of planners with different timeliness-quality profiles to instantiate
hybrid planning effectively.

Another challenge with multi-level hybrid planning is that the potential combinations of
planners to solve a problem will increase exponentially with the increase in the levels of planning;
therefore the number of labels (i.e., classes) will also increase exponentially. This will increase
the overall complexity in applying the learning-based approach. For instance, one needs to ensure
that no class is underrepresented or overrepresented in the set of training problems; finding such a
set can be challenging with a large number of classes.

Hybrid Planning in the Context of Human-in-the-loop

Further ahead, one might explore hybrid planning in the context of human-in-the-loop adaptation
by treating the human (e.g., a system administrator) as a reactive planner that is used in combi-
nation with some deliberative planner such as an MDP planner. Self-adaptive systems such as a
smart-grid often require intervention by system administrators, particularly for emergency situa-
tions; an administrator could provide a quick decision based on past troubleshooting experience.
However, for domains such as cyber-security, humans might be treated as a deliberative planner
that provides a high-quality decision after investigating logs of a system.

To apply hybrid planning in such a context, an interesting challenge will be to build a model of
human decision-making that can be used to decide when it is safe for a human to make a decision.
To this purpose, one might explore the framework proposed by Eskins et al. [34] to model human
behavior as done by Cámara et al. [24] and Lloyd et al. [74].

8.4 Conclusion
This dissertation presents a hybrid planning approach that improves the current state of the art
of planning for self-adaptive systems. The approach deals with the fundamental timeliness-
quality trade-off by combining multiple off-the-shelf planners. The key idea is to compose
planners with different time-quality tradeoffs. When a time-critical adaptation becomes necessary,
“fast” (reactive) planning determines a quick (but potentially a sub-optimal) plan, while “slow”
(deliberative) planning computes a better plan that can take over once it is ready. This idea of
hybrid planning is akin to human decision making: depending upon factors such as available
planning time, humans apply different levels of deliberation while making real-life decisions [56].

Using two realistic systems the dissertation demonstrates that hybrid planning can improve the
overall utility of a self-adaptive system by finding a right balance between timeliness and quality.
From the software engineering perspective, instead of going through the non-trivial process of
developing a new planning algorithm/heuristics, engineers can potentially reduce development
time and cost by combining off-the-shelf planning approaches using hybrid planning [20]. As
mentioned earlier, the dissertation contributes to both the theory and the practice of hybrid
planning in self-adaptive systems:

The contribution to theory is:

118

• a formal model characterizing the general problem of hybrid planning;
• an illustration of how the formal model can be used as a unifying evaluation framework to

compare/analyze instantiations of hybrid planning, and thereby understand their strengths
and weaknesses.

• a formal analysis of the performance of the hybrid planning algorithm.
The contributions to practice are:
• a practical approach to applying hybrid planning under certain assumptions/restrictions that

nonetheless apply to many self-adaptive systems;
• a demonstration of effectiveness, generality, and flexibility of hybrid planning for self-

adaptive systems using the proposed solution approach;
• methods/tools to apply hybrid planning to self-adaptive systems, including

evaluation of hybrid planning using two systems (i.e., the cloud-based system and
the UAV team) to illustrate how the proposed approach can be applied to realistic
self-adaptive systems,

an implementation of the hybrid planning algorithm (cf. Chapter 5) using a widely ac-
cepted MAPE-based self-adaptive framework (i.e., Rainbow [27]) to ease an adoption
of hybrid planning among software engineers,

informal guidelines and a quantitative approach to help engineers to select an appro-
priate set of planners to instantiate hybrid planning for a given domain.

This thesis formalizes the sophisticated problem of hybrid planning and decomposes it into four
computational subproblems. There are several applications of this formal model (cf. Chapter 3).
First, it helps to understand the problem of hybrid planning in its general form. Second, it helps to
analyze whether a hybrid planning instantiation is valid. Third, this model serves as a unifying
evaluation framework for different such solutions. In addition, to demonstrate the applicability of
the formal model, the thesis analyzes and compares two hybrid planing instantiations.

In the past, the promising idea of hybrid planning has been studied from algorithmic [6, 7, 79,
113] perspectives. This thesis improves engineering aspects of hybrid planning by providing: (i)
a learning-based approach to the planning selection problem (PLNSEL), which aims to replace
domain-specific hard-coded conditions for invoking reactive planning (cf. Chapter 4); (ii) the
hybrid planning algorithm, its formal analysis, and implementation in the Rainbow framework (cf.
Chapter 5); (iii) informal guidelines and a quantitative approach to help engineers to select an
appropriate set of planners to instantiate hybrid planning (cf. Chapter 7).

One of the barriers to adopting learning-based hybrid planning is the difficulty of obtaining a
labeled set of training planning problems. We overcome this by using probabilistic model checking
to label the training problems. Moreover, this enables the steps (including model checking) of the
learning-based approach to be automated. Our evaluation indicates the generality of learning-based
hybrid planning since the evaluation uses: (a) two realistic systems from different domains, and
(b) different combinations of constituent planners to instantiate learning-based hybrid planning.

This thesis uses a cloud-based self-adaptive system and a team of unmanned aerial vehicles to
evaluate effectiveness, generality, and flexibility of hybrid planning (cf. Chapter 6). Using these
relistic systems gives us confidence about the validation of thesis claims. Although our hybrid

119

planning approach appears to be effective, the approach has a number of assumptions as discussed
in Chapter 8; the chapter also highlights potential directions of future research in hybrid planning.

To conclude, this thesis sets the stage for the application of hybrid planning in realistic self-
adaptive systems. The thesis demonstrates that hybrid planning is a promising way to improve
self-adaptation, thus increasing the potential for industrial adoption. However, the complexity of
hybrid planning creates a possibility for many diverse solutions to solve the problem. Therefore,
further research is needed to provide efficient, usable, and general approaches to combine multiple
planners for self-adaptation.

120

Appendix A

Formalization of Timing and Preemption
Conditions for the Cloud-based System

For the cloud-based system, as discussed in Chapter 6, in practice the timing and preemption
conditions might not be satisfied; then, a transition from a deterministic plan to an MDP policy
would fail. Therefore, this instantiation makes assumptions about the timing and the preemption
condition that must hold to guarantee a smooth transition from a deterministic plan to an MDP
policy. In other words, these assumptions make this instantiation valid. To highlight these
assumptions and make them checkable in practice, we formalize the timing and the preemption
condition for this instantiation in the context of the cloud-based system.
Definition A.0.1 (Time). The time T is an infinite set containing all possible discretized time-
stamps.
Definition A.0.2 (Universal state space). The universal state space Su is an infinite set containing
all the possible states.

The universal state space captures states corresponding to all possible request arrival rates.
Therefore, deterministic and MDP planning state spaces (i.e., Sdet and Smdp respectively) are
subset of the universal state space: Sdet ⊆ Su and Smdp ⊆ Su .
Definition A.0.3 (Environment realization). The environment realization is a function Env ∶ T →
R≥0 that returns the actual (i.e., ground truth) request arrival rate for a given time-stamp t ∈ T .
Definition A.0.4 (Predictor). The predictor is a function P ∶ T → P R≥0 that returns expected
request arrival rates for a given time stamp t ∈ T .
Definition A.0.5 (State similarity classifier). The state similarity classifier is a function S ∶
Su × Su → {true, false}, which returns true if the two input states have same value for all the
state variables that represent the system’s state.

For system state similarity, state variables such as number of servers, dimmer value, and
traffic distribution among servers are compared because these variables represent the system state.
Request arrival rate is not compared for two states since it represents environment state.
Definition A.0.6 (Timing condition). For an MDP planning problem ξmdp with planning horizon h,
time discretization step td, and planning time tmdp, the timing condition is satisfied if h ≥ td + tmdp.

In the instantiation, a planning problem is discretized such that the planning horizon is divided
into equal intervals of time td. The timing conditions is satisfied if MDP policy is ready at least td

121

time before the horizon. If an MDP policy not ready until time h - td then the policy can’t take
over from a deterministic plan since no execution is needed once horizon is reached.
Definition A.0.7 (Preemption condition). For deliberative plan πd, request arrival rate threshold
E ∈ R≥0, and state scurr ∈ Su representing the current state of the system and the environment,
successful preemption requires the following condition to be satisfied:1

∃smin ∶ dom(πd) ⋅ S(scurr, smin) ∧ (∣scurr.rae − smin.rae∣ ≤ E) ∧
(∀s ∶ dom(πd) ⋅ S(scurr, s) Ô⇒ ∣scurr.rae − smin.rae∣ ≤ ∣scurr.rae − s.rae∣).

To ensure that this preemption condition is always satisfied, the combination of the following
two conditions must be satisfied:

1. The state space Sdet considered by deterministic planning is a subset of state space Smdp
considered by MDP planning, i.e., Sdet ⊂ Smdp. For a planning problem, this condition
ensures that the MDP policy consists of a state s ∈ dom(πd) such that all the state variables
representing the system’s state are same as the current state scurr that resulted from executing
the deterministic plan. Formally, ∃s ∶ dom(πd) ⋅ S(scurr, s).

2. Given planning horizon h, state si ∈ S representing the initial state of system, and envi-
ronment ∀t ∈ T ⋅ τ(si) ≤ t ≤ h Ô⇒ min

se∈P (t)
∣se − Env(t)∣ ≤ E. This condition ensures

that, at any time t within planning horizon h, request arrival rate se observed for the current
environment (i.e., Env(t)) will be with in error bound E. In other words, this condition
guarantees that there will be s ∈ dom(πd) that represents the current request arrival rate.

1We denote the immediate request arrival rate of state s as s.rae

122

Appendix B

Plots of the FIFA Traces Used for
Validation

Total traces were 92 but 5 were incomplete/corrupted. Therefore, we used 87 traces for validation.
Each trace is scaled such that

• duration is 105 minutes;
• starting request arrival rate is about 200 requests/min since active servers beginning of a

simulation can server 200 requests/min. If workload goes beyond the capacity, the queueing
model does not work;

• similarly, the highest workload is about 800, which is 90of the the total capacity (including
all available servers with no optional content) of the system.

Below are the visualizations of load patterns for each day.

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues, Method-
ological Variations, and System Approaches. AI Commun., 7(1):39–59, 1994. doi:
10.3233/AIC-1994-7104. URL https://doi.org/10.3233/AIC-1994-7104.
2.1.1, 7.2.1

[2] Hervé Abdi and Lynne J Williams. Principal Component Analysis. Wiley interdisciplinary
reviews: computational statistics, 2(4):433–459, 2010. 4.2.2, 7.4, 8.2.3

[3] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. Efficient Provisioning of
Bursty Scientific Workloads on the Cloud Using Adaptive Elasticity Control. In Proceed-
ings of the 3rd Workshop on Scientific Cloud Computing, ScienceCloud ’12, pages 31–40,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1340-7. doi: 10.1145/2287036.
2287044. URL http://doi.acm.org/10.1145/2287036.2287044. 2.4, 4

[4] Mehdi Amoui, Mazeiar Salehie, Siavash Mirarab, and Ladan Tahvildari. Adaptive Action
Selection in Autonomic Software Using Reinforcement Learning. In Fourth International
Conference on Autonomic and Autonomous Systems, ICAS 2008, 16-21 March 2008,
Gosier, Guadeloupe, pages 175–181, 2008. doi: 10.1109/ICAS.2008.35. URL https:
//doi.org/10.1109/ICAS.2008.35. 3.4.2

[5] M. Arlitt and T. Jin. A Workload Characterization Study of the 1998 World Cup Web Site.
IEEE Network, 14(3):30–37, May 2000. doi: 10.1109/65.844498. 6.1.1

[6] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev. Chameleon: A Hybrid,
Proactive Auto-Scaling Mechanism on a Level-Playing Field. IEEE Transactions on
Parallel and Distributed Systems, 30(4):800–813, April 2019. doi: 10.1109/TPDS.2018.
2870389. 2.4, 6.1.1, 8.4

[7] Michael Beetz and Drew V. McDermott. Improving Robot Plans During Their Execution.
In Proceedings of the Second International Conference on Artificial Intelligence Planning
Systems, University of Chicago, Chicago, Illinois, USA, June 13-15, 1994, pages 7–12, 1994.
URL http://www.aaai.org/Library/AIPS/1994/aips94-002.php. 2.4,
3.4.1, 3.4.3, 8.4

[8] Farinaz Behrooz, Rubiyah Yusof, and Uswah Khairuddin. Hybrid Nonlinear Con-
troller Design for Air Conditioning System. In 12th Asian Control Conference, ASCC
2019, Kitakyushu-shi, Japan, June 9-12, 2019, pages 793–798, 2019. URL http:
//ieeexplore.ieee.org/document/8764963. 2.1.1, 7.2.1

[9] Pascal Bercher. Hybrid planning-from theory to practice. PhD thesis, Universität Ulm,

139

https://doi.org/10.3233/AIC-1994-7104
http://doi.acm.org/10.1145/2287036.2287044
https://doi.org/10.1109/ICAS.2008.35
https://doi.org/10.1109/ICAS.2008.35
http://www.aaai.org/Library/AIPS/1994/aips94-002.php
http://ieeexplore.ieee.org/document/8764963
http://ieeexplore.ieee.org/document/8764963

2018. 2.2

[10] Andrew Berns and Sukumar Ghosh. Dissecting self-* properties. In Third IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems, SASO 2009, San
Francisco, California, USA, September 14-18, 2009, pages 10–19, 2009. doi: 10.1109/
SASO.2009.25. URL https://doi.org/10.1109/SASO.2009.25. 4.2.2, 8.2.1

[11] Piergiorgio Bertoli, Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso.
MBP: A Model Based Planner. In Procedings of the IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001. 2.4, 6.5.1

[12] L. F. Bertuccelli and J. P. How. Robust UAV Search for Environments with Imprecise
Probability Maps. In Proceedings of the 44th IEEE Conference on Decision and Control,
pages 5680–5685, Dec 2005. doi: 10.1109/CDC.2005.1583068. 6.1.2

[13] Avrim Blum and Merrick L. Furst. Fast Planning Through Planning Graph Analysis.
Artificial Intelligence, 90(1-2):281–300, 1997. doi: 10.1016/S0004-3702(96)00047-1.
URL https://doi.org/10.1016/S0004-3702(96)00047-1. 2.1.2, 7.2.1

[14] Blai Bonet and Hector Geffner. Planning as heuristic search. Artif. Intell., 129(1-2):5–33,
2001. doi: 10.1016/S0004-3702(01)00108-4. URL https://doi.org/10.1016/
S0004-3702(01)00108-4. 1, 2.1.2

[15] Blai Bonet and Hector Geffner. Labeled RTDP: Improving the Convergence of Real-Time
Dynamic Programming. In Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy, pages
12–21, 2003. URL http://www.aaai.org/Library/ICAPS/2003/icaps03-
002.php. 2.4

[16] Blai Bonet and Hector Geffner. mGPT: A Probabilistic Planner Based on Heuristic Search.
Journal of Artificial Intelligence Research, 24:933–944, 2005. doi: 10.1613/jair.1688. URL
https://doi.org/10.1613/jair.1688. 6.5.1

[17] Blai Bonet and Hector Geffner. Action Selection for MDPs: Anytime AO* Versus UCT.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada., 2012. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI12/paper/view/5136. 7.2.1

[18] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. Exploiting Structure in
Policy Construction. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2
Volumes, pages 1104–1113, 1995. URL http://ijcai.org/Proceedings/95-
2/Papers/012.pdf.

[19] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic MDP-behavior
planning for cars. In 14th International IEEE Conference on Intelligent Transporta-
tion Systems, ITSC 2011, Washington, DC, USA, October 5-7, 2011, pages 1537–1542,
2011. doi: 10.1109/ITSC.2011.6082928. URL https://doi.org/10.1109/ITSC.
2011.6082928. 7.2.1

[20] Edmund K. Burke, Graham Kendall, Jim Newall, Emma Hart, Peter Ross, and Sonia

140

https://doi.org/10.1109/SASO.2009.25
https://doi.org/10.1016/S0004-3702(96)00047-1
https://doi.org/10.1016/S0004-3702(01)00108-4
https://doi.org/10.1016/S0004-3702(01)00108-4
http://www.aaai.org/Library/ICAPS/2003/icaps03-002.php
http://www.aaai.org/Library/ICAPS/2003/icaps03-002.php
https://doi.org/10.1613/jair.1688
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5136
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5136
http://ijcai.org/Proceedings/95-2/Papers/012.pdf
http://ijcai.org/Proceedings/95-2/Papers/012.pdf
https://doi.org/10.1109/ITSC.2011.6082928
https://doi.org/10.1109/ITSC.2011.6082928

Schulenburg. Hyper-Heuristics: An Emerging Direction in Modern Search Technology.
In Handbook of Metaheuristics, pages 457–474. 2003. doi: 10.1007/0-306-48056-5_16.
URL https://doi.org/10.1007/0-306-48056-5_16. 2.3, 8.2.4, 8.4

[21] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa,
Ender Özcan, and Rong Qu. Hyper-heuristics: a survey of the state of the art. JORS, 64(12):
1695–1724, 2013. doi: 10.1057/jors.2013.71. URL https://doi.org/10.1057/
jors.2013.71. 1

[22] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Comp. Syst., 25(6):599–616, 2009. doi: 10.
1016/j.future.2008.12.001. URL https://doi.org/10.1016/j.future.2008.
12.001. 6.1.1

[23] Javier Cámara, David Garlan, Bradley R. Schmerl, and Ashutosh Pandey. Optimal plan-
ning for architecture-based self-adaptation via model checking of stochastic games. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing, Salamanca,
Spain, April 13-17, 2015, pages 428–435, 2015. doi: 10.1145/2695664.2695680. URL
https://doi.org/10.1145/2695664.2695680. 1, 1.1

[24] Javier Cámara, Gabriel A. Moreno, and David Garlan. Reasoning about Human Par-
ticipation in Self-Adaptive Systems. In 10th IEEE/ACM International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence,
Italy, May 18-19, 2015, pages 146–156, 2015. doi: 10.1109/SEAMS.2015.14. URL
https://doi.org/10.1109/SEAMS.2015.14. 8.3.2

[25] Javier Cámara, Bradley R. Schmerl, Gabriel A. Moreno, and David Garlan. MOSAICO:
Offline Synthesis of Adaptation Strategy Repertoires with Flexible Trade-offs. Automated
Software Engineering, 25(3):595–626, 2018. doi: 10.1007/s10515-018-0234-9. URL
https://doi.org/10.1007/s10515-018-0234-9. 1

[26] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, and Aistis Simaitis.
PRISM-games: A Model Checker for Stochastic Multi-Player Games. In Tools and
Algorithms for the Construction and Analysis of Systems - 19th International Conference,
TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, pages 185–191, 2013.
doi: 10.1007/978-3-642-36742-7_13. URL https://doi.org/10.1007/978-3-
642-36742-7_13. 7.2.1

[27] Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley R. Schmerl, and Peter
Steenkiste. Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure. In
1st International Conference on Autonomic Computing (ICAC 2004), 17-19 May 2004, New
York, NY, USA, pages 276–277, 2004. doi: 10.1109/ICAC.2004.46. URL http://doi.
ieeecomputersociety.org/10.1109/ICAC.2004.46. 1, 1.1, 1.5, 2.1.1, 3.2,
6.6, 7.2.1, 8.1.2, 8.4

[28] Zack Coker, David Garlan, and Claire Le Goues. SASS: Self-Adaptation Using Stochastic
Search. In 10th IEEE/ACM International Symposium on Software Engineering for Adaptive

141

https://doi.org/10.1007/0-306-48056-5_16
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1145/2695664.2695680
https://doi.org/10.1109/SEAMS.2015.14
https://doi.org/10.1007/s10515-018-0234-9
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
http://doi.ieeecomputersociety.org/10.1109/ICAC.2004.46
http://doi.ieeecomputersociety.org/10.1109/ICAC.2004.46

and Self-Managing Systems, SEAMS 2015, Florence, Italy, May 18-19, 2015, pages 168–
174, 2015. doi: 10.1109/SEAMS.2015.16. URL https://doi.org/10.1109/
SEAMS.2015.16. 1, 1.1, 6.6, 8.1.2

[29] OW2 Consortium et al. Rubis: Rice university bidding system. 2013. URL http:
//rubis.ow2.org. 1.1

[30] Padraig Cunningham and Sarah Jane Delany. k-Nearest Neighbour Classifiers. Multiple
Classifier Systems, 34(8):1–17, 2007. 8.2.3

[31] Tushar Deshpande, Panagiotis Katsaros, Scott A. Smolka, and Scott D. Stoller. Stochastic
Game-Based Analysis of the DNS Bandwidth Amplification Attack Using Probabilistic
Model Checking. In 2014 Tenth European Dependable Computing Conference, Newcastle,
United Kingdom, May 13-16, 2014, pages 226–237, 2014. doi: 10.1109/EDCC.2014.37.
URL https://doi.org/10.1109/EDCC.2014.37. 7.2.1

[32] M. Benjamin Dias, Dominique Locher, Ming Li, Wael El-Deredy, and Paulo J.G. Lisboa.
The Value of Personalised Recommender Systems to e-Business: A Case Study. In
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ’08, pages
291–294, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-093-7. doi: 10.1145/
1454008.1454054. URL http://doi.acm.org/10.1145/1454008.1454054.
1.1

[33] S. Duttagupta, R. Virk, and M. Nambiar. Predicting Performance in the Presence of
Software and Hardware Resource Bottlenecks. In International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS 2014), pages 542–549,
July 2014. doi: 10.1109/SPECTS.2014.6879991. 1.1

[34] D. Eskins and W. H. Sanders. The Multiple-Asymmetric-Utility System Model: A
Framework for Modeling Cyber-Human Systems. In 2011 Eighth International Con-
ference on Quantitative Evaluation of SysTems, pages 233–242, Sep. 2011. doi:
10.1109/QEST.2011.38. 8.3.2

[35] Maria Fox. A Modular Architecture for Hybrid Planning with Theories. In Principles
and Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon,
France, September 8-12, 2014. Proceedings, pages 1–2, 2014. doi: 10.1007/978-3-319-
10428-7_1. URL https://doi.org/10.1007/978-3-319-10428-7_1. 2.2

[36] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang. Modeling the Impact of Workload
on Cloud Resource Scaling. In 2014 IEEE 26th International Symposium on Computer
Architecture and High Performance Computing, pages 310–317, Oct 2014. doi: 10.1109/
SBAC-PAD.2014.16. 1.1

[37] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch. Au-
toScale: Dynamic, Robust Capacity Management for Multi-Tier Data Centers. ACM
Trans. Comput. Syst., 30(4):14:1–14:26, 2012. doi: 10.1145/2382553.2382556. URL
https://doi.org/10.1145/2382553.2382556. 4.2.2, 6.1.1, 7.2.2

[38] Erann Gat. On Three-layer Architectures. Artificial Intelligence and Mobile Robots, 195:
210, 1998. 2.1.4

142

https://doi.org/10.1109/SEAMS.2015.16
https://doi.org/10.1109/SEAMS.2015.16
http://rubis. ow2.org
http://rubis. ow2.org
https://doi.org/10.1109/EDCC.2014.37
http://doi.acm.org/10.1145/1454008.1454054
https://doi.org/10.1007/978-3-319-10428-7_1
https://doi.org/10.1145/2382553.2382556

[39] Simos Gerasimou, Radu Calinescu, and Alec Banks. Efficient Runtime Quantitative
Verification Using Caching, Lookahead, and Nearly-optimal Reconfiguration. In 9th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2014, Proceedings, Hyderabad, India, June 2-3, 2014, pages 115–124, 2014.
doi: 10.1145/2593929.2593932. URL https://doi.org/10.1145/2593929.
2593932. 1.1, 6.1.1, 8.2.1, 8.2.4

[40] Alfonso Gerevini, Alessandro Saetti, Ivan Serina, and Paolo Toninelli. LPG-TD: A Fully
Automated Planner for PDDL2. 2 Domains. In Proceedings of the 14th International
Conference on Automated Planning and Scheduling (ICAPS) International Planning Com-
petition abstracts. Citeseer, 2004. 2.1.2

[41] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf,
and Srdjan Capkun. On the Security and Performance of Proof of Work Blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 3–16, 2016. doi: 10.1145/2976749.
2978341. URL https://doi.org/10.1145/2976749.2978341. 7.2.1

[42] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely Randomized Trees. Machine
learning, 63(1):3–42, 2006. 6.2.1

[43] S. Ghahremani, H. Giese, and T. Vogel. Efficient Utility-Driven Self-Healing Employing
Adaptation Rules for Large Dynamic Architectures. In 2017 IEEE International Conference
on Autonomic Computing (ICAC), pages 59–68, July 2017. doi: 10.1109/ICAC.2017.35.
8.2.1

[44] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice.
Elsevier, 2004. 1, 1.3, 4.1.2, 5.2, 7.2.1, 3, 8.2.1, 8.2.3

[45] Fred Glover and Manuel Laguna. Tabu Search. In Handbook of combinatorial optimization,
pages 2093–2229. Springer, 1998. 2.3

[46] Jonathan Gratch and Steve A. Chien. Adaptive problem-solving for large-scale scheduling
problems: A case study. Journal of Artificial Intelligence Research, 4:365–396, 1996. doi:
10.1613/jair.177. URL https://doi.org/10.1613/jair.177. 2.3

[47] Jonathan Gratch, Steve A. Chien, and Gerald DeJong. Learning Search Control Knowledge
for Deep Space Network Scheduling. In Machine Learning, Proceedings of the Tenth
International Conference, University of Massachusetts, Amherst, MA, USA, June 27-
29, 1993, pages 135–142, 1993. doi: 10.1016/b978-1-55860-307-3.50024-1. URL
https://doi.org/10.1016/b978-1-55860-307-3.50024-1. 2.3

[48] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, 2013. 1.1

[49] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. J. Artif. Intell. Res., 14:253–302, 2001. doi: 10.1613/jair.855.
URL https://doi.org/10.1613/jair.855. 1, 2.1.2

[50] Shigeru Imai. Elastic Cloud Computing for QOS-aware Data Processing. PhD thesis,
Rensselaer Polytechnic Institute, 2018. 6.1.1

143

https://doi.org/10.1145/2593929.2593932
https://doi.org/10.1145/2593929.2593932
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1613/jair.177
https://doi.org/10.1016/b978-1-55860-307-3.50024-1
https://doi.org/10.1613/jair.855

[51] Waheed Iqbal, Matthew N. Dailey, David Carrera, and Paul Janecek. Adaptive resource
provisioning for read intensive multi-tier applications in the cloud. Future Generation
Comp. Syst., 27(6):871–879, 2011. doi: 10.1016/j.future.2010.10.016. URL https:
//doi.org/10.1016/j.future.2010.10.016. 2.4, 4

[52] M. A. Islam, S. Ren, A. H. Mahmud, and G. Quan. Online Energy Budgeting for Cost
Minimization in Virtualized Data Center. IEEE Transactions on Services Computing, 9(3):
421–432, May 2016. doi: 10.1109/TSC.2015.2390231. 1.1

[53] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Autonomic resource provisioning
for cloud-based software. In 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2014, Proceedings, Hyderabad, India,
June 2-3, 2014, pages 95–104, 2014. doi: 10.1145/2593929.2593940. URL https:
//doi.org/10.1145/2593929.2593940. 1, 1.1, 6.6, 8.1.2

[54] Andreas Junghanns and Jonathan Schaeffer. Domain-Dependent Single-Agent Search
Enhancements. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages,
pages 570–577, 1999. URL http://ijcai.org/Proceedings/99-1/Papers/
082.pdf. 1

[55] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and Acting
in Partially Observable Stochastic Domains. Artificial Intelligence, 101(1-2):99–134, 1998.
doi: 10.1016/S0004-3702(98)00023-X. URL https://doi.org/10.1016/S0004-
3702(98)00023-X. 1.1, 2.1.2, 5.2, 7.2.1

[56] Daniel Kahneman and Patrick Egan. Thinking, Fast and Slow, volume 1. Farrar, Straus and
Giroux New York, 2011. 2.2, 8.2.4, 8.4

[57] Subbarao Kambhampati. A Comparative Analysis of Partial Order Planning and Task
Reduction Planning. SIGART Bulletin, 6(1):16–25, 1995. doi: 10.1145/202187.202192.
URL https://doi.org/10.1145/202187.202192. 2.2

[58] Subbarao Kambhampati, Amol Dattatraya Mali, and Biplav Srivastava. Hybrid Planning
for Partially Hierarchical Domains. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA., pages 882–888, 1998.
URL http://www.aaai.org/Library/AAAI/1998/aaai98-125.php. 2.2

[59] Donald L Keefer. Certainty Equivalents for Three-point Discrete-distribution Approxima-
tions. Management science, 40(6):760–773, 1994. 6.1.1, 6.1.2

[60] Thomas Keller and Malte Helmert. Trial-Based Heuristic Tree Search for Fi-
nite Horizon MDPs. In Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling, ICAPS 2013, Rome, Italy, June 10-14,
2013, 2013. URL http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/
paper/view/6026. 7.2.1

[61] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing. IEEE Computer, 36
(1):41–50, Jan 2003. doi: 10.1109/MC.2003.1160055. 1, 5.3

144

https://doi.org/10.1016/j.future.2010.10.016
https://doi.org/10.1016/j.future.2010.10.016
https://doi.org/10.1145/2593929.2593940
https://doi.org/10.1145/2593929.2593940
http://ijcai.org/Proceedings/99-1/Papers/082.pdf
http://ijcai.org/Proceedings/99-1/Papers/082.pdf
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1145/202187.202192
http://www.aaai.org/Library/AAAI/1998/aaai98-125.php
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6026
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/view/6026

[62] Dongsun Kim and Sooyong Park. Reinforcement learning-based dynamic adaptation
planning method for architecture-based self-managed software. In 2009 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2009, Vancouver,
BC, Canada, May 18-19, 2009, pages 76–85, 2009. doi: 10.1109/SEAMS.2009.5069076.
URL https://doi.org/10.1109/SEAMS.2009.5069076. 1

[63] Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues. Man-
aging Uncertainty in Self-adaptive Systems with Plan Reuse and Stochastic Search. In
Proceedings of the 13th International Conference on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS ’18, pages 40–50, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5715-9. doi: 10.1145/3194133.3194145. URL http:
//doi.acm.org/10.1145/3194133.3194145. 1, 6.6

[64] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-Rodriguez.
Brownout: Building More Robust Cloud Applications. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 700–711, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568227. URL
http://doi.acm.org/10.1145/2568225.2568227. 1.1

[65] John C. Knight. Safety Critical Systems: Challenges and Directions. In Proceedings of the
24th International Conference on Software Engineering, ICSE ’02, pages 547–550, New
York, NY, USA, 2002. ACM. ISBN 1-58113-472-X. doi: 10.1145/581339.581406. URL
http://doi.acm.org/10.1145/581339.581406. 1

[66] Ron Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estimation and
Model Selection. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-363-8. URL http://dl.acm.org/
citation.cfm?id=1643031.1643047. 4.2.2

[67] David Kortenkamp, Reid G. Simmons, and Davide Brugali. Robotic Systems Architectures
and Programming. In Springer Handbook of Robotics, pages 283–306. 2016. doi: 10.
1007/978-3-319-32552-1_12. URL https://doi.org/10.1007/978-3-319-
32552-1_12. 2.1.4

[68] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Architectural Challenge. In
International Conference on Software Engineering, ISCE 2007, Workshop on the Future
of Software Engineering, FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA, pages
259–268, 2007. doi: 10.1109/FOSE.2007.19. URL https://doi.org/10.1109/
FOSE.2007.19. 2.1.4

[69] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of
Probabilistic Real-Time Systems. In Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 585–591,
2011. doi: 10.1007/978-3-642-22110-1_47. URL https://doi.org/10.1007/
978-3-642-22110-1_47. 3.2, 4.2.2, 7.2.2, 8.2.3

[70] Amina Lamghari and Roussos Dimitrakopoulos. Hyper-heuristic Approaches for Strategic
Mine Planning Under Uncertainty. Computers Operations Research, 11 2018. doi:

145

https://doi.org/10.1109/SEAMS.2009.5069076
http://doi.acm.org/10.1145/3194133.3194145
http://doi.acm.org/10.1145/3194133.3194145
http://doi.acm.org/10.1145/2568225.2568227
http://doi.acm.org/10.1145/581339.581406
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047
https://doi.org/10.1007/978-3-319-32552-1_12
https://doi.org/10.1007/978-3-319-32552-1_12
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

10.1016/j.cor.2018.11.010. 2.3

[71] Steven M LaValle. Planning Algorithms. Cambridge university press, 2006. 7.2.1, 8.2.1,
8.2.3

[72] Hui Li and Brian Williams. Hybrid Planning with Temporally Extended Goals for Sus-
tainable Ocean Observing. In Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011,
2011. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/
view/3667. 2.2

[73] Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the Complexity of
Solving Markov Decision Problems. CoRR, abs/1302.4971, 2013. URL http://arxiv.
org/abs/1302.4971. 2.1.2, 7.2.1

[74] Eric Lloyd, Shihong Huang, and Emmanuelle Tognoli. Improving human-in-the-loop
adaptive systems using brain-computer interaction. In 12th IEEE/ACM International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS@ICSE
2017, Buenos Aires, Argentina, May 22-23, 2017, pages 163–174, 2017. doi: 10.1109/
SEAMS.2017.1. URL https://doi.org/10.1109/SEAMS.2017.1. 8.3.2

[75] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-latency Geo-replicated Storage. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, nsdi’13, pages 313–
328, Berkeley, CA, USA, 2013. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=2482626.2482657. 1.1

[76] Freerk A Lootsma. Fuzzy Logic for Planning and Decision Making, volume 8. Springer
Science & Business Media, 2013. 2.1.1, 7.2.1

[77] Frank D. Macías-Escrivá, Rodolfo E. Haber, Raúl M. del Toro, and Vicente Hernández. Self-
adaptive systems: A survey of current approaches, research challenges and applications.
Expert Systems with Applications, 40(18):7267–7279, 2013. doi: 10.1016/j.eswa.2013.07.
033. URL https://doi.org/10.1016/j.eswa.2013.07.033. 1

[78] Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI Per-
spective. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2012. doi: 10.2200/S00426ED1V01Y201206AIM017. URL
https://doi.org/10.2200/S00426ED1V01Y201206AIM017. 1.3, 2.1.2, 3.2,
4.1.2, 7.2, 7.2.1, 8.2.2

[79] Mausam, Piergiorgio Bertoli, and Daniel S. Weld. A hybridized planner for stochastic
domains. In IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 1972–1978, 2007.
URL http://ijcai.org/Proceedings/07/Papers/318.pdf. 2.4, 3, 3.4.3,
3.5, 6, 6.5.1, 8.1.1, 8.4

[80] Bruce L Miller. Finite State Continuous Time Markov Decision Processes with a Finite
Planning Horizon. SIAM Journal on Control, 6(2):266–280, 1968. 2.1.2

[81] Tom M Mitchell. Machine Learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870–877,

146

http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3667
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3667
http://arxiv.org/abs/1302.4971
http://arxiv.org/abs/1302.4971
https://doi.org/10.1109/SEAMS.2017.1
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
https://doi.org/10.1016/j.eswa.2013.07.033
https://doi.org/10.2200/S00426ED1V01Y201206AIM017
http://ijcai.org/Proceedings/07/Papers/318.pdf

1997. 4, 7.4, 8.2.3

[82] G. A. Moreno, J. CÃąmara, D. Garlan, and B. Schmerl. Efficient Decision-Making Under
Uncertainty for Proactive Self-Adaptation. In 2016 IEEE International Conference on
Autonomic Computing (ICAC), pages 147–156, July 2016. doi: 10.1109/ICAC.2016.59.
1.1, 1.1

[83] G. A. Moreno, O. Strichman, S. Chaki, and R. Vaisman. Decision-Making with Cross-
Entropy for Self-Adaptation. In 2017 IEEE/ACM 12th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 90–101, May
2017. doi: 10.1109/SEAMS.2017.7. 6.6

[84] Gabriel A. Moreno. Adaptation Timing in Self-Adaptive Systems. PhD thesis, Carnegie
Mellon University, 2017. 6.1.2

[85] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley R. Schmerl. Proactive
self-adaptation under uncertainty: a probabilistic model checking approach. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, pages 1–12, 2015. doi: 10.1145/2786805.
2786853. URL https://doi.org/10.1145/2786805.2786853. 1, 1.1, 1.1, 3.2,
4.2.2, 6.1.1, 6.6, 8.1.2, 8.2.1

[86] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. Flexible and
Efficient Decision-Making for Proactive Latency-Aware Self-Adaptation. ACM Trans.
Auton. Adapt. Syst., 13(1):3:1–3:36, April 2018. ISSN 1556-4665. doi: 10.1145/3149180.
URL http://doi.acm.org/10.1145/3149180. 6.6, 8.1.2, 8.2.4

[87] Gabriel A. Moreno, Bradley Schmerl, and David Garlan. SWIM: An Exemplar for
Evaluation and Comparison of Self-adaptation Approaches for Web Applications. In
Proceedings of the 13th International Conference on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS ’18, pages 137–143, New York, NY, USA,
2018. ACM. ISBN 978-1-4503-5715-9. doi: 10.1145/3194133.3194163. URL http:
//doi.acm.org/10.1145/3194133.3194163. 6.1.1, 6.6, 8.1.2

[88] Gabriel A. Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. DARTSim:
An Exemplar for Evaluation and Comparison of Self-adaptation Approaches for Smart
Cyber-physical Systems. In Proceedings of the 14th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, SEAMS ’19, pages 181–
187, Piscataway, NJ, USA, 2019. IEEE Press. doi: 10.1109/SEAMS.2019.00031. URL
https://doi.org/10.1109/SEAMS.2019.00031. 6.3, 6.1.2, 6.6, 8.1.2

[89] Hala Mostafa and Victor R. Lesser. Offline Planning for Communication by Exploiting
Structured Interactions in Decentralized MDPs. In Proceedings of the 2009 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, IAT 2009, Milan, Italy, 15-18
September 2009, pages 193–200, 2009. doi: 10.1109/WI-IAT.2009.150. URL https:
//doi.org/10.1109/WI-IAT.2009.150. 7.2.1

[90] David J. Musliner, Edmund H. Durfee, and Kang G. Shin. World Modeling for the Dynamic
Construction of Real-Time Control Plans. Artificial Intelligence, 74(1):83–127, 1995.
doi: 10.1016/0004-3702(94)00008-O. URL https://doi.org/10.1016/0004-

147

https://doi.org/10.1145/2786805.2786853
http://doi.acm.org/10.1145/3149180
http://doi.acm.org/10.1145/3194133.3194163
http://doi.acm.org/10.1145/3194133.3194163
https://doi.org/10.1109/SEAMS.2019.00031
https://doi.org/10.1109/WI-IAT.2009.150
https://doi.org/10.1109/WI-IAT.2009.150
https://doi.org/10.1016/0004-3702(94)00008-O
https://doi.org/10.1016/0004-3702(94)00008-O
https://doi.org/10.1016/0004-3702(94)00008-O

3702(94)00008-O. 2.1.4

[91] Gethin Norman, David Parker, and Xueyi Zou. Verification and control of partially
observable probabilistic systems. Real-Time Systems, 53(3):354–402, 2017. doi: 10.1007/
s11241-017-9269-4. URL https://doi.org/10.1007/s11241-017-9269-4.
8.2.3

[92] A. Pandey, B. Schmerl, and D. Garlan. Instance-Based Learning for Hybrid Planning. In
2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems
(FAS*W), pages 64–69, Sep. 2017. doi: 10.1109/FAS-W.2017.122. 3.4.3

[93] Ashutosh Pandey. Prism planning specifications for the cloud-based system and the team of
UAVs. http://reports-archive.adm.cs.cmu.edu/anon/2020/CMU-CS-
20-100A.pdf. 6.1.1

[94] Ashutosh Pandey, Gabriel A. Moreno, Javier Cámara, and David Garlan. Hybrid Planning
for Decision Making in Self-Adaptive Systems. In 10th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, SASO 2016, Augsburg, Germany, September
12-16, 2016, pages 130–139, 2016. doi: 10.1109/SASO.2016.19. URL https://doi.
org/10.1109/SASO.2016.19. 6.6, 8.1.2, 8.2.1

[95] Ashutosh Pandey, Ivan Ruchkin, Bradley R. Schmerl, and Javier Cámara. Towards a
formal framework for hybrid planning in self-adaptation. In 12th IEEE/ACM Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017, pages 109–115, 2017. doi:
10.1109/SEAMS.2017.14. URL https://doi.org/10.1109/SEAMS.2017.14.

[96] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, pages
1025–1032, 2003. URL http://ijcai.org/Proceedings/03/Papers/147.
pdf. 2.1.2, 7.2.1, 7.2.1

[97] Barry Porter and Roberto Vito Rodrigues Filho. Losing Control: The Case for Emergent
Software Systems Using Autonomous Assembly, Perception, and Learning. In 10th
IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2016,
Augsburg, Germany, September 12-16, 2016, pages 40–49, 2016. doi: 10.1109/SASO.2016.
10. URL https://doi.org/10.1109/SASO.2016.10. 1, 1.1, 3.4.2, 6.6, 8.1.2

[98] K. Qazi, Y. Li, and A. Sohn. Workload Prediction of Virtual Machines for Harnessing Data
Center Resources. In 2014 IEEE 7th International Conference on Cloud Computing, pages
522–529, June 2014. doi: 10.1109/CLOUD.2014.76. 1.1

[99] John R. Rice. The Algorithm Selection Problem. Advances in Computers, 15:65–118, 1976.
doi: 10.1016/S0065-2458(08)60520-3. URL https://doi.org/10.1016/S0065-
2458(08)60520-3. 2.3

[100] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa. Online Planning
Algorithms for POMDPs. CoRR, abs/1401.3436, 2014. URL http://arxiv.org/
abs/1401.3436. 2.1.2, 7.2.1

148

https://doi.org/10.1016/0004-3702(94)00008-O
https://doi.org/10.1016/0004-3702(94)00008-O
https://doi.org/10.1016/0004-3702(94)00008-O
https://doi.org/10.1007/s11241-017-9269-4
http://reports-archive.adm.cs.cmu.edu/anon/2020/CMU-CS-20-100A.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2020/CMU-CS-20-100A.pdf
https://doi.org/10.1109/SASO.2016.19
https://doi.org/10.1109/SASO.2016.19
https://doi.org/10.1109/SEAMS.2017.14
http://ijcai.org/Proceedings/03/Papers/147.pdf
http://ijcai.org/Proceedings/03/Papers/147.pdf
https://doi.org/10.1109/SASO.2016.10
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S0065-2458(08)60520-3
http://arxiv.org/abs/1401.3436
http://arxiv.org/abs/1401.3436

[101] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Malaysia;
Pearson Education Limited„ 2016. 4.2.2, 8.2.3

[102] Mazeiar Salehie and Ladan Tahvildari. Autonomic computing: Emerging trends and open
problems. In Proceedings of the 2005 Workshop on Design and Evolution of Autonomic
Application Software, DEAS ’05, pages 1–7, New York, NY, USA, 2005. ACM. ISBN
1-59593-039-6. doi: 10.1145/1083063.1083082. URL http://doi.acm.org/10.
1145/1083063.1083082. 8.2.4

[103] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research
challenges. TAAS, 4(2):14:1–14:42, 2009. doi: 10.1145/1516533.1516538. URL https:
//doi.org/10.1145/1516533.1516538. 1, 8.2.3, 8.2.4

[104] Bernd Schattenberg, Andreas Weigl, and Susanne Biundo. Hybrid Planning Using Flexible
Strategies. In KI 2005: Advances in Artificial Intelligence, 28th Annual German Conference
on AI, KI 2005, Koblenz, Germany, September 11-14, 2005, Proceedings, pages 249–263,
2005. doi: 10.1007/11551263_21. URL https://doi.org/10.1007/11551263_
21. 2.2

[105] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(1):1–114, 2012. 8.3.1

[106] Trey Smith and Reid G. Simmons. Heuristic Search Value Iteration for POMDPs. CoRR,
abs/1207.4166, 2012. URL http://arxiv.org/abs/1207.4166. 2.1.2, 7.2.1

[107] S. Soltani, P. Martin, and K. Elgazzar. QuARAM Recommender: Case-Based Reasoning
for IaaS Service Selection. In 2014 International Conference on Cloud and Autonomic
Computing, pages 220–226, Sep. 2014. doi: 10.1109/ICCAC.2014.26. 1, 1.1, 2.1.1, 3.2,
6.6, 7.2.1, 8.1.2

[108] R. Sukkerd, J. CÃąmara, D. Garlan, and R. Simmons. Multiscale Time Abstractions for
Long-Range Planning under Uncertainty. In 2016 IEEE/ACM 2nd International Workshop
on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pages 15–21, May
2016. doi: 10.1109/SEsCPS.2016.011. 3.2, 6.1.1, 8.2.1

[109] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
press, 2018. 2.1.3, 2.3

[110] Daniel Sykes, William Heaven, Jeff Magee, and Jeff Kramer. Plan-directed architectural
change for autonomous systems. In Proceedings of the 2007 Conference Specification and
Verification of Component-Based Systems, SAVCBS 2007, Dubrovnik, Croatia, September
3-4, 2007, pages 15–21, 2007. doi: 10.1145/1292316.1292318. URL https://doi.
org/10.1145/1292316.1292318. 1, 3.4.2, 8.2.1

[111] A. Symington, S. Waharte, S. Julier, and N. Trigoni. Probabilistic target detection by
camera-equipped UAVs. In 2010 IEEE International Conference on Robotics and Automa-
tion, pages 4076–4081, May 2010. doi: 10.1109/ROBOT.2010.5509355. 6.1.2

[112] Hossein Tajalli, Joshua Garcia, George Edwards, and Nenad Medvidovic. PLASMA: A
Plan-based Layered Architecture for Software Model-driven Adaptation. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

149

http://doi.acm.org/10.1145/1083063.1083082
http://doi.acm.org/10.1145/1083063.1083082
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1007/11551263_21
https://doi.org/10.1007/11551263_21
http://arxiv.org/abs/1207.4166
https://doi.org/10.1145/1292316.1292318
https://doi.org/10.1145/1292316.1292318

467–476, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0116-9. doi: 10.1145/
1858996.1859092. URL http://doi.acm.org/10.1145/1858996.1859092.
2.1.4, 8.2.1

[113] A. Tallavajhula, S. Choudhury, S. Scherer, and A. Kelly. List Prediction Applied to Motion
Planning. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 213–220, May 2016. doi: 10.1109/ICRA.2016.7487136. 2.4, 3.4.3, 8.4

[114] Florent Teichteil-Königsbuch, Charles Lesire, and Guillaume Infantes. A generic frame-
work for anytime execution-driven planning in robotics. In IEEE International Conference
on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, pages 299–304,
2011. doi: 10.1109/ICRA.2011.5980289. URL https://doi.org/10.1109/ICRA.
2011.5980289. 7.2.1

[115] Manuela M. Veloso. Planning and Learning by Analogical Reasoning, volume 886 of
Lecture Notes in Computer Science. Springer, 1994. ISBN 3-540-58811-6. doi: 10.1007/3-
540-58811-6. URL https://doi.org/10.1007/3-540-58811-6. 2.1.1, 7.2.1

[116] Michael J. Veth. Advanced Formation Flight Control. Technical report, Air Force Institute
of Technology, 1994. 6.1.2

[117] David H. Wolpert and William G. Macready. Coevolutionary free lunches. IEEE Trans.
Evolutionary Computation, 9(6):721–735, 2005. doi: 10.1109/TEVC.2005.856205. URL
https://doi.org/10.1109/TEVC.2005.856205. 5, 2.3

[118] Minxian Xu and Rajkumar Buyya. Brownout Approach for Adaptive Management of
Resources and Applications in Cloud Computing Systems: A Taxonomy and Future
Directions. ACM Comput. Surv., 52(1):8:1–8:27, 2019. doi: 10.1145/3234151. URL
https://doi.org/10.1145/3234151. 1.1

[119] Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. DESPOT: Online POMDP Planning
with Regularization. J. Artif. Intell. Res., 58:231–266, 2017. doi: 10.1613/jair.5328. URL
https://doi.org/10.1613/jair.5328. 7.2.1

[120] Lu Yu and Richard R. Brooks. Applying POMDP to moving target optimization. In Cyber
Security and Information Intelligence, CSIIRW ’13, Oak Ridge, TN, USA, January 8-10,
2013, page 49, 2013. doi: 10.1145/2459976.2460032. URL https://doi.org/10.
1145/2459976.2460032. 7.2.1

[121] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and X. Zang. Cost-Aware Cooperative
Resource Provisioning for Heterogeneous Workloads in Data Centers. IEEE Transactions
on Computers, 62(11):2155–2168, Nov 2013. doi: 10.1109/TC.2012.103. 6.1.1

[122] Shlomo Zilberstein. Using Anytime Algorithms in Intelligent Systems. AI Magazine, 17(3):
73–83, 1996. URL http://www.aaai.org/ojs/index.php/aimagazine/
article/view/1232. 2.4, 7.2.1

150

http://doi.acm.org/10.1145/1858996.1859092
https://doi.org/10.1109/ICRA.2011.5980289
https://doi.org/10.1109/ICRA.2011.5980289
https://doi.org/10.1007/3-540-58811-6
https://doi.org/10.1109/TEVC.2005.856205
https://doi.org/10.1145/3234151
https://doi.org/10.1613/jair.5328
https://doi.org/10.1145/2459976.2460032
https://doi.org/10.1145/2459976.2460032
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1232
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1232

	1 Introduction
	1.1 Motivating Example for Hybrid Planning
	1.2 Thesis
	1.3 Approach Overview
	1.4 Validation of the Claims
	1.5 Thesis Contributions
	1.6 Dissertation Outline

	2 Related Work
	2.1 Approaches to Deal with the Trade-off between Timeliness and Quality of Planning
	2.1.1 Using Precomputed Plans
	2.1.2 Search and Optimizing Algorithms/Heuristics
	2.1.3 Reinforcement Learning
	2.1.4 Hierarchical Task Networks

	2.2 Different Notions of Hybrid Planning
	2.3 Hyper-Heuristics
	2.4 Other Similar Instantiations of Hybrid Planning
	2.5 Summary

	3 The Problem of Hybrid Planning
	3.1 Summary of the Formal Model
	3.2 Foundational Concepts
	3.3 Decomposition of the Hybrid Planning Problem
	3.3.1 Path Selection
	3.3.2 Graph Construction
	3.3.3 Planner Assessment
	3.3.4 Problem Generation

	3.4 Applying the Formal Model
	3.4.1 Formal Model Applications
	3.4.2 Assumptions
	3.4.3 Implementation Barriers

	3.5 Summary

	4 Solution to Hybrid Planning
	4.1 Constructing a Reachability Graph
	4.1.1 Restricting the Number of Nodes
	4.1.2 Connecting the Nodes

	4.2 Finding a Path in a Reachability Graph
	4.2.1 Condition-based Approach
	4.2.2 Learning-based Approach

	4.3 Summary

	5 Design and Analysis of Hybrid Planning
	5.1 The Hybrid Planning Algorithm
	5.2 Analysis of the Performance of the Hybrid Planning
	5.3 Summary

	6 Validation
	6.1 Validation Systems
	6.1.1 The Cloud-based Load Balancing System
	6.1.2 A Team of Unmanned Aerial Vehicles

	6.2 Learning-based Approach Implementation
	6.2.1 The Offline Phase
	6.2.2 The Online Phase

	6.3 Claims Validation
	6.3.1 Effectiveness
	6.3.2 Generality
	6.3.3 Flexibility

	6.4 Other Findings: Influence of Constituent Planners on Hybrid Planning
	6.5 Applications of the formal model
	6.5.1 Analysis of Hybridized Planner
	6.5.2 Comparison Between the Learning-based and the Hybridized Planner

	6.6 Threats to Validity
	6.7 Summary

	7 Guidelines to Apply Hybrid Planning
	7.1 Introduction
	7.2 Instantiating Hybrid Planning
	7.2.1 Informal Guidelines to Instantiate Hybrid Planning
	7.2.2 Quantitative Approach to Instantiate Hybrid Planning

	7.3 Choosing Between Condition-based and Learning-based Hybrid Planning
	7.4 Implementing Learning-based Hybrid Planning
	7.5 Summary

	8 Discussion and Conclusion
	8.1 Thesis Contributions
	8.1.1 Theoretical Contributions
	8.1.2 Practical Contributions

	8.2 Scoping Assumptions
	8.2.1 Assumptions to Make a Hybrid Planning Problem Tractable
	8.2.2 Assumptions to Address the Planning Coordination Problem
	8.2.3 Assumptions Related to Learning-based Hybrid Planning
	8.2.4 Other Assumptions

	8.3 Future Work
	8.3.1 Short Term Projects
	8.3.2 Long Term Projects

	8.4 Conclusion

	A Formalization of Timing and Preemption Conditions for the Cloud-based System
	B Plots of the FIFA Traces Used for Validation

